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DIFFERENTIALLY PRIVATE CONSENSUS AND OPTIMIZATION
ON COMMUNICATION CONSTRAINED DIRECTED GRAPHS

MONICA RIBERO, YIYUE CHEN AND HARIS VIKALO

Abstract. The rise of machine learning has been accompanied by growing privacy concerns
and demands to protect users’ sensitive data. At the same time, the amount of data that needs to
be processed has been rapidly growing, bringing forth concerns related to limited communication
resources available in practical settings. To this end, in this paper we study decentralized versions of
consensus and convex optimization problems over directed graphs with communication and privacy
constraints. Leveraging a local differential privacy model, we provide provable privacy guarantees for
decentralized algorithmic frameworks that rely on sparsification to reduce the communication cost;
while motivated by meeting communication constraints, sparsification is interpreted and exploited as
a privacy amplification mechanism. To our knowledge, these are the first consensus and decentralized
optimization frameworks that provide differential privacy for decentralized learning on directed graphs
under communication constraints. The proposed scheme is tested on the consensus model with
synthetic datasets, and a tag prediction model with logistic regression over a realistic Stackoverflow
dataset. The experiments validate theoretical results and demonstrate efficacy of the proposed
differentially private schemes.

Key words. Distributed optimization, Consensus, Machine Learning,Federated Learning, Com-
munication efficiency, Differential Privacy

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. Decentralized consensus and convex optimization have been
studied in a number of fields including machine learning, signal processing, and
control [42, 47, 46]. They have emerged as attractive alternatives to centralized
solutions limited by latency challenges [12, 26], high cost of communicating data to
the central server [27], and, in many settings, privacy concerns that prohibit central
data aggregation [24, 45, 48]. In consensus, a set of n nodes, each one with a data
vector x; € R?, for i € [n] := {1,...,n}, aims to find the mean vector x = 1 37" | x;.
In decentralized optimization, the nodes collaborate to minimize the finite sum of local
objective functions f; : R* — R over a convex compact constraint set X, i.e., solve

(1.1) min | f(x) = — Zfi(x)

xEX

Recent multiagent applications over IoT networks, mobile devices and federated
learning systems have reignited attention to problems wherein a number of nodes
locally collects data and a peer-to-peer interaction allows them to estimate a parameter
or optimize a function [8, 21]. However, to deliver potential benefits of decentralized
solutions, two issues need to be addressed. First, even if data remains local, shared
updates may be high dimensional, e.g., in federated learning where the updates are
deep learning models and the number of parameters to be exchanges may be in the
millions [18]; in such settings, limited energy and bandwidth typical of practical
systems create a communication bottleneck. Second, in recent applications such as
recommender systems, federated learning, and online learning, users’ privacy may be
compromised if sharing information potentially sufficient for identification [33, 1, 30].
Previous solutions to these problems have focused on fixed topologies as in federated
learning where a server communicates with all agent nodes in the network — the setting
equivalent to a fully connected star network topology [30]. More general decentralized
optimization topologies that have previously been studied include undirected graphs

1
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2 M. RIBERO, Y. CHEN, AND H. VIKALO

[46, 38, 52, 34, 14, 24, 28]. However, real-world networks are known to be time-
varying and support directed communication between the nodes; while there exist
communication-efficient protocols for decentralized consensus and optimization in such
setting [10], no prior work providing privacy guarantees therein exist.

In this work, we consider differential privacy [15, 16] — a statistical framework that
enables trade-off between data utility and privacy loss. The privacy loss of a query
to a database is defined as the probability of identifying an individual record in the
database from the output of the query. This requires trusting a central aggregator
to compute the query output and mechanism, which is not available in the fully
distributed and decentralized setting. We consider the local differential privacy model,
introduced first by [23], where each node has to protect its outputs by perturbing
any shared data or message. We propose (to our knowledge, the first) convergent
algorithms for decentralized consensus and optimization over directed graphs that
satisfy both communication and differential privacy constraints.

