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We study the problem of inferring a sparse vector from random linear combinations of its components. 
We propose the Accelerated Orthogonal Least-Squares (AOLS) algorithm that improves performance of the 
well-known Orthogonal Least-Squares (OLS) algorithm while requiring significantly lower computational 
costs. While OLS greedily selects columns of the coefficient matrix that correspond to non-zero 
components of the sparse vector, AOLS employs a novel computationally efficient procedure that speeds 
up the search by anticipating future selections via choosing L columns in each step, where L is an 
adjustable hyper-parameter. We analyze the performance of AOLS and establish lower bounds on the 
probability of exact recovery for both noiseless and noisy random linear measurements. In the noiseless 
scenario, it is shown that when the coefficients are samples from a Gaussian distribution, AOLS with 
high probability recovers a k-sparse m-dimensional sparse vector using O(k log m

k+L−1 ) measurements. 
Similar result is established for the bounded-noise scenario where an additional condition on the smallest 
nonzero element of the unknown vector is required. The asymptotic sampling complexity of AOLS is 
lower than the asymptotic sampling complexity of the existing sparse reconstruction algorithms. In 
simulations, AOLS is compared to state-of-the-art sparse recovery techniques and shown to provide better 
performance in terms of accuracy, running time, or both. Finally, we consider an application of AOLS to 
clustering high-dimensional data lying on the union of low-dimensional subspaces and demonstrate its 
superiority over existing methods.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

The task of estimating sparse signal from a few linear combi-
nations of its components is readily cast as the problem of finding 
a sparse solution to an underdetermined system of linear equa-
tions. Sparse recovery is encountered in many practical scenarios, 
including compressed sensing [1], subspace clustering [2,3], sparse 
channel estimation [4,5], compressive DNA microarrays [6], and 
a number of other applications in signal processing and machine 
learning [7–9]. Consider the linear measurement model

y = Ax + ν, (1)

where y ∈ R
n denotes the vector of observations, A ∈ R

n×m is the 
coefficient matrix (i.e., a collection of features) assumed to be full 
rank (generally, n < m), ν ∈ R

n is the additive measurement noise 
vector, and x ∈R

m is an unknown vector assumed to have at most 
k non-zero components (i.e., k is the sparsity level of x). Finding a 
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sparse approximation to x leads to a cardinality-constrained least-
squares problem

minimize
x

‖y − Ax‖2
2 subject to ‖x‖0 ≤ k, (2)

known to be NP-hard; here ‖ · ‖0 denotes the �0-norm, i.e., the 
number of non-zero components of its argument. The high cost of 
finding the exact solution to (2) motivated development of a num-
ber of heuristics that can generally be grouped in the following 
categories:

1) Convex relaxation schemes. These methods perform compu-
tationally efficient search for a sparse solution by replacing the 
non-convex �0-constrained optimization by a sparsity-promoting 
�1-norm optimization. It was shown in [10] that such a for-
mulation enables exact recovery of a sufficiently sparse signal 
from noise-free measurements under certain conditions on A and 
with O(k log m

k ) measurements. However, while the convexity of 
�1-norm enables algorithmically straightforward sparse vector re-
covery by means of, e.g., iterative shrinkage-thresholding [11] or 
alternating direction method of multipliers [12], the complexity of 
such methods is often prohibitive in settings where one deals with 
high-dimensional signals.
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2) Greedy schemes. These heuristics attempt to satisfy the cardi-
nality constraint directly by successively identifying k columns of 
the coefficient matrix which correspond to non-zero components 
of the unknown vector. Among the greedy methods for sparse vec-
tor reconstruction, the orthogonal matching pursuit (OMP) [13]
and Orthogonal Least-Squares (OLS) [14,15] have attracted particu-
lar attention in recent years. Intuitively appealing due to its simple 
geometric interpretation, OMP is characterized by high speed and 
competitive performance. In each iteration, OMP selects a column 
of the coefficient matrix A having the highest correlation with the 
so-called residual vector and adds it to the set of active columns; 
then by solving a least-square problem using the modified Gram–
Schmidt (MGS) algorithm, the projection of the observation vector 
y onto the space spanned by the columns in the active set is 
used to form a residual vector needed for the next iteration of 
the algorithm. When sparsity level k is unknown, the norm resid-
ual vector is computed and used as the stopping criteria of OMP. 
Numerous modifications of OMP with enhanced performance have 
been proposed in literature. For instance, instead of choosing a 
single column in each iteration of OMP, StOMP [16] selects and 
explores all columns having correlation with a residual vector that 
is greater than a pre-determined threshold. GOMP [17] employs 
the similar idea, but instead of thresholding, a fixed number of 
columns is selected per iteration. CoSaMP algorithm [18] identifies 
columns with largest proximity to the residual vector, uses them to 
find a least-squares approximation of the unknown signal, and re-
tains only significantly large entries in the resulting approximation. 
When the unknown signal is a random quantity, rakeness-Based 
OMP approach [19], attempts to design the measurement matrix 
by taking into account the second-order statistics of the signal to 
increase the expected energy of as subset of entries of y. Addition-
ally, necessary and sufficient conditions for exact reconstruction of 
sparse signals using OMP have been established. Examples of such 
results include analysis under Restricted Isometry Property (RIP) 
[20–22], and recovery conditions based on Mutual Incoherence 
Property (MIP) and Exact Recovery Condition (ERC) [23–25]. For 
the case of random measurements, performance of OMP was ana-
lyzed in [26,27]. Tropp et al. in [26] showed that in the noise-free 
scenario, O (k log m) measurements is adequate to recover k-sparse 
m-dimensional signals with high probability. In [28], this result 
was extended to the asymptotic setting of noisy measurements in 
high signal-to-noise ratio (SNR) under the assumption that the en-
tries of A are i.i.d. Gaussian and that the length of the unknown 
vector approaches infinity. Recently, the asymptotic sampling com-
plexity of OMP and GOMP is improved to O(k log m

k ) in [29] and 
[30], respectively.

Recently, performance of OLS was analyzed in the sparse signal 
recovery settings with deterministic coefficient matrices. In [31], 
OLS was analyzed in the noise-free scenario under Exact Recovery 
Condition (ERC), first introduced in[23]. Herzet et al. [32] provided 
coherence-based conditions for sparse recovery of signals via OLS 
when the nonzero components of x obey certain decay conditions. 
In [33], sufficient conditions for exact recovery are stated when a 
subset of true indices is available. In [34] an extension of OLS that 
employs the idea of [16,17] and identifies multiple indices in each 
iteration is proposed and its performance is analyzed under RIP. 
However, all the existing analysis and performance guarantees for 
OLS pertain to non-random measurements and cannot directly be 
applied to random coefficient matrices. For instance, the main re-
sults in the notable work [29] relies on the assumption of having 
dictionaries with �2-norm normalized columns while this obvi-
ously does not hold in the scenarios where the coefficient matrix is 
composed of entries that are drawn from a Gaussian distribution.

3) Branch-and-bound schemes. Recently, greedy search heuristics 
that rely on OMP and OLS to traverse a search tree along paths 
that represent promising candidates for the support of x have been 
proposed. For instance, [35,36] exploit the selection criterion of 
OMP to construct the search graph while [37,38] rely on OLS to 
efficiently traverses the search tree. Although these methods em-
pirically improve the performance of greedy algorithms, they are 
characterized by exponential computational complexity in at least 
one parameter and hence are prohibitive in applications dealing 
with high-dimensional signals.

1.1. Contributions

Motivated by the need for fast and accurate sparse recovery 
in large-scale setting, in this paper we propose a novel algorithm 
that efficiently exploits recursive relation between components of 
the optimal solution to the original �0-constrained least-squares 
problem (2). The proposed algorithm, referred to as Accelerated 
Orthogonal Least-Squares (AOLS), similar to GOMP [17] and MOLS 
[34] exploits the observation that columns having strong correla-
tion with the current residual are likely to have strong correlation 
with residuals in subsequent iterations; this justifies selection of 
multiple columns in each iteration and formulation of an overde-
termined system of linear equation having solution that is gener-
ally more accurate than the one found by OLS or OMP. However, 
compared to MOLS, our proposed algorithm is orders of magnitude 
faster and thus more suitable for high-dimensional data applica-
tions.

