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Abstract The PRISM III score is widely used in pediatric intensive care units
(PICU) and has been extensively validated in various settings. While simple
enough to allow for fast manual evaluation, PRISM III dichotomizes predictive
variables to form prediction scores, which may lead to critical failures. In
this paper, we seek to develop a risk prediction score that preserves clinical
knowledge embedded in features and structure of PRISM III while addressing
limitations caused by variable dichotomization. The novel method transforms
predictive variables using nonlinear logistic functions that allow for a fine
differentiation between critical and normal values of the variables. Optimal
parameters of the logistic functions are inferred for a given patient population
via cyclic block coordinate descent, and may be readily re-learned as patient
population and standards of care evolve. We tested the proposed technique on
brain trauma patients admitted to the PICU of the Dell Children’s Medical
Center of Central Texas between 2007 and 2012. The prediction power of the
score is evaluated using area under ROC curve (AUC), Youden’s index J, and
precision-recall balance in a leave-one-out cross-validation study. The results
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demonstrate that the new score significantly outperforms PRISM III in terms
of all three criteria.

Keywords Prognosis · Trauma · Brain injury · Optimizable risk score ·
Continuous risk score

1 Introduction

Technological advancements in medical instrumentation and a growing use
of electronic medical records have created an abundance of clinical patient
data. Extracting and analyzing useful information from such large and diverse
data sets will enable tremendous advancements in clinical decision-making,
ultimately leading towards improvements in health and quality of life as well
as to reduction of the overall healthcare costs. Availability of data has enabled
development of accurate mortality and morbidity risk prediction scores for
specific patient populations. Rapid prediction of potentially poor outcomes
may provide timely intervention to reduce morbidity and mortality among the
patients in the considered group.

The Pediatric Risk of Mortality (PRISM III) (Pollack et al, 1996) is a
widely used mortality risk prediction score in pediatric intensive care units
(PICU) (Marcin and Pollack, 2000) that has been validated in various set-
tings as both an individual predictor and a significant predictor in a multi-
variate model in the United States and internationally (Scavarda et al, 2010;
Gemke and van Vught, 2002; Brady et al, 2006; Karambelkar et al, 2012; Can-
tais et al, 2001; Bahloul et al, 2011; Volakli et al, 2012; Martha et al, 2005;
Qureshi et al, 2007). However, while simple enough to allow for fast manual
evaluation, PRISM III dichotomizes predictive variables to form prediction
scores. Dichotomization of continuous variables results in a loss of informa-
tion, increased probability of false negatives, and high dependence on cut-off
points (Streiner, 2002; Royston et al, 2006). This, in turn, may lead to critical
failures of the prediction process. Moreover, note that PRISM III is a relatively
mature prediction mechanism that was developed in 1996. To remain relevant,
prediction scores need to be updated periodically so that they reflect innova-
tions and the evolution of the standards of healthcare (Marcin and Pollack,
2000).

In this paper, we seek to develop a risk prediction score that preserves
clinical knowledge embedded in features and structure of PRISM III while
allowing for soft thresholds in the score calculation. The paper is organized as
follows. Some of the most common risk scores used in the PICU are reviewed in
Section 2. In Section 3, we describe an algorithm for finding optimal values of
the logistic functions used to transform the data and discuss data imputation
strategies. Section 4 presents results obtained after applying the proposed
methodology to predicting outcome of pediatric trauma patients admitted to
the PICU of the Dell Children’s Medical Center of Central Texas between 2007
and 2012. Section 5 concludes the paper.
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2 Related Work

A state-of-the-art outcome prediction scheme, PRISM III, has an additive
step-wise structure that relies on 17 physiological variables and 26 ranges.
The physiological variables it considers are characterized by their maximum
or minimum values recorded during the first 12 or 24 hours after a patient’s
admission to the PICU. These variables include the minimum systolic blood
pressure, maximum heart rate, the presence of fixed pupils, maximum and
minimum body temperature, and a variety of laboratory measures including
minimum and maximum CO2 and pH, white blood cell count, glucose and
platelet count. Contribution of some variables to the score is determined after
evaluating a judiciously chosen logical OR statement, such as in the case of
maximum prothrombin time (PT) and partial thromboplastin time (PTT),
which can both detect abnormalities in clotting time. Other variables, such as
systolic blood pressure and heart rate, have age-dependent ranges.