In particular, our contributions can be summarized as follows:

e We propose algorithms for decentralized consensus and convex optimization
over time-varying directed graphs with communication, and local and record-
level differential privacy constraints.

e We provide convergence analysis for both algorithms; for the consensus al-
gorithm, we establish linear convergence; for the optimization algorithm, we
show O(InT/v/T) convergence rate if the global objective function is convex
and O(InT/T) convergence rate if, in addition, local objective functions are
strongly convex.

e We provide a tight privacy analysis and show record-level differential pri-

Vnd?
€T

vacy guarantees, with a utility-privacy trade-off of O (‘é—? + )for convex

functions, and O (p :27;0122) for strongly convex local objectives.
e We perform extensive numerical studies under various communication and
privacy settings, and investigate accuracy /communication/privacy trade-offs.
Notation. We represent vectors by lowercase bold letters and matrices by upper-
case letters. [A];; represents the (¢, j) element of matrix A. ||| represents the standard
Euclidean norm. For convenience, the symbols used in the paper are summarized in a

table in the supplementary document, Sec A.

1.1. Related work and significance. Prior work on consensus algorithms
considered both directed and undirected graphs [5, 44|, as well as time-varying graphs
[20, 53, 43, 7]. By leveraging compressed communication, [24] developed the first
linearly convergent communication-efficient consensus algorithm over undirected time-
invariant graphs. [10] established the same type of results for directed time-varying
graphs. Prior work on decentralized optimization includes a gradient descent scheme
[38], the alternating direction method of multipliers (ADMM) [52], and decentralized
dual averaging methods [14, 34]. More recently, [28] studied how decentralization
and asynchronous SGD affect convergence. [24, 45] introduced a decentralized convex
scheme with limited communication and convergence guarantees; note that all of the
above prior work is limited to the undirected settings.

The subgradient-push [35] and Directed Distributed Gradient Descent (D-DGD)

9] a ress optimization over directed grapns; €y achieve —= ) convergence rate.
55| add timizati directed hs; th hi Ol;; t

In the same setting, [37] improve the convergence rate to linear for smooth and strongly
convex functions. However, these approaches do not consider limited communication
settings. [10] studies directed networks under communication constraints and proves

This manuscript is for review purposes only.



116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

DIFFERENTIALLY PRIVATE CONSENSUS AND OPTIMIZATION 3

O(%) convergence rate. In the non-convex setting, [3] proposes Overlap Stochastic
Gradient Push which combines the push-sum algorithm with stochastic gradient
updates and proves the same sub-linear rate as in SGD.

An approach to reducing communication by taking advantage of local SGD
rounds is studied in [49]; this work is extended in [25] to the non-i.i.d. case. [50]
proposes MATCHA, an algorithm that improves over previous approaches and reduces
communication and computation costs by randomly sampling clients. They also show
that local updates in distributed optimization can accelerate convergence rate of the
algorithm.

Decentralized optimization under privacy constraints has been studied in [11],
which provides an overview of privatization mechanisms for data exchanged in net-
works. This works shows an imposibility of convergence, under a different privacy
model and where all messages in all iterations are noised. In contrast, we rely in the
post-processing property of differential privacy to design our algorithm and achieve a
better accuracy-privacy tradeoff. Authors in [19, 51] study consensus under different
definitions of privacy. The focus of our work is on providing differential privacy guar-
antees for decentralized consensus and optimization over communication-constrained
time-varying networks; related prior work includes [4] which incorporates differential
privacy guarantees but considers a setting wherein each user has a set of personalized
parameters. In contrast, the parameters in our problem are shared across nodes and
the aim is to achieve consensus or minimize the finite sum of local objective functions.

None of the above considers both privacy and communication constraints, often
present simultaneously in practice. ¢pSGD, introduced in [2], takes communication
and privacy into account by using efficient quantization via random rotations, and
introducing a binomial privacy mechanism that reduces the communication overhead.
That work is inspired by federated learning and the obtained guarantees are valid only
for the fully connected, undirected network topologies. Concurrent to our work, [9]
studied the trade-off between communication and privacy, but they only consider the
centralized model.

Finally, it is worth pointing out that satisfying differential privacy constraints
is typically more challenging in iterative settings, including those commonly used in
optimization algorithms; the iterative nature of such algorithms requires splitting
the privacy budget across iterations. [1, 54, 29] proposed privacy techniques that
account for noisy SGD which adds Gaussian noise to the gradient before updating
the parameters. This is further refined in [32] by leveraging Renyi differential privacy
[31], a relaxation of the traditional (e, d)-differential privacy. In our work we analyse
composition across iterations and dimensions using strong composition [22], that allows
for a more interpretable bound. In our experiments we use Renyi-DP to provide a
tighter, more realistic accounting of privacy.