We theoretically analyze the performance of the proposed AOLS 
algorithm and, by doing so, establish conditions for the exact re-
covery of the sparse vector x from measurements y in (1) when 
the entries of the coefficient matrix A are drawn at random from 
a Gaussian distribution – the first such result under these as-
sumptions for an OLS-based algorithm. We first present condi-
tions which ensure that, in the noise-free scenario, AOLS with 
high probability recovers the support of x in k iterations (recall 
that k denotes the number of non-zero entries of x). Adopting the 
framework in [26], we further find a lower bound on the prob-
ability of performing exact sparse recovery in k iterations and 
demonstrate that with O

(
k log m

k+L−1

)
measurements AOLS suc-

ceeds with probability arbitrarily close to one. Moreover, we ex-
tend our analysis to the case of noisy measurements and show 
that similar guarantees hold if the nonzero element of x with 
the smallest magnitude satisfies certain condition. This condition 
implies that to ensure exact support recovery via AOLS in the 
presence of additive �2-bounded noise, SNR should scale linearly 
with sparsity level k. Our procedure for determining requirements 
that need to hold for AOLS to perform exact reconstruction follows 
the analysis of OMP in [26,28,27], although with two major differ-
ences. First, the variant of OMP analyzed in [26,28,27] implicitly 
assumes that the columns of A are �2-normalized which clearly 
does not hold if the entries of A are drawn from a Gaussian distri-
bution. Second, the analysis in [26] is for noiseless measurements 
while [28,27] essentially assume that SNR is infinite as k → ∞. To 
the contrary, our analysis makes neither of those two restrictive 
assumptions. Moreover, we show that if m is sufficiently greater 
than k, the proposed AOLS algorithm requires O

(
k log m

k+L−1

)
ran-

dom measurements to perform exact recovery in both noiseless 
and bounded noise scenarios; this is fewer than O (k log(m − k))

that was found in [28,27] to be the asymptotic sampling com-
plexity for OMP, and O

(
k log m

k

)
that was found for MOLS, GOMP, 

and BP in [34,30,39]. Additionally, our analysis framework is rec-
ognizably different from that of [29] for OLS. First, in [29] it is 
assumed that A has �2-normalized columns, and hence the anal-
ysis in [29] does not apply to the case of Gaussian matrices, the 
scenario addressed in this paper for our proposed algorithm. Fur-
ther, the main result of [29] (see Theorem 3 in [29]) states that 
OLS exactly recovers a k-sparse vector in at most 6k iterations if 
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O
(
k log m

k

)
measurements are available. Hence, the OLS results of 

[29] are not as strong as the AOLS results we establish in the cur-
rent paper. Our extensive empirical studies verify the theoretical 
findings and demonstrate that AOLS is more accurate and faster 
than the competing state-of-the-art schemes.

To further demonstrate efficacy of the proposed techniques, we 
consider the sparse subspace clustering (SSC) problem that is of-
ten encountered in machine learning and computer vision appli-
cations. The goal of SSC is to partition data points drawn from a 
union of low-dimensional subspaces. We propose a SSC scheme 
that relies on our AOLS algorithm and empirically show significant 
improvements in accuracy compared to state-of-the-art methods in 
[3,40,2,41].

1.2. Organization

The remainder of the paper is organized as follows. In Section 2, 
we specify the notation and overview the classic OLS algorithm. 
In Section 3, we describe the proposed AOLS algorithm. Section 4
presents analysis of the performance of AOLS for sparse recovery 
from random measurements. Section 5 presents experiments that 
empirically verify our theoretical results on sampling requirements 
of AOLS and benchmark its performance. Finally, concluding re-
marks are provided in Section 6. Matlab implementation of AOLS is 
freely available for download from https://github .com /realabolfazl /
AOLS/.

2. Preliminaries

2.1. Notation

We briefly summarize notation used in the paper. Bold capital 
letters refer to matrices and bold lowercase letters represent vec-
tors. Matrix A ∈R

n×m is assumed to have full rank; Ai j denotes the 
(i, j) entry of A, a j is the jth column of A, and Ak ∈ R

n×k is one of 
the (m

k

)
submatrices of A (here we assume k < n < m). Lk denotes 

the subspace spanned by the columns of Ak . P⊥
k = I − AkA†

k is the 
projection operator onto the orthogonal complement of Lk where 
A†

K = (
A	

k Ak
)−1

A	
k denotes the Moore–Penrose pseudo-inverse of 

Ak and I ∈ R
n×n is the identity matrix. I = {1, . . . , m} is the set 

of column indices, Strue is the set of indices of nonzero ele-
ments of x, and Si is the set of selected indices at the end of 
the ith iteration of OLS. For a non-scalar object such as matrix A, 
A ∼N

(
0, 1

n

)
implies that the entries of A are drawn independently 

from a zero-mean Gaussian distribution with variance 1
n . Further, 

for any vector c ∈ R
m define the ordering operator P : Rm → R

m

as P(c) = [co1 , . . . , com ]	 such that |co1 | ≤ · · · ≤ |com |. Finally, 1 de-
notes the vector of all ones, and U(0, q) represents the uniform 
distribution on [0, q].

2.2. The OLS algorithm

The OLS algorithm sequentially projects columns of A onto a 
residual vector and selects the one resulting in the smallest resid-
ual norm. Specifically, in the ith iteration OLS chooses a new col-
umn index js according to

js = arg min
j∈I\Si−1

∥∥∥P⊥
Si−1∪{ j}y

∥∥∥
2
. (3)

This procedure is computationally more expensive than OMP since 
in addition to solving a least-squares problem to update the resid-
ual vector, orthogonal projections of the columns of A need to be 
found in each step of OLS. Note that the performances of OLS and 
Algorithm 1 Orthogonal Least-Squares (OLS).

Input: y, A, sparsity level k

Output: recovered support Sk , estimated signal x̂k

Initialize: S0 = ∅, P⊥
0 = I

for i = 1 to k do

1. js = argmax j∈I\Si−1

∣∣∣∣∣y	 P⊥
i−1a j∥∥∥P⊥

i−1a j

∥∥∥
2

∣∣∣∣∣
2. Si = Si−1 ∪ { js}

3. P⊥
i+1 = P⊥

i − P⊥
i a js a	

js
P⊥

i∥∥P⊥
i a js

∥∥2
2

end for

4. x̂k = A†
Sk

y

OMP are identical when the columns of A are orthogonal.1 It is 
worthwhile pointing out the difference between OMP and OLS. In 
each iteration of OMP, an element most correlated with the cur-
rent residual is chosen. OLS, on the other hand, selects a column 
least expressible by previously selected columns which, in turn, 
minimizes the approximation error.

It can be shown, see, e.g., [42,31,43], that the index selection 
criterion (3) can alternatively be expressed as

js = arg max
j∈I\Si−1

∣∣∣∣∣r	
i−1

P⊥
i−1a j∥∥P⊥

i−1a j
∥∥

2

∣∣∣∣∣, (4)

where ri−1 denotes the residual vector in the ith iteration. More-
over, projection matrix needed for the subsequent iteration is re-
lated to the current projection matrix according to

P⊥
i+1 = P⊥

i − P⊥
i a js a	

js
P⊥

i∥∥P⊥
i a js

∥∥2
2

. (5)

It should be noted that ri−1 in (4) can be replaced by y because of 
the idempotent property of the projection matrix,

P⊥
i = P⊥

i
	 = P⊥

i
2
. (6)

This substitution reduces complexity of OLS although, when spar-
sity level k is unknown, the norm of ri still needs to be computed 
since it is typically used when evaluating a stopping criterion. OLS 
is formalized as Algorithm 1.

3. A novel accelerated scheme for sparse recovery

In this section we describe the AOLS algorithm in detail. The 
complexity of the OLS and its existing variants such as MOLS [34]
is dominated by the so-called identification and update steps, for-
malized as steps 1 and 3 of Algorithm 1 in Section 2, respectively; 
in these steps, the algorithm evaluates projections P⊥

i−1a j of not-
yet-selected columns onto the space spanned by the selected ones 
and then computes the projection matrix Pi needed for the next 
iteration. This becomes practically infeasible in applications that 
involve dealing with high-dimensional data, including sparse sub-
space clustering. To this end, in Theorem 1 below, we establish 
a set of recursions which significantly reduce the complexity of 
the identification and update steps without sacrificing the perfor-
mance. AOLS then relies on these efficient recursions to identify 
the indices corresponding to nonzero entries of x with a signifi-
cantly lower computational costs with respect to OLS and MOLS. 
This is further verified in our simulation studies.