In PRISM III, the score is incremented when the maximum (minimum)
value of a variable in the score is above (below) a predetermined threshold.
For example, if a child has a minimum Glasgow Coma Scale (GCS) (Laurer
et al, 2002; Maas et al, 2011) score less than 8, then 5 points are added to
her/his PRISM III score. Clearly, calculation of the score is highly dependent
on the established cutoff points and thus the prediction may change abruptly
due to very small changes in the underlying variables. For instance, interpre-
tation of the variables such as heart rate or blood pressure, which are altered
by the simple act of breathing, may widely change due to the strict thresh-
old structure – an adolescent with a maximum heart rate of 144 beats per
minute is considered healthy, while another one with a single measure of 145
beats per minute has 3 extra points added in the PRISM III score calculation.
Although the PRISM scores have been validated in numerous settings, they
have also been shown to overpredict (Slater et al, 2004; Tibby et al, 2002)
and underpredict (Bhadoria and Bhagwat, 2008; Thukral et al, 2006) PICU
deaths. Poor patient discrimination by PRISM scores, especially in neonates
and infants (Wells et al, 1996; Goddard, 1992), and the fact that only a small
subset of PRISM variables are significant predictors of the outcome (Ponce-
Ponce De León et al, 2005), render the PRISM scores sensitive to population
characteristics and standards of care and suggest that they may not necessar-
ily be institution independent. In this paper we develop a novel score that can
be optimized for a specific patient population. Moreover, we go beyond simply
finding new coefficients for the features in the existing scoring mechanisms and
instead develop a novel methodology that identifies a range of values for which
the risk changes continuously and monotonically (i.e., increases or decreases
with the feature values). This is accomplished by characterizing the effect of a
feature onto the risk by a non-linear logistic curve whose inflection point and
slope we find via an optimization, as opposed to using hard thresholding to
describe the effect of the physiological variables on the risk of mortality which
is the procedure employed by PRISM III and other state-of-the-art prediction
schemes.
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In addition to PRISM III, widely-used scores in the PICU include the injury
severity score (ISS) (Baker et al, 1974) and the pediatric index of mortality
(PIM2) (Slater et al, 2003), where the former is specific to trauma patients.
The ISS is an anatomic score based on the location and severity of the injuries.
Limitations of the ISS have led to various modifications as well as risk scores
that incorporate the ISS in the calculation (Marcin and Pollack, 2002). In a pe-
diatric trauma population, PRISM has outperformed the ISS and its variants
in identifying in-hospital mortality (Cantais et al, 2001). Logistic regression
has often been employed to learn the weighting coefficients for physiologic vari-
ables or binary indicators in mortality prediction models (Marcin and Pollack,
2002). PIM2 is a second generation score, based on recalibrating coefficients
of PIM (Shann et al, 1997) and adding variables for diagnostic groups with
poor performance or calibration. PIM2 models risk using logistic regression
with 10 variables acquired upon hospital admission or in the first hour after
PICU admission, 7 of which are binary indicators. Specifically, the continuous
PIM2 variables include first systolic blood pressure, ratio of FiO2 to PaO2, and
absolute arterial or capillary base excess. Fixed pupils, mechanical ventilation,
elective admission, PICU admission for procedure recovery, and cardiac bypass
are included in the model as binary variables. Finally, a selection of high risk
or low risk diagnoses, where the model was found to over- or under-estimate
mortality, complete the list of logistic regression variables (Slater et al, 2003).

Methods recently used for the development of risk prediction scores include
decision tree techniques (Courville et al, 2009), autoregressive implementation
of PRISM (Ruttimann and Pollack, 1993), and techniques that incorporate
injury coding schemes in the models (Burd and Madigan, 2009). Most pedi-
atric mortality risk prediction scores assume that risk depends linearly on the
variables and do not consider nonlinear variable transformations. PRISM III
is an exception since it uses thresholding to prevent uninformative increase
in risk at very high or very low variable values. In neonate morbidity pre-
diction, the PhysiScore (Saria et al, 2010) achieves greater predictive power
than previously established neonatal morbidity scoring systems by relying on a
nonlinear transformation of the raw variables in the feature set. In particular,
that work employs nonlinear Bayesian models based on log odds ratios of the
risk derived from the probability distribution that provides the best fit to the
data for each of two patient classes.

Models that integrate domain expert knowledge with a data driven ap-
proach have been reported to result in greater predictive accuracy. In (Sun
and Hu, 2012), combining knowledge based and data driven risk factors in a
prediction model for heart failure greatly improved on the performance of a
solely knowledge based classifier while still resulting in a clinically meaning-
ful model. In the task of identifying similar concept pairs in clinical notes,
combining context-based similarity and knowledge-based similarity in an al-
gorithm has likewise resulted in a more accurate similarity score (Pivovarov
and Elhadad, 2012).
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3 Methods

In this section we propose a novel outcome prediction score, present an al-
gorithm for optimizing parameters of the function that transforms predictive
features, and discuss optimality of the aforementioned algorithm.