Organization. We start by introducing some preliminary definitions in subsec-
tion 2.1, followed by the consensus algorithm and analysis in subsection 2.2. We
continue with optimization algorithms and analysis in subsection 2.3, and experimental
results in section 3. We include detailed proofs in section 5 and finish with a discussion
in section 6.

2. Private and Communication Efficient Decentralized Algorithms.

2.1. Preliminaries.
Communication-constrained networks. We model the connectivity in a network
with n nodes by a time-varying directed graph. At time ¢, the in-neighbor connectivity

matrix (row-stochastic), W} , and the out-neighbor connectivity matrix (column-

This manuscript is for review purposes only.
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4 M. RIBERO, Y. CHEN, AND H. VIKALO

stochastic), W/, are defined as

out?

t ; t
(21) [Wt ] {> 0, 'A/ln’b [Wt ]ij _ {> 0, 1 6'/\/'out,j

t .
0, otherwise ’ o 0, otherwise

where N, ; is the set of nodes that can send messages to node ¢ (including i) and

L j 1s the set of nodes that can receive messages from node j (including j) at time
t. Node i knows both N, ; and NV, ;, which is sufficient for the construction of W,
and W},

To comply with the communication constraints, the nodes in a network may need
to limit their communication to only a fraction of a full message, which we facilitate by
applying sparsification methods. To this end, let us introduce a sparsification operator
Q : R4 — R%; applying Q to a d-dimensional real vector returns a sparsified version of
that vector. If node ¢ can communicate k out of d entries of a message, the probability
of any given entry actually being communicated is g.

Differential privacy. Differential privacy was first introduced in [15] as a mechanism
to prevent output queries to databases from disclosing the inclusion of a particular
record on the dataset. Formally, it is a bound on the probability of losing a record’s
privacy by including it in the computation of a query.

ut,i’

DEFINITION 2.1 ((approximate) Differential Privacy). We say that a randomized
algorithm M satisfies (e, 6)-differential privacy ((e,6)-DP) if for any pair of datasets
D and D' differing by only one record and any subset of outcomes S € range(M) it
holds that

Pr(M(D) € S) <e- Pr(M(D') € S) +6.

THEOREM 2.2 (Theorem A.1 in [16]). The ¢y-sensitivity of a query f evaluated
on a dataset D with range in ¢ is defined as Ao(f) := maxp pr ||f(D) — f(D')||z,
where D and D’ are datasets differing in only one record. The Gaussian mechanism
with parameter o, Gy, adds zero-mean Gaussian noise with variance o to all d
coordinates in query f; formally, G¢-(D) = f(D) + N(0,0%1,), allowing an abuse of

notation. Gy (D) is (¢,0)-DP if o > A2€(f) 210%(1 25)

The Sampled Gaussian Mechanism with sampling rate p and noise variance 02, SGM,, ,,
first generates a subset of D by selecting points independently at random with proba-
bility p, computes the query on this random subset, and adds to it samples from a
zero-mean Gaussian distribution with variance o2. Further details and illustrations of
this mechanism are in the supplementary material, Sec B. Differential privacy assumes
there is a trusted central aggregator that possesses all users’ data and computes private
output queries, allowing the aggregation to add less noise. In the decentralized setting
each user has it’s data locally, thus all users’ outcomes have to be noised, making the
problem harder. In our case, all nodes share record-level differentially private messages.
This means that we protect users against an attack wishing to learn if a specific record
is in their data. To illustrate the different models, consider the setting where each
node ¢ has r records and X; is a query to node i, and Az(X;) = % Assume we want
to disclose the mean of X7, X5, ..., X,,. In the central model, the sensitivity of query
Z is # so we only add gaussian noise with variance O ( ) In the local model, we
would have to add for each node 4, thus noise standard dev1at10n is augmented by a
factor of n, n = O (L)

€T

2.2. Differentially-Private Communication-Efficient Consensus. In gen-
eral, applying sparsification methods to existing consensus schemes, e.g. [6, 7, 35],