1 Orthogonality of the columns of A implies that the objective function in (2) is 
modular; in this case and noiseless setting, both methods are optimal.

https://github.com/realabolfazl/AOLS/
https://github.com/realabolfazl/AOLS/
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Theorem 1. Let ri denote the residual vector in the ith iteration of OLS 
with r0 = y. The identification step (i.e., step 1 in Algorithm 1) in the 
(i + 1)st iteration of OLS can be rephrased as

js = arg max
j∈I\Si

∥∥q j
∥∥

2 , (7)

where

q j �
a	

j ri

a	
j t(i)

j

t(i)
j , t(i+1)

j � a j −
i∑

l=1

a	
j ul

‖ul‖2
2

ul = t(i)
j − t(i)

j

	
ui

‖ui‖2
2

ui,

(8)

where t(0)
j = a j for all j ∈ I . Furthermore, the residual vector ri+1 re-

quired for the next iteration is formed as

ui+1 � q js , ri+1 = ri − ui+1. (9)

Proof. Assume that column a js is selected in the (i + 1)st iteration 

of the algorithm. Define q̄ j = P⊥
i a j∥∥P⊥

i a j
∥∥2

2

a	
j ri , ∀ j ∈ I\Si . Therefore, by 

using the definition of q̄ j ,

arg max
j∈I\Si

‖q̄ j‖2 = arg max
j∈I\Si

‖ P⊥
i a j∥∥P⊥

i a j
∥∥2

2

a	
j ri‖2

= arg max
j∈I\Si

‖P⊥
i a j‖2∥∥P⊥
i a j

∥∥2
2

|a	
j ri |

= arg max
j∈I\Si

|a	
j ri|∥∥P⊥

i a j
∥∥

2

.

(10)

The idempotent property of P⊥
i and the fact that P⊥

i ri = P⊥
i P⊥

i y =
P⊥

i y = ri imply that the last line in (10) leads to the same index 
selection as the OLS rule (4). That is,

|a	
j P⊥

i ri|∥∥P⊥
i a j

∥∥
2

= |a	
j ri |∥∥P⊥

i a j
∥∥

2

. (11)

Therefore, js = argmax j∈I\Si ‖q̄ js ‖2. Let us post-multiply both 
sides of (5) with the observation vector y, leading to

P⊥
i+1y = P⊥

i y − P⊥
i a js a	

js
P⊥

i∥∥P⊥
i a js

∥∥2
2

y. (12)

Recall that ri = P⊥
i y, implying that

ri+1 = ri − P⊥
i a js∥∥P⊥

i a js

∥∥2
2

a	
js

ri = ri − q̄ js . (13)

Comparing the above expression with (9), to complete the proof 
one needs to show that q js = q̄ js ; this, in turn, is equivalent to 

demonstrating P⊥
i a js∥∥P⊥

i a js

∥∥2
2

= 1
a	

js
t(i)

j

t(i)
j . Since A is full rank, the selected 

columns are linearly independent. Let {̃al}i
l=1 denote the collection 

of columns selected in the first i iterations and let Li = {̃a1, . . . , ̃ai}
denote the subspace spanned by those columns. Consider the or-
thogonal projection of the selected column a js onto Li , P⊥

i a js . 
Clearly, P⊥

i a js = a js − Pia js . Noting the idempotent property of P⊥
i

and the fact that ‖a j S ‖2
2 = ‖P⊥

i a js ‖2
2 + ‖Pia js ‖2

2, we obtain

P⊥
i a js∥∥P⊥a

∥∥2
= a js − Pia js

a	 (
a js − Pia js

) . (14)

i js 2 js
Hence, in order to show step 1 of OLS algorithm can equiva-
lently be replaced by (7)–(9), we need to demonstrate that Pi a js =∑i

l=1
a	

js
ul

‖ul‖2
2

ul . That is, the collection of vectors {ul}i
l=1 constructed 

by (8) and (9) is an orthogonal basis for Li . To this end, we employ 
an inductive argument. Consider u1 and u2 associated with the 1st 
and 2nd iterations. Using the relations and definitions given in (8)
and (9),

u1 = ã	
1 r0

‖̃ai‖2
2

ã1, (15)

u2 = ã	
2 (r0 − u1)

ã	
2

(̃
a2 − ã	

2 u1

‖u1‖2
2

u1

) (̃
a2 − ã	

2 u1

‖u1‖2
2

u1

)
. (16)

It is straightforward to see that ̃a	
1

(̃
a2 − ã	

2 u1

‖u1‖2
2

u1

)
= 0; therefore, 

u	
1 u2 = 0. Now, a collection of orthogonal columns {ul}i−1

l=1 forms a 
basis for Li−1. It follows from (8) that

ui = ã	
i (ri−2 − ui−1)

ã	
i

(̃
ai −∑i−1

l=1
ã	

i ul

‖u1‖2
2

ul

) (̃
ai −

i−1∑
l=1

ã	
i ul

‖u1‖2
2

ul

)
. (17)

Consider u	
l ui for any l ∈ {1, . . . , i − 1}. Since the collection {ul}i−1

l=1

is orthogonal, u	
l ui is proportional to ã	

l

(̃
ai − ã	

i ul

‖u1‖2
2

ul

)
, which is 

readily shown to be zero. Consequently, {ul}i
l=1 is an orthogonal 

basis for Li and the orthogonal projection of a js is formed as the 
Euclidean projection of a js onto each of the orthogonal vectors ul . 

Therefore, Pia js = ∑i
l=1

a	
js

ul

‖ul‖2
2

ul and hence {ul}i
l=1 is an orthogonal 

basis for Li . Using a similar inductive argument one can show that 

t(i+1)
j = t(i)

j − t(i)
j

	
ui

‖ui‖2
2

ui , hence demonstrating that step 1 of OLS is 
equivalent to (7)–(9); this completes the proof of the theorem. �

The geometric interpretation of the recursive equations estab-
lished in Theorem 1 is stated in Corollary 1.1. Intuitively, after 
orthogonalizing selected columns, a new column is identified and 
added it to the subset thus expanding the corresponding subspace.

Corollary 1.1. Let {̃al}i
l=1 denote the set of columns selected in the first i

iterations of the OLS algorithm and let L = {̃a1, . . . , ̃ai} be the subspace 
spanned by these columns. Then {ul}i

l=1 generated according to Theo-
rem 1 forms an orthogonal basis for Li .

Selecting multiple indices per iteration was first proposed in 
[16,17] and shown to improve performance while reducing the 
number of OMP iterations. However, since selecting multiple in-
dices increases computational cost of each iteration, relying on 
OMP/OLS identification criterion (as in, e.g., [34]) does not nec-
essarily reduce the complexity and may in fact be prohibitive in 
practice, as we will demonstrate in our simulation results. Moti-
vated by this observation, we rely on recursions derived in Theo-
rem 1 to develop a novel, computationally efficient variant of OLS 
that we refer to as Accelerated OLS (AOLS) and formalize it as Al-
gorithm 2. The proposed AOLS algorithm starts with S0 = ∅ and, in 
each step, selects 1 ≤ L ≤ �n

k � columns of matrix A such that their 
normalized projections onto the orthogonal complement of the 
subspace spanned by the previously chosen columns have higher 
correlation with the residual vector than remaining non-selected 
columns. That is, in the ith iteration, AOLS identifies L indices 
{s1, . . . , sL} ⊂ I\Si−1 corresponding to the L largest terms ‖q j‖2. 
2
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Algorithm 2 Accelerated Orthogonal Least-Squares (AOLS).