3.1 The new score and an algorithm for optimizing parameters of the logistic
transformation of predictive features

We describe the risk of mortality using a logistic regression model, where the
conditional probability that patient i dies during the hospital stay is given by

P(yi = 1|w, zi) =
1

1 + exp(−wT zi)
, (1)

and the conditional probability of survival is

P(yi = −1|w, zi) =
1

1 + exp(wT zi)
, (2)

where yi ∈ {−1, 1} is an indicator of the in-hospital mortality, the vector
w = [w1 w2 . . . wMw

]′ collects weights for the features zi = [zi1 zi2 . . . ziMw
]′,

and Mw denotes the total number of features.
In a departure from the commonly used hard thresholding of predictive

features and discrete scoring (as is done in PRISM III), we introduce a logistic
transformation of the predictive features. The resulting new score is continu-
ous and differentiable which enables computationally efficient search for the
optimal parameters of the logistic transformation. In particular, for patient i
and feature j, the nonlinear transformation zij of the raw variable xij is

zij =


1

1+exp(−aj(xij−tij)) if xij is a maximum

1− 1
1+exp(−aj(xij−tij)) if xij is a minimum

0 if xij is missing

(3)

where aj ≥0 is the slope of the nonlinear transformation and tij is the inflection
point of the logistic function (i.e., a “soft threshold” counterpart to the hard
thresholds used by the existing scoring schemes such as PRISM). It should be
noted that tij ’s are not different for every subject i but rather have the same
value for all patients within a specific age group and a given feature j if such
age group dependence is suggested by the existing clinical knowledge.

The optimal weights and parameters for the nonlinear transformations are
determined by minimizing the negative log-likelihood of the logistic regression
model,

min

n∑
i=1

log(1 + exp(−yi(wT zi))). (4)
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To preserve and exploit clinical knowledge previously used in the creation of
other scores, a lognormal prior is imposed in the optimization for w; this also
ensures all features will be associated with a positive weight. In particular, for
w ∈ Rd we set

P(w) =
exp

(
− 1

2 (logw − µ)TΣ−1(logw − µ)
)

(2π)d/2|Σ|0.5
d∏
j=1

wj

.

For a lognormal prior with mean µ and covariance Σ = 1
2λI, the optimization

over w then becomes

arg min
w

n∑
i=1

log(1 + exp(−yi(wT zi)))

+

d∑
j=1

logwj + λ‖ logw − µ‖22. (5)

The joint optimization (5) over w, a = [a1 a2 . . . aMa
], and/or t =

[t1 t2 . . . tMt
] is carried out by cyclic block coordinate descent with back-

tracking line search (Boyd and Vandenberghe, 2009). Optimization over a and
t includes an additional step of projections onto the constraint set. The blocks
for the coordinate descent consist of features derived from the same raw vari-
able. For example, one block contains two features derived from the maximum
heart rate, which correspond to two steps with different weights in a simple
thresholding-based additive score. The algorithm is formalized as Algorithm
1 given below. Note that the objective function of the optimization (5) is not
convex. Nevertheless, even if we use an iterative optimization method that
merely ensures the objective function is decreased at each step, the resulting
local minimum leads to an improvement over PRISM III. In fact, our com-
putational studies show that the proposed scheme is robust with respect to
the initial point of the search – starting the iterative optimization procedure
with a vector w comprising PRISM III weights and starting with a vector of
uniform weights w = ([1, · · · , 1] results in almost identical prediction accuracy
on the dataset of interest.

In Algorithm 1, G is the set of feature groups, A denotes the projection set
for a, and α and β are the backtracking line search parameters. The feature
groups g ∈ G are defined as the groups of nonlinear features related to the
same raw variables (e.g., the feature group for maximum pH has two elements
corresponding to PRISM III thresholds of 7.55 and 7.48), and make up the
blocks for the coordinate descent.