This manuscript is for review purposes only.
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DIFFERENTIALLY PRIVATE CONSENSUS AND OPTIMIZATION 5

does not guarantee convergence since the sparsification operator causes non-vanishing
error. In [10], authors rely on entry-wise sparsification of a message vector and the
structure of the underlying connectivity matrices to propose a convergent consensus
algorithm. This is accomplished by splitting the vector-valued consensus problem into d
scalar-valued sub-problems with connectivity matrices {Wip 1 }%,_1 and {Wouem }4,_1,
re-normalized according to the sparsification patterns. We assume node ¢ has access
to vector x; and, following [10], introduce an auxiliary “surplus" vector y; € R%; at
iteration ¢, y! records the change between consecutive state vectors, x! —x'~'. Both x!
and y! can be communicated to the out-neighbors of node i. To simplify the notations,
we introduce zt € R? defined as

(2:2) . {Xﬁa i€ {1 n)

’ yi_,., i€{n+1,..,2n}.

Let Q(z!) denote a vector obtained by sparsifying z!, and [Q(z!)],,, be the m-th entry of
Q(z!). The re-normalization of the in-neighbor and out-neighbor connectivity matrices
is performed according to
(2.3)
W,
[Afn]ij _ Ejgs;n(i,j)[wfn]ij , [Bfn]ij — ZieT,ﬁl(i,j)[Wﬁut]ij
0 otherwise, 0 otherwise,

respectively, where S, (1, 7) = {j1j € N, . [Q(=1)]m # 0} U {i} and T}, (5, §) = {ili €
Nt > [Q(2))lm # 0} U {j}. The connectivity and communication weights across the
network are summarized by mixing matrices; in particular, the m-th mixing matrix at

iteration t is defined as

— At 0
t m
24 = m)

Having defined z! and M/, respectively, we now introduce the update for z! in the
communication efficient and (e, d)-DP consensus algorithm (Algorithm 2.1):

2n
v B|t/B
@25) s = D QE)In + L mod =511 [Fligzin’
j=1
0 I . . ¢
where F' = 0 I and m represents the coordinate index. Vectors z; are updated

according to the sparsification and multiplication of the mixing matrices at all time
steps except those that are multiples of B, i.e.,

(2.6) t mod B=B-1.

where B is the window size parameter indicating that starting from any time ¢ = kB
for all integers k£ > 0, the union graph over B consecutive time steps forms a strongly
connected graph (See Assumption 2.4).

In the update (2.5), when the time step ¢ satisfies (2.6), vectors ziBWBJ

at time B|t/B], are also included in the update. The term Z?il[F]iijm
update facilitates to form the following update over B time steps:

, stored

BL/Bl iy the

2n

27) 2 = (M ((k+ D)B = 1: kB) +7F;;Q(2)%)m

im
=1

This manuscript is for review purposes only.

sl i € Sh(i4) Mo if i € T, (i, )



217
218
219
220
221

223

236
237
238
239
240
241
242
243
244

245

6 M. RIBERO, Y. CHEN, AND H. VIKALO

, where M,, ((k + 1)B — 1 : kB) represents the product of mixing matrices from time
kB to time (k + 1)B — 1. Since neither any single mixing matrix nor this product
can ensure a non-zero spectral gap, vF' is added to ensure a non-zero spectral gap.
In addition, F has its (1,1) and (2,1) block equal to zero matrix and the rest two
diagonal blocks and therefore the stored vectors are not communicated, leading to the
update (2.5) above.

Our proposed (¢, 0) differentially private procedure is summarized as Algorithm 2.1;
it builds upon [10] to incorporate the Gaussian mechanism and aplifies it with sparsifi-
cation. As we prove in Theorem 2.6, adding privacy guarantees has no detrimental
effect on the convergence of decentralized consensus with sparsified updates, while
Theorem 2.3 establishes that all messages guarantee (¢, d) differential privacy.

2.2.1. Privacy guarantees. In the consensus case, we assume the “honest-but-
curious" security model [40] where all nodes execute the algorithm honestly but may
attempt to learn additional information from the received messages. In the first
iteration, each node receives a perturbed version of individual data vectors from its
neighbors.