Input: y, A, sparsity level k, threshold ε, 1 ≤ L ≤ � n
k �

Output: recovered support Sk , estimated signal x̂k

Initialize: i = 0, Si = ∅, ri = 0, t(i)
j = a j , q j = a	

j ri

a	
j t(i)

j

t(i)
j for all j ∈ I.

while ‖ri‖2 ≥ ε and i < k do

1. Select { js1 , . . . , jsL } corresponding to L largest terms 
∥∥q j

∥∥
2

2. i ← i + 1

3. Si = Si−1 ∪ { js1 , . . . , jsL }
4. Perform (9) L times to update {u�1 , . . . , u�L }i

�=1 and ri

5. t(i)
j = t(i−1)

j −∑L
l=1

t(i−1)
j

	
uil

‖uil
‖2

2
uil for all j ∈ I\Si

end while

6. x̂ = A†
Si

y

After such indices are identified, AOLS employs (9) to repeatedly 
update the residual vector required for consecutive iterations. Note 
that since in each iteration of AOLS we select L indices, we need 
to construct L linearly independent vectors {u�1 , . . . , u�L }i

�=1 in ith 
iteration. Similarly, to formula to update t j ’s now contains L sub-
tractions. The procedure continues until a stopping criterion (e.g., 
a predetermined threshold on the norm of the residual vector) is 
met, or a preset maximum number of iterations is reached.

3.1. Computational complexity

We here analyze the worst case computational complexity of 
AOLS (Algorithm 2). Step 1 requires searching over at most m
columns and entails computing inner-product of vectors to find 
‖q j‖2. The overall cost of this step is O(mn). Step 2 and 3 are 
variable updates and have constant computational costs. Step 4 re-
quires O(Ln) operations to update the residual vector. In step 5, 
we update the t j ’s for j = 1, . . . , m, for the overall cost of O(Lnm). 
Finally, in step 6, we solve a least-square problem using the MGS 
algorithm that costs O(L2nk). If there are at most � ≤ k iterations, 
the total cost of algorithm 2 is O(mn� + Ln� + Lmn� + L2nk�) =
O(Lmn� + L2nk�). Note that, as confirmed by our simulation re-
sults, when the number of measurements is large compared to 
the sparsity level, the total number of iterations is significantly 
lower than k and the overall cost is approximately O(Lmnk), i.e., 
it is linear in k. However, if k is relatively large, more iterations 
of AOLS are required and the complexity can be approximated by 
O(Lmnk + L2nk2), i.e., the complexity is quadratic in k.

Remark 1. As we show in our simulation results, performance 
of AOLS matches that of the MOLS algorithm. However, AOLS is 
much faster and more suitable for real-world applications involv-
ing high-dimensional signals. In particular, the worst case com-
putational costs of Algorithm 1 and MOLS are O

(
mn2k

)
and 

O
(
Lmn2k + L2nk2

)
, respectively; therefore, AOLS is significantly 

less complex than the conventional OLS and MOLS algorithms.

4. Performance analysis of AOLS for sparse recovery

In this section, we first study performance of AOLS in the ran-
dom measurements and noise-free scenario; specifically, we con-
sider the linear model (1) where the elements of A are drawn 
from N

(
0, 1

n

)
and ν = 0, and derive conditions for the exact recov-

ery via AOLS. Then we generalize this result to the noisy scenario. 
First, we begin by stating three lemmas later used in the proofs of 
main theorems.
4.1. Lemmas

As stated in Section 1, existing analysis of OMP under Gaussian 
measurements [26,27] alter the selection criterion to analyze prob-
ability of successful recovery. On the other hand, current analysis 
of OLS in [29] relies on the assumption that the coefficient ma-
trix has normalized columns and cannot be directly applied to the 
case of Gaussian measurement, the scenario considered in this pa-
per for analysis of the proposed AOLS algorithm. As part of our 
contribution, we provide Lemma 1 that states the projection of a 
random vector drawn from a zero-mean Gaussian distribution onto 
a random subspace preserves its expected Euclidean norm (within 
a normalizing factor which is a function of the problem parame-
ters) and is with high probability concentrated around its expected 
value.

Lemma 1. Assume that an n × m coefficient matrix A consists of entries 
that are drawn independently from N (0, 1/n) and let Ak ∈ R

n×k be a 
submatrix of A. Then, ∀u ∈R

n statistically independent of Ak drawn ac-
cording to u ∼N (0, 1/n), it holds that E‖Pku‖2

2 = k
n E‖u‖2

2 . Moreover, 
let c0(ε) = ε2

4 − ε3

6 . Then,

Pr

{
(1 − ε)

k

n
< ‖Pku‖2

2 < (1 + ε)
k

n

}
≥ 1 − 2e−kc0(ε). (18)

Proof. See Appendix A. �
Lemma 2 (Corollary 2.4.5 in [44]) states inequalities between 

the maximum and minimum singular values of a matrix and its 
submatrices.

Lemma 2. Let A, B, and C be full rank tall matrices such that C = [A, B]. 
Then

σmin (A) ≥ σmin (C) , σmax (A) ≤ σmax (C) , (19a)

σmin (B) ≥ σmin (C) , σmax (B) ≤ σmax (C) . (19b)

Lemma 3 (Lemma 5.1 in [45]) establishes bounds on the singu-
lar values of Ak , i.e., a submatrix of A with k columns.

Lemma 3. Let A ∈ R
n×m denote a matrix with entries that are drawn 

independently from N (0, 1/n). Then, for any 0 < δ < 1 and for all x ∈
Range(Ak), it holds that

Pr{| ‖Akx‖2

‖x‖2
− 1| ≤ δ} ≥ 1 − 2

(
12

δ

)k

e−nc0( δ
2 ). (20)

4.2. Noiseless measurements

In this section we analyze the performance of AOLS when 
ν = 0. The following theorem establishes that when the coefficient 
matrix consists of entries drawn from N (0, 1/n) and the mea-
surements are noise-free, AOLS with high probability recovers an 
unknown sparse vector from the linear combinations of its entries 
in at most k iterations.

Theorem 2. Suppose x ∈ R
m is an arbitrary sparse vector with k < m

non-zero entries. Let A ∈ R
n×m be a random matrix with entries drawn 

independently from N (0, 1/n). Let � denote an event wherein given 
noiseless measurements y = Ax, AOLS can recover x in at most k iter-
ations. Then Pr{�} ≥ p1 p2 p3 , where
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p1 =
(

1 − 2e−(n−k+1)c0(ε)
)2

,

p2 = 1 − 2

(
12

δ

)k

e−nc0( δ
2 ), and

p3 =
(

1 −
k−1∑
i=0

e− n
k−i

1−ε
1+ε (1−δ)2

)m−k−L+1

,

(21)

for any 0 < ε < 1 and 0 < δ < 1.

Proof. As stated, the proof is inspired by the inductive frame-
work first introduced in [26].2 We can assume, without a loss of 
generality, that the nonzero components of x are in the first k lo-
cations. This implies that A can be written as A = [

Ā Ã
]
, where 

Ā ∈ R
n×k has columns with indices in Strue and Ã ∈ R

n×(m−k) has 
columns with indices in I\Strue . For T1 ⊂ I and T2 ⊂ I such that 
T1 ∩ T2 = ∅, define

bT1
j = a j∥∥∥P⊥

T1
a j

∥∥∥
2

, j ∈ T2, (22)

where P⊥
T1

denotes the projection matrix onto the orthogonal com-
plement of the subspace spanned by the columns of A with indices 
in T1. Using the notation of (22), (4) becomes

js = arg max
j∈I\Si−1

∣∣∣r	
i−1bSi−1

j

∣∣∣. (23)

In addition, let �Si = [bSi
j ] ∈ R

n×(k−i) , j ∈ Strue\Si , and �Si =
[bSi

j ] ∈ R
n×(m−k) , j ∈ I\Strue . Assume that in the first i iterations 

AOLS selects columns from Strue . Let |ψ	
o1

ri | ≤ · · · ≤ |ψ	
om−k

ri | be 
an ordering of the set {|ψ	

1 ri |, . . . , |ψ	
m−kri |}. According to the se-

lection rule in (23), AOLS identifies at least one true column in 
the (i + 1)st iteration if the maximum correlation between ri and 
columns of �Si is greater than the |P(�	

Si
ri)m−k−L+1|. Therefore,

ρ(ri) = |P(�	
Si

ri)m−k−L+1|
‖�	

Si
ri‖∞

< 1 (24)

guarantees that AOLS selects at least one true column in the 
(i + 1)st iteration. Hence, ρ(ri) < 1 for i ∈ {0, . . . , k − 1} ensures 
recovery of x in k iterations. In other words, maxi ρ(ri) < 1 is suf-
ficient condition for AOLS to successfully recover the support of 
x, i.e., if � denotes the event that AOLS succeeds, then Pr{�} ≥
Pr{maxi ρ(ri) < 1}. We may upper bound ρ(ri) as