The projection sets are defined so that the clinical knowledge used for
PRISM III is preserved. In Algorithm 1, A ensures the nonlinear transforma-
tions follow the same direction as the steps in PRISM III (A = {a : aj ≥ 0 for
j = 1, . . . ,Ma}). The projection set T for optimization over the soft thresholds
of the nonlinear transformations in (3), t, preserves the order of soft thresh-
olds for a raw variable with multiple nonlinear transformations. For example,
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Algorithm 1 Optimization over the slopes a

a
(0)
j ← 0.01, j = 1, 2, ...,Ma

w← wPRISM

t← tPRISM

k ← 1
repeat

a← a(k−1)

for all g ∈ G do
4aj ← −(∇af(a, t,w))j if j ∈ g
4aj ← 0 if j 6∈ g
h← 1
while f(a+ h4a, t,w) > f(a, t,w)− αh||4a||2 do
h← βh

end while
a← ProjA(a+ h4a)

end for
a(k) ← a

until stopping criterion is met

if feature i in PRISM III corresponds to the maximum heart rate between 215

and 225 beats per minute (t
(0)
i = 215) and feature j corresponds to the maxi-

mum heart rate above 225 beats per minute (t
(0)
j = 225), then the projection

ensures that ti ≤ tj at all steps of the optimization procedure.
The dimensions of the three optimization parameters are not equal since

binary features associated with pupillary reaction do not have nonlinear trans-
formations (Ma < Mw) and some of the thresholds are age-dependent (Mw <
Mt). Optimization over the slopes a and soft thresholds t are implemented
without inclusion of a prior in the objective.

3.2 Quasiconvexity of the logistic transformation

As stated earlier in this section, the objective function in (5) is not convex.
However, we will here show that each block in the block-coordinate descent
procedure is both quasiconvex and quasiconcave in the slope parameter a,
and is thus quasilinear. Since the logistic function is asymptotically flat, the
objective in (5) is not strictly quasiconvex. However, since the objectives in
the steps of block-coordinate descent procedure are quasilinear, if the initial
values of a are such that the gradient is nonzero in every coordinate, the block
coordinate descent will reach a global optimum.

For differentiable f and domain D, f is quasiconvex if and only if D is
convex and for all x, y ∈ D holds that f(y) ≤ f(x) ⇒ ∇f(x)

T
(y − x) ≤ 0

(Boyd and Vandenberghe, 2009). Similarly, f is quasiconcave if and only if D
is convex and for all x, y ∈ D it holds that f(y) ≥ f(x)⇒ ∇f(x)

T
(y−x) ≥ 0.

The objective of the optimization is

min f =

n∑
i=1

log(1 + exp(−yi(wT zi))), (6)
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where

wT zi =
∑
j∈U

wj
1 + exp(−aj(xij − tij))

+
∑
k∈D

wk

(
1− 1

1 + exp(−ak(xik − tik))

)
+
∑
p∈P

wpδ(pi = 1), (7)

where U denotes the set of indices of features with maximum values whose
contribution to the score is in the form of an up-step (i.e., the risk is higher
when their values are above a threshold), D is the set of indices of features with
minimum values (down-steps), P is the set of indices of the pupillary reflex
features taking binary values {0, 1}, and δ(pi = 1) is an indicator function
for the pupillary reflex features. The pupillary reflex features indicate whether
one or both pupils are > 3mm and fixed.

Note that if we want to find when is f(a′j) ≤ f(a′′j ) for a given a′j and
a′′j , it is sufficient to find the conditions on a′j , a

′′
j , yi, xij , tij such that it holds

that fi(a
′
j) ≤ fi(a

′′
j ) for all i ∈ 1, . . . n, where f =

∑n
i=1 fi. For any j ∈ U ,

condition f(a′j) ≤ f(a′′j ) is satisfied on the domain where

−yiwj
1 + exp(−a′j(xij − tij))

≤ −yiwj
1 + exp(−a′′j (xij − tij))

.

This inequality will hold for any of the parameter combinations marked by an
X in Table 1. The blank spaces in Table 1 satisfy fi(a

′
j) ≥ fi(a

′′
j ) for j ∈ U ,

Table 1 Satisfy fi(a
′
j) ≤ fi(a′′j ) for j ∈ U

a′j ≤ a′′j a′j ≥ a′′j
yi = 1 yi = −1 yi = 1 yi = −1

xij − tij ≥ 0 X X

xij − tij ≤ 0 X X

the fact which we next use to show quasiconcavity. To show quasilinearity, we
also need to examine the gradient of f at a′′j which, for j ∈ U , is given by

∇ajfi(a′′j ) =− exp(−yi(wT zi))

1 + exp(−yi(wT zi))
×

yiwj(xij − tij) exp(−a′′j (xij − tij))(
1 + exp(−a′′j (xij − tij))

)2 . (8)

The sign of the gradient in (8) is determined by −yiwj(xij − tij). Simple
arithmetic shows that when fi(a

′
j) ≤ fi(a

′′
j ) (corresponding to the entries

marked by X in Table 1), ∇ajfi(a′′j )(a′j − a′′j ) ≤ 0, and hence the condition for
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quasiconvexity is satisfied. Similarly, when fi(a
′
j) ≥ fi(a

′′
j ) (corresponding to

blanks in Table 1), ∇ajfi(a′′j )(a′j − a′′j ) ≥ 0, which implies quasiconcavity.