Our adopted privacy mechanism adds a zero-mean Gaussian noise to query outputs,
i.e., user vectors, where the noise standard deviation is proportional to the Lo-sensitivity
of the query.

In the first iteration of our consensus algorithm, the sensitivity of the query at node
i is Ag(z}) = VdC, where C' denotes a bound on the magnitude of the components of
the original message x?.

Note that in the consensus problem it is only necessary to add noise to the initial
vector, before the first iteration of the algorithm. This is the key insight to our
differentially private algorithm: posterior messages do not touch the data again.

This is because subsequent messages, being functions of the initial noisy message,
are already privatized by the post-processing property of differential privacy [16]. This
allows us to achieve a better accuracy-privacy trade-off than [39], [11].

Algorithm 2.1 Communication Efficient and (e, )-DP Consensus Algorithm

1: Input: Time horizon T, Initial state x°, Initialize y© = 0, noise variance o2,
network connectivity parameter B and ~y

2: Noise initial data x? < x{ + b; for b; ~ N(0,0%14%4),i=1,...,n

3: Initialize z°

4: fort=1,...,T do

5. Generate non-negative matrices W} , W¢ ,

6: form=1,...,d do

7: construct a row-stochastic A%, and a column-stochastic B!, according to (2.3)

8: construct M}, according to definition (2.4)

9: fori=1,...,2n do

10 = 52 NI ] (Q(E ) + L moa B—s 137 Fligz ol

11: end for

12:  end for

13: end for

14: Result: Local consensus values z;r for nodes i =1,...,n

Before starting the loop, we define z? = [xg + b, y?], where b; ~ N(00?) in the

This manuscript is for review purposes only.
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first iteration of the algorithm, node 7 receives

2n
(2.8) o = Y _IME1i51Q(20)]m + N(0,0%).
j=1

1
im?

To protect user j we only need to ensure sensitivity of z
received by ¢ from other nodes.

THEOREM 2.3. Set o = @\/ﬂog(l%), Algorithm 2.1 is (e,0)— differentially

private.

Proof. Note that the sensitivity of x? is Ay(x)) = v/dC, thus (2.8) states the
Gaussian mechanism for the first step and hence this iteration is (e, §)-DP. Since
further iterations depend only on the original DP queries (without further access to
raw data), the overall (e,d)-DP of the algorithm follows from the post-processing
property of differential privacy [16]. 0

the first aggregated message

2.2.2. Convergence guarantees. Having provided privacy guarantees for Al-
gorithm 2.1, we next study its convergence properties. In particular, we prove that the
addition of privacy mechanism does not adversely affect convergence rate. We begin
by making assumptions needed for the analysis.

Assumption 2.4. The graph induced by sparsification is B-jointly connected, i.e.,

starting from any time step ¢ = kB where k = 0,1, -, the union graph over B
consecutive time steps, Eliﬁg)gfl G(t) is a strongly connected directed graph.

This is a common assumption for algorithms on directed networks [37].

Assumption 2.5. Given v € (0,1), the set of all possible mixing matrices {M}, },
Ups, is finite.

We are now ready state the convergence result. We differ all proofs to section
section 5

THEOREM 2.6. Suppose Assumption 2.4 and 2.5 hold. Fix

1 _
0O,min< —— (1 — | N\3(M,,((k+1)B—1:kB)))"
3 € Omin { g (1 = Pl (6 4+ 1 I h
and let T = maxceuy, [A2(C)] < 1, x =137 %% and t > 0. Then running
Algorithm 2.1 for t iterations, suppose t = kB —1+t', wheret' =0,--- ,B—1 and it
holds that for any i € [n] and t > 1,

2n d
It — 2'|| < V2nd(r/B) DN N0,
(2 9) j=1m=1
. 2n d
4l < Vond(r'/B)= DN N 10,
j=1m=1

where z' = L3 xt+ L3yl Further, E[x!] converges to X at a linear rate
O(r/B).
t

Theorem 2.6 implies that the local state vector x! converges (at a linear rate)
to the averaging consensus vector z‘, while the surplus vectors y! vanishes to zero.