ρ(ri) ≤ |P (̃A	ri)m−k−L+1|
‖Ā	ri‖∞

max j∈Strue ‖P⊥
i a j‖2

min j /∈Strue ‖P⊥
i a j‖2

. (25)

According to Lemma 1,

ρ(ri) ≤ |P (̃A	ri)m−k−L+1|
‖Ā	ri‖∞

√
1 + ε

1 − ε

√
(n − i)/n

(n − i)/n

E‖a jmax‖2

E‖a jmin‖2

=
√

1 + ε

1 − ε

|P (̃A	ri)m−k−L+1|
‖Ā	ri‖∞

(26)

with probability exceeding p1 = (
1 − 2e−(n−k+1)c0(ε)

)2
for 0 ≤ i <

k. Let c1(ε) =
√

1−ε
1+ε . Using a simple norm inequality and exploiting 

the fact that Ā	ri has at most k − i nonzero entries leads to

2 Our analysis relies on (4) rather than the computationally efficient recursions 
in (10). Nonetheless, we have shown the equivalence between the two criteria in 
Theorem 1.
ρ(ri) ≤
√

k − i

c1(ε)

|P (̃A	ri)m−k−L+1|
‖Ā	ri‖2

=
√

k − i

c1(ε)
‖Ã	̃ri‖∞, (27)

where ̃ri = ri/‖Ā	ri‖2. According to Lemma 3, for any 0 < δ < 1, 
Pr{‖̃ri‖2 ≤ 1

1−δ
} ≥ 1 − 2( 12

δ
)ke−nc0( δ

2 ) = p2. Subsequently,

Pr{�} ≥ p1 p2 Pr{ max
0≤i<k

|P (̃A	ri)m−k−L+1| < c1(ε)}

≥ p1 p2

m−k−L+1∏
j=1

Pr{ max
0≤i<k

∣∣∣̃a	
o j̃

ri

√
k − i

∣∣∣ < c1(ε)}

= p1 p2 Pr{ max
0≤i<k

∣∣∣̃a	
o1̃

ri

√
k − i

∣∣∣ < c1(ε)}m−k−L+1,

(28)

where we used the assumption that the columns of Ã are inde-
pendent. Note that the random vectors {̃ri

√
k − i}k−1

i=0 are bounded 
with probability exceeding p2 and are statistically independent 
of Ã. Now, recall that the entries of A are drawn independently 
from N

(
0, 1

n

)
. Since the random variable Xi = ã	

o1̃
ri

√
k − i is dis-

tributed as N (0, σ 2) with σ 2 ≤ k−i
n(1−δ)2 , by using a Gaussian tail 

bound and Boole’s inequality it is straightforward to show that

Pr{ max
0≤i<k

|Xi| < c1(ε)} ≥ 1 −
k−1∑
i=0

e− n
k−i c1(ε)2(1−δ)2

. (29)

Thus, Pr{�} ≥ p1 p2 p3, where

p3 =
(

1 −
k−1∑
i=0

e− n
k−i c1(ε)2(1−δ)2

)m−k−L+1

.

This completes the proof. �
Using the result of Theorem 2, one can numerically show that 

AOLS successfully recovers k-sparse x if the number of measure-
ments is linear in k (sparsity) and logarithmic in m

k+L−1 .

Corollary 2.1. Let x ∈ R
m be an arbitrary k-sparse vector and let 

A ∈ R
n×m denote a matrix with entries that are drawn independently 

from N (0, 1/n); moreover, assume that n ≥ max{ 6
C1

k log m
(k+L−1) 3√β

,

C2k+log 8
β2

C3
}, where 0 < β < 1 and C1 , C2 , and C3 are positive constants 

independent of β , n, m, and k. Given noiseless measurements y = Ax, 
AOLS can recover x in at most k iterations with probability of success 
exceeding 1 − β2 .

Proof. Let us first take a closer look at p3. Note that (1 − x)l ≥
1 − lx is valid for x ≤ 1 and l ≥ 1; since replacing k − i with k
in the expression for p3 in (21) decreases p3, k(m − k − L + 1) ≤
1
4 ( m

k+L−1 )6 for m > (k + L − 1)3/2 and we obtain

p3 ≥ 1 − 1

4

(
m

k + L − 1

)6

e−C1
n
k , (30)

where C1 = 1−ε
1+ε (1 − δ)2 > 0. Multiplying both sides of (30) with 

p1 and p2 and discarding positive higher order terms leads to

Pr{�} ≥ 1 − 1

4

(
m

k + L − 1

)6

e−C1
n
k − 2elog 12

δ
ke−nc0( δ

2 )

− 4ec0(ε)ke−nc0(ε). (31)

This inequality is readily simplified by defining positive constants 
C2 = max0<ε,δ<1 {log 12

δ
, c0(ε)} and C3 = min0<ε,δ<1 {c0(

δ
2 ), c0(ε)},

Pr{�} ≥ 1 − 1
(

m
)6

e−C1
n
k − 6eC2ke−nC3 . (32)
4 k + L − 1
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We need to show that Pr{�} ≥ 1 − β2. To this end, it suffices to 
demonstrate that

β2 ≥ 1

4

(
m

k + L − 1

)6

e−C1
n
k + 6eC2ke−nC3 . (33)

Let n ≥ C2k+log 8
β2

C3
.3 This ensures 6eC2ke−nC3 ≤ 3β2

4 and thus gives 
the desired result. Moreover,

n ≥ max

{
6

C1
k log

m

(k + L − 1) 3
√

β
,

C2k + log 8
β2

C3

}
(34)

guarantees that Pr{�} ≥ 1 − β2 with 0 < β < 1. �
Remark 2. Note that when k → ∞ (and so do m and n), p1, p2, 
and p3 are very close to 1. Therefore, one may assume very small 
ε and δ which implies C1 ≈ 1.

4.3. Noisy measurements

We now turn to the general case of noisy random measure-
ments and study the conditions under which AOLS with high prob-
ability exactly recovers support of x in at most k iterations. Note 
that similar to the noiseless scenario, here the successful recovery 
is defined as exact support recovery.

Theorem 3. Let x ∈ R
m be an arbitrary k-sparse vector and let A ∈

R
n×m denote a matrix with entries that are drawn independently from 

N (0, 1/n). Given the noisy measurements y = Ax +ν where ‖ν‖2 ≤ εν , 
and ν is independent of A and x, if minx j �=0 |x j| ≥ (1 + δ + t)εν for any 
t > 0, AOLS can recover x in at most k iterations with probability of suc-
cess P{�} ≥ p1 p2 p3 where

p1 =
(

1 − 2e−(n−k+1)c0(ε)
)2

p2 = 1 − 2(
12

δ
)ke−nc0( δ

2 ), and

p3 =

⎛⎜⎜⎝1 −
k−1∑
i=0

e

− n 1−ε
1+ε (1−δ)4

k

[
1

(k−i)t2 +(1+δ)2
] ⎞⎟⎟⎠

m−k−L+1 (35)

for any 0 < ε < 1, 0 < δ < 1.

Proof. See Appendix B. �
Remark 3. If we define SNR = ‖Ax‖2

2
‖ν‖2

2
, the condition minx j �=0 |x j| ≥

(1 + δ + t)εν implies

SNR ≈ k(1 + δ + t)2, (36)

which suggests that for exact support recovery via OLS, SNR should 
scale linearly with sparsity level.

Corollary 3.1. Let x ∈ R
m be an arbitrary k-sparse vector and let 

A ∈ R
n×m denote a matrix with entries that are drawn independently 

from N (0, 1/n); moreover, assume that n ≥ max{ 6
C1

k log m
(k+L−1) 3√β

,

C2k+log 8
β2

C3
} where 0 < β < 1 and C1 , C2 , and C3 are positive con-

stants that are independent of β , n, m, and k. Given the noisy measure-
ments y = Ax + ν where ν ∼ N (0, σ 2) is independent of A and x, if 
minx j �=0 |x j| ≥ C4‖ν‖2 for some C4 > 1, AOLS can recover x in at most 
k iterations with probability of success exceeding 1 − β2 .

3 This implies n ≥ k for all m, n, and k.
Fig. 1. Number of noiseless measurements required for sparse reconstruction with 
β2 = 0.05 when m = 1024. The regression line is n = 2.0109 k log( m

k 3√β
) with the 

coefficient of determination R2 = 0.9888.