The same procedure can be followed to show quasilinearity when j ∈ D,
with appropriate sign changes. Note that the blocks of features where all of the
features in the block belong to U or all of the features in the block belong to
D will also satisfy the quasilinearity condition. Since the coordinate blocks in
Algorithm 1 correspond to nonlinear transformations of the same physiologic
variable, quasilinearity holds. The initial value of aj in Algorithm 1 is set to
0.01 for all j. This corresponds to a small slope in the nonlinear transforma-
tions of the variables, and will only result in ∇ajfi(aj) = 0 for subjects i with
xij = tij . Therefore, the initial slope of the cumulative function in (6) will be
nonzero and the coordinate descent algorithm will not begin at a stationary
point.

Since we constrain the slopes a and weights w to be nonnegative, quasi-
linearity of the objective function in soft thresholds t can be shown in fewer
steps than that for a. We will only show quasiconvexity in tij when j ∈ U ,
but quasiconvexity when j ∈ D and quasiconcavity can be easily shown in a
similar manner. To demonstrate quasiconvexity, it is sufficient to show that

fi(t
′
ij) ≤ fi(t′′ij)⇒ ∇tijfi(t′′ij)(t′ij − t′′ij) ≤ 0.

Note that for j ∈ U , fi(t
′
ij) ≤ fi(t

′′
ij) if yi = −1 and t′ij ≥ t′′ij , or if yi =

1 and t′ij ≤ t′′ij . By examining the gradient of fi, it is clear that since wj , aj ≥ 0,
∇tijfi(t′′ij) ≤ 0 only when yi = −1,

∇tijfi(t′′ij) =
exp(−yi(wT zi))

1 + exp(−yi(wT zi))
×

yiwjaj exp(−a′j(xij − t′′ij))(
1 + exp(−aj(xij − t′′ij))

)2 . (9)

Note that the required conditions for fi(t
′
ij) ≤ fi(t

′′
ij) also guarantee that

∇tijfi(t′′ij)(t′ij − t′′ij) ≤ 0. However, unlike with the optimization over slopes
a, we cannot guarantee that the initial t will be at a point with nonzero
slope. Nevertheless, we have empirically observed that although ∇tijfi = 0 for
some (i, j),

∑
i∇tijfi 6= 0 in the first iteration of the alternating optimization

of a and t, indicating the optimization does not start at a stationary point
for any of the nonlinear features. As with the weights w, we initialize t(0)

using the PRISM III thresholds. Despite the approximations made in order to
simplify calculation of the PRISM III score, one expects its thresholds to be
close to the optimal values due to the reliance on domain expert knowledge
and extensive testing. Therefore, the proposed initialization will likely avoid
start of the optimization procedure in the flat part of the quasi convex curve,
implying the global optimality of the block coordinate descent.
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3.3 Algorithm Testing

Data were retrospectively abstracted for 217 children (11.06% mortality rate)
admitted to the Dell Children’s Medical Center PICU. We included admissions
to the PICU between August 2007 and April 2012, age range of 0-14 years,
with an ICD-9 code reflecting brain injury, and a PICU stay of at least 24
hours. The ICD-9 codes indicate patients with brain trauma (excluding simple
concussion) as well as other brain malady or injury such as cerebral palsy,
drowning, epilepsy and asphyxiation. This group of patients was selected in
order to emphasize the ease of optimizing the novel score for a specific high
mortality population. Minimum and maximum variable values from the first
12 hours of the PICU stay are used in the calculation of PRISM III and our
new score. The use of the data has been approved by the University of Texas
at Austin Institutional Review Board and the Seton Clinical Research Steering
Committee.

The proposed prediction scheme is tested using leave-one-out cross-validation
and compared with existing methods in terms of three criteria: (i) area under
the receiver operating characteristic (ROC) curve (AUC), (ii) the Youden in-
dex (J), which aims to maximize the overall correct classification rate (Hilden
and Glasziou, 1996; Perkins and Schisterman, 2006): J = Sensitivity(Se) +
Specificity(Sp)− 1, and (iii) the point on the ROC curve that maximizes the
minimum of the positive predictivity (+P , precision) and sensitivity (recall).
The last criterion takes into account class imbalance by balancing the per-
centage of true positives that are correctly predicted with the percentage of
predicted positives that are correct. Thus, correctly predicted true negatives,
the majority class, does not affect the performance metric. It should be noted
that in evaluating algorithms by the third criterion (PrecRec), a false positive
has the same effect as a false negative.