This manuscript is for review purposes only.
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8 M. RIBERO, Y. CHEN, AND H. VIKALO

Since the noise added in the first iteration is unbiased, it always holds that E|[z!] = z°.
Therefore, by setting y9 = 0 in the initialization of Algorithm 2.1, z° = % and we
are able to guarantee linear convergence to X in expectation. Note that the fastest
consensus algorithms for directed time-varying graphs, be they for full communication
as in the [13, 6] or with sparsification of messages as in [10], enjoy linear convergence.
Unlike our Algorithm 2.1, however, those schemes do not provide privacy guarantees.

2.3. Differentially-Private Communication-Efficient Optimization. Un-
like consensus, decentralized optimization typically requires algorithms to access local
raw data whenever gradients are computed; consequently, all iterations with gradient
computation need to be protected. To this end, as in DP-SGD we deploy a privacy
mechanism by perturbing the gradient

¢ JVilx), i€{l,...,n}
(2.10) & = {0, ie{n+1,..2n}

with a noise term sampled from a Gaussian N(0,0%D?) distribution where D is an
upper bound on the magnitude of the components of gf. Note that (2.10) implies the
state vectors are updated via decentralized gradient descent while the surplus vectors
are updated the same way as in Algorithm 2.1.

Our proposed differentially private decentralized optimization scheme is formalized
as Algorithm 2.2. Differential privacy of the iterates is enforced in line 8 of the
algorithm. Despite incorporating privacy mechanism by adding noise to gradients,
the algorithm converges when a decreasing learning rate is used. Formal privacy and
convergence guarantees are provided below. Further, we study the trade-off between
these two.

2.3.1. Privacy guarantees. While the consensus algorithm only access the
original data on the first iteration, gradient descent access it at every iteration to
compute the current gradient. We have to take again a local DP approach but now
ensure that each message is privatized, and use the composition theorem to ensure the
track the overall algorithm DP guarantees.

Traditionally, the full gradient is considered as one query and privatized with a
gaussian vector b; drawn from b; ~ N(0, UQId). Notice the expected norm of the noise
is E[||b¢||l2] = V/do?. Thanks to the sparsification, we only have to take into account
(1 — q)d dimensions, and get a privacy amplification factor of (1 — ¢) and the privacy
guarantee.

THEOREM 2.7. Assuming ¢ = O(Dv T(lfg)dlog(l/é), after T iterations, Algo-
rithm 2.2 satisfies (€,8) differential privacy.

Proof. Assuming |gf,,| < D, which is readily achieved by the Lipschitz assumption,
the sensitivity of zfntl is given by As(tgim) = axD. We use advanced composition
(See Corollary 1 in [31]) over dimensions (1 — ¢)d, and over T iterations, and obtain
the desired result. 0

2.3.2. Convergence guarantees. We now shift our attention from the privacy
to convergence guarantees. To facilitate the analysis, we first study a broader problem:
we focus on convergence under arbitrary gaussian noise variance o. Then, we study
the utility - privacy trade-off by imposing necessary assumptions for privacy on the
noise variance, that guarantee we meet privacy requirements.

We can now state the convergence result.

This manuscript is for review purposes only.



DIFFERENTIALLY PRIVATE CONSENSUS AND OPTIMIZATION 9

Algorithm 2.2 Communication-Efficient and (e, §)-DP Decentralized Optimization
Algorithm

Input: Time horizon T Initial state x°, Initialize y© = 0, sparsification level ¢,
noise variance o2, network connectivity parameter B and 7y
set z° = [x%;yY]
fort=1,...,T do
Generate non-negative matrices W}, ,
for m=1,...,d do
construct a row-stochastic Af, and a column-stochastic B, according to 2.3
construct M}, according to definition
fori=1,...,2n do

Wt

out

2n
zZih! :Z[Mﬁl]ij[Q( m + Lt mod B=B-1}7V[Flij2 ﬁy/BJ
j=1

— 1y mod B=B— 1}aLt/BJ(9mLL/ J+N(0 o)),

end for
end for
end for
Result: Local optimum values z! for nodes i = 1,...,n

THEOREM 2.8. Suppose Assumptions 2.4-2.5 on mizing matrices hold, and fix
~ € (0, miny, {m( s (M ((k+1)B —1: kB))\)"}). Assume |gt, | < D. If