Proof. The proof follows the steps of the proof to Corollary 2.1, 
leading us to constants C1 = 1−ε

1+ε (1 − δ)4(1 + t2(1 + δ)2)−1, C2 =
max0<ε,δ<1 {log 12

δ
, c0(ε)} > 0, C3 = min0<ε,δ<1 {c0(

δ
2 ), c0(ε)} > 0, 

and C4 = (1 + δ + t). �
Remark 4. In general, for the case of noisy measurements C1 is 
smaller than that of the noiseless setting, implying a more de-
manding sampling requirement for the former.

5. Simulations

5.1. Confirmation of theoretical results

In this section, we verify our theoretical results by comparing 
them to the empirical ones obtained via Monte Carlo simulations.

First, we consider the results of Corollary 2.1 with L = 1. In each 
trial, we select locations of the nonzero elements of x uniformly 
at random and draw those elements from a normal distribution. 
Entries of the coefficient matrix A are also generated randomly 
from N (0, 1n ). Fig. 1 plots the number of noiseless measurement n
needed to achieve at least 0.95 probability of perfect recovery (i.e., 
β2 = 0.05) as a function of k log( m

k 3√β
). The length of the unknown 

vector x here is set to m = 1024, and the results (shown as circles) 
are averaged over 1000 independent trials. The solid regression 
line in Fig. 1 implies linear relation between n and k log( m

k 3√β
) as 

predicted by Corollary 2.1. Specifically, for the considered setting, 
n ≈ 2.0109 k log( m

k 3√β
). Recall that, according to Remark 1, for a 

high dimensional problem where the exact support recovery has 
the probability of success overwhelmingly close to 1, C1 ≈ 1; this 
implies n ≥ 6 k log( m

k 3√β
) for all m and k. Therefore, Fig. 1 suggests 

that our theoretical result is somewhat conservative (which is due 
to approximations that we rely on in the proof of Theorem 2 and 
Corollary 2.1).

In Fig. 2, we compare the lower bound on probability of ex-
act recovery from noiseless random measurements established in 
Theorem 2 with empirical results. In particular, we consider the 
setting where L = 1, m = 1000 and the non-zero elements of x
are independent and identically distributed normal random vari-
ables. For three sparsity levels (k = 5, 10, 15) we vary the number 
of measurements and plot the empirical probability of exact recov-
ery, averaged over 1000 independent instances. Fig. 2 illustrates 
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Fig. 2. A comparison of the theoretical probability of exact recovery provided by 
Theorem 2 with the empirical one, where m = 1024 and the non-zero elements of 
x are drawn independently from a normal distribution. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. A comparison of the theoretical probability of exact recovery provided by 
Theorem 3 with the empirical one, where m = 1024 and non-zero elements x are 
set to (1 + δ + 20)‖ν‖2.

that the theoretical lower bound established in (21) becomes more 
tight as the signal becomes more sparse.

Next, we compare the lower bound on probability of exact re-
covery from noiseless random measurements established in Theo-
rem 3 with empirical results. More specifically, L = 1, m = 1000, 
k = 5, 10, 15, and the non-zero elements of x are set to (1 + δ +
20)‖ν‖2 to ensure that the condition of Theorem 3 imposed on the 
smallest nonzero element of x is satisfied. For this setting, in Fig. 3
the results of Theorem 3 are compared with the empirical ones 
(the latter are averaged over 1000 independent instances). As can 
be seen from the figure, the lower bound on probability of suc-
cessful recovery becomes more accurate for lower k, similar to the 
results for the noiseless scenario illustrated in Fig. 2.

5.2. Sparse recovery performance comparison

To evaluate performance of the AOLS algorithm, we compare 
it with five state-of-the-art sparse recovery algorithms for var-
ied sparsity levels k. In particular, we considered OMP [13], Least 
Absolute Shrinkage and Selection Operator (LASSO) [46,10], MOLS 
[34] with L = 1, 3, 5, depth-first and breath-first multipath match-
ing pursuit [36] (referred to as MMP-DF and MMP-BP, respectively). 
It is shown in [34,36] that MOLS, MMP-DF, and MMP-BP out-
perform many of the sparse recovery algorithms, including OLS 
[14], OMP [13], GOMP [17], StOMP [16], and BP [10]. Therefore, 
to demonstrate performance of AOLS with respect to other sparse 
recovery methods, we compare it to these three schemes. We also 
include the performances of OMP and LASSO as baselines.

For MOLS, MMP-DF, and MMP-BF we used the MATLAB im-
plementations provided by the authors of [34,36]. To solve the 
least-square problem in OMP, GOMP, MMP-DF, and MMP-BF we 
use the MGS algorithm which obtains the solution at low cost. As 
typically done in benchmarking tests [47,17], we used CVX [48,49]
to implement the LASSO algorithm. We explored various values of 
L (specifically, L = 1, 3, 5) to better understand its effect on the 
performance of AOLS. When k is known, we run k iterations of 
OMP and OLS. In contrast to OMP and OLS, other algorithms con-
sidered in this section, AOLS, MMP-DF, MOLS, and LASSO, need a 
stopping criterion; we set the threshold to 10−13. Note that MMP-
BF, a breadth-first algorithm, does not use a stopping threshold.

We consider sparse recovery from random measurements in a 
large-scale setting to fully understand scalability of tested algo-
rithms. To this end, we set n = 512 and m = 1024; k changes 
from 100 to 300. The non-zero elements of x – whose locations 
are chosen uniformly – are independent and identically distributed 
normal random variables. In order to construct A, we consider the 
so-called hybrid scenario [31] to simulate both correlated and un-

correlated dictionaries. Specifically, we set A j = b j+t j 1
‖b j+t j 1‖2

where 

b j ∼ N (0, 1n ), t j ∼ U(0, T ) with T ≥ 0, and 1 ∈ R
n is the all-ones 

vector. In addition, {b j}m
j=1 and {t j}m

j=1 are statistically indepen-
dent. Notice that as T increases, the so-called mutual coherence 
parameter of A increases, resulting in a more correlated coefficient 
matrix; T = 0 corresponds to an incoherent A. For each scenario, 
we use Monte Carlo simulations with 100 independent instances. 
Performance of each algorithm is characterized by three metrics: 
(i) Exact Recovery Rate (ERR), defined as the percentage of in-
stances where the support of x is recovered exactly, (ii) Partial 
Recovery Rate (PRR), measuring the fraction of support which is 
recovered correctly, and (iii) the running time of the algorithm in 
MATLAB found via tic and toc commands which are Mathwork’s 
recommended choices for measuring runtimes of different func-
tions.

The exact recovery rate, partial recovery rate, and running time 
comparisons are shown in Fig. 4, Fig. 5, and Fig. 6, respectively. As 
can be seen from Fig. 4, AOLS and MOLS with L = 3, 5 achieve the 
best exact recovery rate for various values of T . We also observe 
that as T increases, performance of all schemes, except for AOLS 
and MOLS, significantly deteriorates and they can never exactly re-
cover the support for T = 1 and T = 10. Note that our theoretical 
results suggests that in the settings of this experiment, k ≤ 115 is a 
sufficient condition for exact recovery with high probability. As for 
the partial recovery rate shown in Fig. 5, for T = 0 all methods per-
form similarly. However, AOLS and MOLS are robust to changes in 
T while other schemes perform poorly for larger values of T . Run-
ning time comparison results, depicted in Fig. 6, demonstrate that 
for all scenarios the AOLS algorithm is essentially as fast as OMP, 
while AOLS is significantly more accurate. We also observe from 
the figure that AOLS is significantly faster than other schemes. 
Specifically, for larger values of k, AOLS is around 15 times faster 
than MOLS, while they deliver essentially the same performance. 
Note that a larger L results in a lower running time for both AOLS 
and MOLS as these schemes find the support of the signal with 
fewer iterations than k. Since the cost of conventional OLS is rel-
atively high, this gain in speed is more noticeable for MOLS than 
for AOLS. Moreover, as we discussed in Section 3, as k grows the 
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Fig. 4. Exact recovery rate comparison of AOLS, MOLS, OMP, MMP-DP, MMP-BP, and LASSO for n = 512, m = 1024, and k non-zero components of x uniformly drawn from 
N (0, 1) distribution.
recovery becomes harder and more iterations are needed. Specif-
ically, we observe quadratic trends in the running times of AOLS 
and MOLS, where the complexity growth is more pronounced for 
MOLS and larger L.