4 Results

4.1 Implementation of the novel prediction scheme

Our novel score incorporates all of the variables and ranges previously used by
PRISM III. The features transformed using OR statements in PRISM III (e.g.,
by adding 6 points to the score if pH < 7.0 OR total CO2 < 5) were treated
as additive features in order to seamlessly include them in the optimization
procedure. The backtracking line search parameters were chosen empirically
based on the accuracy and speed of convergence. The results shown are for
α = 0.2 and β = 0.5. In the case of optimization over w, the imposed prior
has µ = 0, λ = 0.25.
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Table 2 Mortality and Missing Data by Age Group

Age Group No. Subjects No. Deaths
Missing Variables
(mean ± SD)

Neonate (0 mo., 1 mo.) 2 0 9 ± 11.31

Infant [1 mo., 12 mo.) 39 5 6.95 ± 7.13

Child [12 mo., 144 mo.] 143 15 7.02 ± 7.22

Adolescent (144 mo., 180 mo.) 33 4 6.03 ± 7.14
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Fig. 1 Contribution of systolic blood pressure (SBP), heart rate (HR), and platelet count to
risk score for PRISM III (black, left) and novel score optimizing a (blue, left) and optimizing
a,w (blue,right). The black lines on the right panel serve as indicators of a sharp transition
between steps.

4.2 Performance comparison

Figure 1 illustrates the difference in computing the contribution of a feature
to the prediction score between the 12-hour PRISM III and the novel scheme.



12 Natalia M. Arzeno et al.

Table 3 Risk Score Accuracy

Score AUC J PrecRec

PRISM III 0.8735 0.5840 0.5172

Novel Score optimized over a 0.8897 0.6215 0.5000

Novel Score optimized over w 0.8841 0.6369 0.5600

Novel Score optimized over a and t 0.8358 0.6153 0.5833

Novel Score optimized over a and w 0.8927 0.6682 0.5833

PIM 2 0.8331 0.6729 0.5417

Plots on the left show the logistic transformations of the features after perform-
ing optimization over the nonlinear transformation slopes a, while the plots
on the right show the logistic transformations after performing optimization
over both the slopes a and weights w. From the plots, we see that the op-
timization over a results in mortality risk increasing over a range of 3 to 4
beats per minute for each step in the maximum heart rate and the risk from
minimum systolic blood pressure increasing over a range of 7 mmHg around
the 75 mmHg threshold and increasing over a range of 4 mmHg around the
55 mmHg threshold. The risk from the minimum platelet count loses much
of the stepwise scoring structure used by PRISM III, and instead increases
monotonically for minimum platelet counts between 250,000 and 50,000. This
illustrates how our novel score can capture risk that increases continuously
throughout a certain range while maintaining sharp thresholds when those
are optimal. Optimizing over both a and w provides further insight into the
contribution of variables to the risk of mortality for a given population. For
example, the novel score shows that, for this dataset, the second step in the
nonlinear transformation of the systolic blood pressure and heart rate should
be weighted similarly, if not more heavily, than the lower step. The lower
panels of Figure 1 also indicate that while PRISM III has the mortality risk
increasing slightly more when the minimum platelet count falls below 50,000,
our inferred scoring function indicates the risk contribution from this variable
doubles at approximately 50,000.

The results of the ROC analysis on the cross-validated scores are shown in
Table 3. Our novel score optimized over the slopes a of the nonlinear trans-
formations results in a more accurate classifier than PRISM III, in terms of
the AUC and J , but not in terms of the precision-recall balance (PrecRec).
Optimization of the feature weights w results in a score that performs bet-
ter than PRISM III in all three evaluation criteria. Alternating optimization
over the slopes a and weights w results in a further improvement of AUC,
J and precision-recall balance over individual parameter optimization, and
thus provides a significant advancement over PRISM III. The inclusion of soft
thresholds t along with slopes a in the alternating optimization results in
some of the soft thresholds falling outside the physiological range of the raw
variables – in particular, logistic transformations of these variables result in
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Fig. 2 Risk scores for survivors (blue) and nonsurvivors (red). The center mark on the
box indicates the median while the edges of the box mark the 25th and 75th percentile.
Individual scores are plotted as +. In the bottom panel, the red circles indicate subjects
with scores higher than 2.

zero contribution to the risk score for all patients. This optimization results
in higher accuracy than PRISM III in the upper range of scores (higher J and
precision-recall balance) and poorer classification than PRISM in the lower
score range (lower AUC). However, we expect that these results would im-
prove with a larger patient population given the age-dependency of some of
thresholds and the mortality distribution across age groups (Table 2). The
ROC results for PIM2 are also included in Table 3 to compare the novel score
to another widely used pediatric risk score. The novel score optimized over any
of the parameters outperforms PIM2 in terms of AUC, and optimization over
2 parameters also yields a higher precision-recall balance than PIM2. Though
PIM2 results in a slightly higher J than the novel score optimized over a,w,
the large gain in AUC and higher precision-recall balance make the novel score
the preferred choice for predicting risk of in-hospital mortality in the studied
population.