Overall, the results depicted in Fig. 4, Fig. 5, and Fig. 6 suggest 
that MOLS and AOLS provide the best recovery rate, even when the 
measurement matrix contains highly-correlated columns. However, 
AOLS enjoys a running time similar to the low-cost and popular 
OMP algorithm, and is significantly faster than MOLS.

5.3. Application: sparse subspace clustering

Sparse subspace clustering (SSC), which received considerable 
attention in recent years, relies on sparse signal reconstruction 
techniques to organize high-dimensional data known to have low-
dimensional representation [2]. In particular, in SSC problems we 
are given matrix A which collects data points ai drawn from a 
union of low-dimensional subspaces, and are interested in parti-
tioning the data according to their subspace membership. State-
of-the-art SSC schemes such as SSC-OMP [40,3] and SSC-BP [2,41]
typically consist of two steps. In the first step, one finds a sim-
ilarity matrix W characterizing relative affinity of data points by 
forming a representation matrix C. Once W = |C| + |C|	 is gen-
erated, the second step performs data segmentation by applying 
spectral clustering [50] on W. Most of the SSC methods rely on 
the so-called self-expressiveness property of data belonging to a 
union of subspaces which states that each point in a union of sub-
spaces can be written as a linear combination of other points in 
the union [2].

In this section, we employ the proposed AOLS algorithm to 
generate the subspace-preserving similarity matrix W and empiri-
cally compare the resulting SSC performance with that of SSC-OMP 
[40,3] and SSC-MP [2,41].4 For SSC-BP, two implementations based 
on ADMM and interior point methods are available by the authors 

4 We refer to our proposed scheme for the SSC problem as Accelerated SSC 
(ASSC).



100 A. Hashemi, H. Vikalo / Digital Signal Processing 82 (2018) 91–105
Fig. 5. Partial recovery rate comparison of AOLS, MOLS, OMP, MMP-DP, MMP-BP, and LASSO for n = 512, m = 1024, and k non-zero components of x uniformly drawn from 
N (0, 1) distribution.
of [2,41]. In our simulation studies we use the ADMM implemen-
tation of SSC-BP in [2,41] as it is faster than the interior point 
method implementation. Our scheme is tested for L = 1 and L = 2. 
We consider the following two scenarios: (1) A random model 
where the subspaces are with high probability near-independent; 
and (2) The setting where we used hybrid dictionaries [31] to gen-
erate similar data points across different subspaces which in turn 
implies the independence assumption no longer holds. In both sce-
narios, we randomly generate n = 5 subspaces, each of dimension 
d = 6, in an ambient space of dimension D = 9. Each subspace 
contains Ni sample points where we vary Ni from 50 to 1000; 
therefore, the total number of data points, N = ∑n

i=1 Ni , is varied 
from 250 to 5000. The results are averaged over 20 independent 
instances. For scenario (1), we generate data points by uniformly 
sampling from the unit sphere. For the second scenario, after 
sampling a data point we add a perturbation term Q 1D where 
Q ∼ U(0, 1).

In addition to comparing the algorithms in terms of their clus-
tering accuracy and running time, we use the following metrics 
defined in [2,41] that quantify the subspace preserving property of 
the representation matrix C returned by each algorithm:
• Subspace preserving rate: The fraction of points whose repre-
sentations are subspace-preserving.

• Subspace preserving error: The fraction of �1 norms of the rep-
resentation coefficients associated with points from other sub-
spaces, i.e., 1

N

∑
j (
∑

i∈O |Ci j |/‖c j‖1) where O represents the 
set of data points from other subspaces.

The results for the scenario (1) and (2) are illustrated in Fig. 7
and Fig. 8, respectively. As can be seen in Fig. 7, ASSC is nearly as 
fast as SSC-OMP and orders of magnitude faster than SSC-BP while 
ASSC achieves better subspace preserving rate, subspace preserving 
error, and clustering accuracy compared to competing schemes. In 
the second scenario, we observe that the performance of SSC-OMP 
is severely deteriorated while ASSC still outperforms both SSC-BP 
and SSC-OMP in terms of accuracy. Further, similar to the first sce-
nario, running time of ASSC is similar to that of SSC-OMP while 
both methods are much faster that SSC-BP. As Fig. 7 and Fig. 8
suggest, the ASSC algorithm, especially with L = 2, outperforms 
other schemes while essentially being as fast as the SSC-OMP 
method.
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Fig. 6. A comparison of AOLS, MOLS, OMP, MMP-DP, MMP-BP, and LASSO for n = 512, m = 1024, and k non-zero components of x uniformly drawn from the N (0, 1)

distribution.
6. Conclusions and future work

In this paper, we proposed the Accelerated Orthogonal Least-
Squares (AOLS) algorithm, a novel scheme for sparse vector ap-
proximation. AOLS, unlike state-of-the art OLS-based schemes such 
as Multiple Orthogonal Least-Squares (MOLS) [34], relies on a set 
of expressions which provide computationally efficient recursive 
updates of the orthogonal projection operator and enable compu-
tation of the residual vector by employing only linear equations. 
Additionally, AOLS allows incorporating L columns in each itera-
tion to further reduce the complexity while achieving improved 
performance. In our theoretical analysis of AOLS, we showed that 
for coefficient matrices consisting of entries drawn from a Gaus-
sian distribution, AOLS with high probability recovers k-sparse 
m-dimensional signals in at most k iterations from O(k log m

k+L−1 )

noiseless random linear measurements. We extended this result 
to the scenario where the measurements are perturbed with 
�2-bounded noise. Specifically, if the non-zero elements of an un-
known vector are sufficiently large, O(k log m ) random linear 
k+L−1
measurements is sufficient to guarantee recovery with high proba-
bility. This asymptotic bound on the required number of measure-
ments is lower than those of the existing OLS-based, OMP-based, 
and convex relaxation schemes. Our simulation results verify that 
O

(
k log m

k+L−1

)
measurement is indeed sufficient for sparse re-

construction that is exact with probability arbitrarily close to 
one. Simulation studies demonstrate that AOLS outperforms all 
of the current state-of-the-art methods in terms of both accu-
racy and running time. Furthermore, we considered an application 
to sparse subspace clustering where we employed AOLS to facil-
itate efficient clustering of high-dimensional data points lying on 
the union of low-dimensional subspaces, showing superior per-
formance compared to state-of-the-art OMP-based and BP-based 
methods [3,40,2,41].

As part of future work, it would be valuable to further ex-
tend the analysis carried out in Section 4 to study performance 
of AOLS for hybrid dictionaries [31]. It is also of interest to analyt-
ically characterize performance of the AOLS-based sparse subspace 
clustering scheme.
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Fig. 7. Performance comparison of ASSC, SSC-OMP [40,3], and SSC-BP [2,41] on synthetic data with no perturbation. The points are drawn from 5 subspaces of dimension 6
in ambient dimension 9. Each subspace contains the same number of points and the overall number of points is varied from 250 to 5000.
Appendix A. Proof of Lemma 1

The lemma aims to characterize the length of the projection of 
a random vector onto a low dimensional subspace. In the follow-
ing argument we show that the distribution of the length of the 
projected vector is invariant to rotation which in turn enables us 
to find the projection in a straightforward manner.