The boxplots in Figure 2 illustrate how the proposed prediction scheme
compares with PRISM III. Despite additional features used by our scheme
(due to splitting of the OR statements into components), the novel scores
have similar average values to those of PRISM III. Given the class imbalance,
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Fig. 3 ROC curve for PRISM III (red) and novel scores optimized over the nonlinear
transformation slopes a (black) and alternating minimization over the slopes a and weights
w of the nonlinear transformations (blue). The circled points correspond to those that
maximize Youden’s index for each curve.

this is likely the result of lower slopes in the nonlinear transformations which
decrease the feature contributions of survivors having measurements near the
soft thresholds. The movement of soft thresholds outside the physiological
range following inclusion of t as an optimization parameter results in lower
average score values compared to PRISM III. Finally, reduction in mean scores
when the weights are included as optimization variables is expected due to the
prior on the weight distribution.

The difference in AUC between PRISM III and the novel scores (Figure 3)
is primarily caused by low PRISM III scores for some nonsurvivors. Due to the
finite set of PRISM III values, patients are more likely to share the same score
which causes decrease in both the true positive rate and the false positive rate
as the cutoff value is lowered in the ROC analysis. The largest differences in
the curves can be traced to patients with PRISM III scores between 7 and 13.
While 45 out of 193 survivors have PRISM III scores in this range, so do 7 out
of 24 nonsurvivors.

To test the advantage of the nonlinear transformations of the features, we
performed a logistic regression with ridge, lasso (Tibshirani, 1994), and elas-
tic net (Zou and Hastie, 2005) penalties on the age and raw variables of the
datasets. Since missing data is prevalent and complete data sets are required
for logistic regression, missing values of the variables are imputed by k nearest-
neighbors (kNN) (Hastie et al, 1999), the probabilistic principal components
analysis (PPCA) method (Tipping and Bishop, 2002), mean values and normal
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Table 4 ROC: Logistic with raw variables vs. PRISM with imputed data

kNN PPCA mean normal

AUC

PRISM III 0.8790 0.8741 0.8709 0.8735

Raw 0.8437 0.8683 0.8400 0.8141

J

PRISM III 0.6047 0.6153 0.5788 0.5840

Raw 0.5479 0.5889 0.5637 0.5682

PrecRec

PRISM III 0.5000 0.5000 0.5172 0.5172

Raw 0.5000 0.5542 0.5833 0.5833

values (Behrman et al, 2004). In kNN imputation, Euclidean distances nor-
malized by the number of common features between patients are calculated
and missing values are imputed as the average value of the k-nearest neighbors
that observe the variable. PPCA aims to reduce the dimensionality of the data
by associating a Gaussian latent variable model with the observed data and
imputing missing values by an iterative expectation-maximization procedure.
Data were imputed with k = 5 and 4 principal components. The best values
for AUC were achieved with the elastic net and are compared to the PRISM
III values calculated with the imputed dataset in Table 4.

Though logistic regression with variables imputed with PPCA results in a
slight improvement over the PRISM III scores without imputation in terms
of J and the precision-recall balance, the PRISM III scores calculated with
the imputed data outperforms both logistic scores in terms of AUC and J .
Logistic regression with variables imputed with mean or normal values results
in the same PrecRec value as the novel score. However, the novel score greatly
outperforms both of the raw variable models in terms of AUC and J . This sug-
gests the variables in the scores should be nonlinearly transformed for optimal
mortality prediction. Note that the novel score without imputation performs
better than the scores presented in Table 4 in terms of all of the evaluation
criteria.

5 Conclusion

We have developed a novel outcome prediction score that exploits advan-
tages of PRISM III and addresses a key limitation, resulting in a significantly
more accurate predictor of risk of in-hospital mortality in children admitted
to PICU. In particular, by transforming predictive variables using a combina-
tion of logistic functions, the developed method allows for a fine differentiation
between critical and normal values of the predictive variables. Optimization
of the continuous score allows for not only specifying different weights for the
variables but, by optimizing over the slope and/or inflection point of the logis-
tic curve in the feature transformation, we can also identify the range of values
of each variable where the risk increases. This optimization need only be per-
formed once to determine the optimal parameters and the score is thereafter
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quickly calculated for each patient. Optimal values of the parameters of logistic
functions may be readily re-learned as the patient population and standards
of care evolve. In a study of brain trauma pediatric patients, the new score
demonstrated significantly higher predictive power than PRISM III.