Recall that Pk is an orthogonal projection operator for a 
k-dimensional subspace Lk spanned by the columns of Ak . Let 
B = {b1, . . . , bk} denote an orthonormal basis for Lk . There exists 
a rotation operator R such that R (B) = {e1, . . . , ek}, where ei is 
the ith standard unit vector. Let u ∼ N (0, 1/n). Since a multivari-
ate Gaussian distribution is spherically symmetric [51], distribution 
of u remains unchanged under rotation, i.e., R (u) ∼ N (0, 1/n). 
Therefore, it holds that E‖R (u)‖2 = E‖u‖2. In addition, since af-
ter rotation {e1, . . . , ek} is a basis for the rotation of Lk , ‖Pku‖2 has 
the same distribution as the length of a vector consisting of the 
first k components of R (u). It then follows from the i.i.d. assump-
tion and linearity of expectation that E‖Pku‖2 = k

E‖u‖2 = k .
2 n 2 n
We now prove the statement in the second part of the lemma. 
Let uR

k be the vector collecting the first k coordinates of R(u). 
The above argument implies ‖Pku‖2

2 has the same distribution as ∥∥uR
k

∥∥2
2. In addition, n 

∥∥uR
k

∥∥2
2 is distributed as χ2

k because of the 
spherical symmetry property of u. Let λ > 0; we will specify the 
value of λ shortly. Now,

Pr{‖Pku‖2
2 ≤ (1 − ε)

k

n
} = Pr{n

∥∥∥uR
k

∥∥∥2

2
≤ (1 − ε)k}

= Pr{−λ

2
n
∥∥∥uR

k

∥∥∥2

2
≥ −λk(1 − ε)

2
}

= Pr{e− λ
2 n

∥∥∥uR
k

∥∥∥2

2 ≥ e− λk(1−ε)
2 }

(a)≤ e
λk(1−ε)

2 E{e
− λ

2 n
∥∥∥uR

k

∥∥∥2

2}
(b)= e

λk(1−ε)
2 (1 + λ)

−k
2

(A.1)
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Fig. 8. Performance comparison of ASSC, SSC-OMP [40,3], and SSC-BP [2,41] on synthetic data with perturbation terms Q ∼ U(0, 1). The points are drawn from 5 subspaces 
of dimension 6 in ambient dimension 9. Each subspace contains the same number of points and the overall number of points is varied from 250 to 5000.
where (a) follows from the Markov inequality and (b) is due 
to the definition of the Moment Generating Function (MGF) for 
χ2

k -distribution. Now, let λ = ε
1−ε . It follows that

Pr

{
‖Pku‖2

2 ≤ (1 − ε)
k

n

}
≤ e

λk(1−ε)
2 (1 − ε)

k
2 = e

k
2 (ε+log(1−ε)) ≤ e

−kε2
4 (A.2)

where in the last inequality we used the fact that log(1 − ε) ≤
−ε − ε2

2 . Following the same line of argument, one can show that

Pr

{
‖Pku‖2

2 ≥ (1 + ε)
k

n

}
≤ e−k( ε2

4 − ε3
6 ). (A.3)

The combination of (A.2) and (A.3) using Boole’s inequality leads 
to the stated result.
Appendix B. Proof of Theorem 3

Here we follow the outline of the proof of Theorem 2. Note 
that, in the presence of noise, Ā	ri in (26) has at most k nonzero 
entries. After a straightforward modification of (27), we obtain

ρ(ri) ≤
√

k

c1(ε)
|P (̃A	ri)m−k−L+1|. (B.1)

The most important difference between the noisy and noiseless 
scenarios is that ri in the latter does not belong to the range of 
Ā; therefore, further restrictions are needed to ensure that {̃ri}k−1

i=0
remains bounded. To this end, we investigate lower bounds on 
‖Ā	ri‖2 and upper bounds on ‖̃ri‖2. Recall that in the ith itera-
tion

ri = P⊥
i y = P⊥

i

(
Āx̄ + ν

)
, (B.2)

where x̄ ∈R
k is a subvector of x that collects nonzero components 

of x. We can write ν equivalently as
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ν = Āw + ν⊥, (B.3)

where ν⊥ = P⊥
k ν is the projection of ν onto the orthogonal com-

plement of the subspace spanned by the columns of A correspond-
ing to nonzero entries of x, and w = Ā†ν . Substituting (B.3) into 
(B.2) and noting that P⊥

i a = 0 if a is selected in previous iterations 
as well as observing that Li ⊂Lk , we obtain

ri = ν⊥ + P⊥
i Āic cic , (B.4)

where c = x̄ + w and subscript ic denotes the set of correct 
columns that have not yet been selected. Evidently, (B.4) demon-
strates that ri can be written as a sum of orthogonal terms. There-
fore,

‖ri‖2
2 = ‖ν⊥‖2

2 + ‖P⊥
i Āic cic ‖2

2. (B.5)

Applying (B.4) yields

‖Ā	ri‖2 = ‖Ā	 (
ν⊥ + P⊥

i Āic cic

)
‖2

(a)= ‖Ā	ν⊥ + Ā	
ic P⊥

i Āic cic ‖2

(b)= ‖Ā	
ic P⊥

i Āic cic ‖2

(c)≥ σ 2
min(Ā)‖cic ‖2,

(B.6)

where (a) holds because P⊥
i projects onto the orthogonal comple-

ment of the space spanned by the columns of Āi , (b) follows from 
the fact that columns of Ā and ν⊥ lie in orthogonal subspaces, and 
(c) follows from Lemma 2 and the fact that P⊥

i is a projection ma-
trix.

We now bound the norm of ̃ri . Substitute (B.5) and (B.6) in the 
definition of ̃ri to arrive at

‖̃ri‖2 ≤
[‖ν⊥‖2

2 + ‖P⊥
i Āic cic ‖2

2

] 1
2

σ 2
min(Ā)‖cic ‖2

(a)≤
[‖ν⊥‖2

2 + σ 2
max(Ā)‖cic ‖2

2

] 1
2

σ 2
min(Ā)‖cic ‖2

=
[‖ν⊥‖2

2/‖cic ‖2
2 + σ 2

max(Ā)
] 1

2

σ 2
min(Ā)

(B.7)

where (a) follows from Lemma 2 and the fact that P⊥
i is a projec-

tion matrix. In addition,

‖ν⊥‖2 = ‖P⊥
k ν‖2 ≤ ‖ν‖2 ≤ εν . (B.8)

Defining xmin = min j |x̄ j| and cmin = min j |c j |, it is straightforward 
to see that

cmin ≥ xmin − ‖w‖2. (B.9)

Moreover, we impose xmin ≥ (1 + δ)‖w‖2. Therefore,

‖cic ‖2
2 ≥ (k − i)c2

min

≥ (k − i) (xmin − ‖w‖2)
2

= (k − i)(xmin − ‖Ā†ν‖2)
2

≥ (k − i)(xmin − σmax(Ā†)‖ν‖2)
2

= (k − i)(xmin − σmin(Ā)εν)2.

(B.10)

Combining (B.7), (B.8), and (B.10) implies that
‖̃ri‖2 ≤
[

ε2
ν

(k−i)(xmin−σmin(Ā)εν )2 + σ 2
max(Ā)

] 1
2

σ 2
min(Ā)

≤
[

ε2
ν

(k−i)(xmin−(1+δ)εν )2 + (1 + δ)2
] 1

2

(1 − δ)2

(B.11)

with probability exceeding p2. Thus, imposing the constraint

xmin ≥ (1 + δ + t)εν (B.12)

where t > 05 establishes

‖̃ri‖2 ≤
[

1
(k−i)t2 + (1 + δ)2

] 1
2

(1 − δ)2
.

(B.13)

By following the steps of the proof of Theorem 2 and exploiting 
independence of the columns of Ã, we arrive at

Pr{�} ≥ p1 p2 Pr{ max
0≤i<k

∣∣∣̃a	
o1̃

ri

∣∣∣ <
c1(ε)√

k
}m−k−L+1. (B.14)

Recall that {̃ri}k−1
i=0 are statistically independent of Ã and that with 

probability higher than p2 they are bounded. By using Boole’s for 
the random variable Xi = ã	

o1̃
ri we obtain

Pr{ max
0≤i<k

|Xi| < c1(ε)√
k

} ≥ 1 −
k−1∑
i=0

e

− nc1(ε)2(1−δ)4

k

[
1

(k−i)t2 +(1+δ)2
]
. (B.15)

Let us denote

p3 =
⎛⎜⎝1 −

k−1∑
i=0

e

− nc1(ε)2(1−δ)4

k

[
1

(k−i)t2 +(1+δ)2
] ⎞⎟⎠

m−k−L+1

. (B.16)

Then from (B.14) and (B.15) follows that Pr{�} ≥ p1 p2 p3, which 
completes the proof.

Remark 5. Note that in the absence of noise the first term in 
the numerator of (B.13) vanishes, leading to ‖̃ri‖2 ≤ 1

1−δ
+ 2δ

(1−δ)2 . 
A comparison with the proof of Theorem 2 suggests that the term 

2δ
(1−δ)2 is a modification which stems from the presence of noise.
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