The presented method that can be broadly applied to devise and opti-
mize risk scores with predictive power superior to schemes that use hard-
thresholding of physiological variables. A potential future application of the
developed method is optimization of in-hospital mortality risk scores designed
for adult ICU population, such as the Acute Physiology and Chronic Health
Evaluation (APACHE) (Knaus et al, 1991) and the Simplified Acute Physiol-
ogy Score (SAPS) (Moreno et al, 2005). Both of these scores are calculated by
adding points whenever physiologic variables are in a given range. Using the
proposed method, not only can scores be calibrated by assigning appropriate
variable weights, but also the variable ranges where the risk increases can be
learned for specific patient populations.
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Bravo FE (2005) Simplified PRISM III score and outcome in the pediatric
intensive care unit. Pediatrics international 47(1):80–83

Qureshi AU, Ali AS, Ahmad TM (2007) Comparison of three prognostic scores
(PRISM, PELOD and PIM 2) at pediatric intensive care unit under pak-
istani circumstances. Journal of Ayub Medical College, Abbottabad: JAMC
19(2):49–53

Royston P, Altman DG, Sauerbrei W (2006) Dichotomizing continuous predic-
tors in multiple regression: a bad idea. Statistics in Medicine 25(1):127–141

Ruttimann UE, Pollack MM (1993) A time-series approach to predict out-
come from pediatric intensive care. Computers and Biomedical Research,
an International Journal 26(4):353–372

Saria S, Rajani AK, Gould J, Koller D, Penn AA (2010) Integration of early
physiological responses predicts later illness severity in preterm infants. Sci-
ence Translational Medicine 2(48):48ra65–48ra65

Scavarda D, Gabaudan C, Ughetto F, Lamy F, Imada V, Lena G, Paut O
(2010) Initial predictive factors of outcome in severe non-accidental head
trauma in children. Child’s Nervous System: ChNS 26(11):1555–1561

Shann F, Pearson G, Slater A, Wilkinson K (1997) Paediatric index of mor-
tality (PIM): a mortality prediction model for children in intensive care.
Intensive Care Medicine 23(2):201–207

Slater A, Shann F, Pearson G (2003) PIM2: a revised version of the paediatric
index of mortality. Intensive Care Medicine 29(2):278–285

Slater A, Shann F, ANZICS Paediatric Study Group (2004) The suitability of
the pediatric index of mortality (PIM), PIM2, the pediatric risk of mortality
(PRISM), and PRISM III for monitoring the quality of pediatric intensive
care in australia and new zealand. Pediatric Critical Care Medicine 5(5):447–
454

Streiner DL (2002) Breaking up is hard to do: The heartbreak of dichotomizing
continuous data. Canadian Journal of Psychiatry 47(3):262

Sun J, Hu J (2012) Combining knowledge and data driven insights for identi-
fying risk factors using electronic health records. AMIA Annual Symposium
proceedings / AMIA Symposium AMIA Symposium 2012:901–10

Thukral A, Lodha R, Irshad M, Arora NK (2006) Performance of pediatric
risk of mortality (PRISM), pediatric index of mortality (PIM), and PIM2
in a pediatric intensive care unit in a developing country. Pediatric Critical
Care Medicine 7(4):356–361

Tibby S, Taylor D, Festa M, Hanna S, Hatherill M, Jones G, Habibi P, Durward
A, Murdoch I (2002) A comparison of three scoring systems for mortality risk
among retrieved intensive care patients. Archives of Disease in Childhood
87(5):421–425

Tibshirani R (1994) Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B 58:267–288



Mortality Risk Prediction Based on Nonlinear Feature Transformations 19

Tipping ME, Bishop CM (2002) Probabilistic principal component analysis.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
61(3):611–622

Volakli EA, Sdougka M, Drossou-Agakidou V, Emporiadou M, Reizoglou M,
Giala M (2012) Short-term and long-term mortality following pediatric in-
tensive care. Pediatrics international: official journal of the Japan Pediatric
Society 54(2):248–255

Wells M, Riera-Fanego JF, Luyt DK, Dance M, Lipman J (1996) Poor dis-
criminatory performance of the pediatric risk of mortality (PRISM) score in
a south african intensive care unit. Critical care medicine 24(9):1507–1513

Zou H, Hastie T (2005) Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B 67:301–320