323 the objective function f is convex, and the step size ay decays as O(1/\/T), Algorithm
324 2.2 converges at a rate of O(InT/\/T), Concretely,

N
—_

I"V‘.f
no

o) Cy M1 2 c Co In(T/B)
(2.11) (Elfminr] — f7) < + k< +
T S e, VIB-1 JT/B-

326 where fmin = ming_y ... 7f(z") and f* is the optimal value, and

w
o
ot

nv/dD? de 129
Z

327 (212 =
o (212) & 2 1— 72

328

329

(2.13) Cs _ ([d+of)nD? \deZI 01+ 2@D2+4\/d(d:—02)p2

2

330 THEOREM 2.9. Suppose Assumptions 2.4-2.5 on mizing matrices hold, fix v €
331 (0, min,y, {m( [As(M,((k+1)B—1: kB))|)"}) Assume |gt,,| < D and let

ELT/BJ (t—1)x . . . .
332 %1 = W forT > B and K = |T/B]. If the objective function f is convex

333 and the local objective function f; is p; strongly-convex, then there exists some constant

This manuscript is for review purposes only.
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10 M. RIBERO, Y. CHEN, AND H. VIKALO

Cs > 0,C4 > 0 such that for all i

(2.14)
Cs & C 2nD2d
AT % 3 0 4 p 2
U — £ € 2 3l + 1+l = 1)+ 4 )
- . . Cs & C p?*nD%d
B0 lI&F % 1) < 23 Il + Sr 1+ - 1) + 221 4 0?)
j=1 j=1

where the step size ay =% for p > Z;j -, X" is the optimal solution, C3 = 75‘/?@2‘1[’

54/2nd(1+02 n2dD?
and Cy = ( ) .

1—7

THEOREM 2.10. Suppose Assumptions 2.4-2.5 on mizxing matrices hold for a spe-
cific v. Assume |gt,,| < D = O(1). If the objective function f is convex, and the
step size oy decays as O(1/V/T), Algorithm 2.2 converges at a rate of O(InT/\/T).
Concretely,

(2.15) (Elfwminr] = [7) <O (5% + Ci/l%T>

where fmin T = ming_1 ... 7f(z") and f* is the optimal value, and

(2.16) Oy =O(mVd+vnd), Cy=0 ((d + 02)n + v/ndD + \/nd?(d + g2))

THEOREM 2.11. Suppose Assumptions 2.4-2.5 on mixing matrices hold, fix v €
(0, min,y, {m(l —As(Mp((k+1)B—1: k‘B))|)"}) Assume |gt,,| < D and let

LT/B) (1 —1)x! oo . ,
%0 = % for T > B and K = |T/B]. If the objective function f is convex

and the local objective function f; is p; strongly-convez, then there exists some constant
C3 > 0,C4 > 0 such that for all i

(2.17)
~ * C " C anDQd
E[f(%]) - f(x")] < ?3 Z %91l + f(l +1In(K — 1)) + T(l +0?)
j=1
Y Cs ¢ C 2nD2d
A * 3 4 p
E[;“J'HXJ‘ —x"|%] < fj:l =011 + — (LK 1)) + == +o?)

where the step size oy = & forp > %7 x* is the optimal solution, C5 = 75@’;‘1’3

54/2nd(14+02)n%dD?
and Cy = nd(1+o?)n .

1—71

Remark 2.12. Tt is of interest to explore the impact of ¢ (defined in) on the
convergence speed. As the mixing matrices are constructed over sparsified graphs, g
affects the number of non-zero entries in the matrix and further affects the second
largest magnitude of eigenvalues. Specifically, when the graph connectivity parameter
B is fixed, greater ¢ leads to greater 7 and further slows down the convergence process.

Theorem 2.8 and 2.9 provide convergence results for Algorithm 2.2 with different
assumptions: convexity of the global function (Theorem 2.8) and, in addition, strong-
convexity of local functions (Theorem 2.9). The resulting convergence rates match
those of the full communication gradient-push and D-DGD algorithms [35, 55|, the

This manuscript is for review purposes only.
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communication-efficient algorithm in [10], and the stochastic gradient-push [36], under
respective assumptions.

In the following section we study relevant instances where these assumptions hold,
including linear regression and logistic regression.

2.3.3. Utility - privacy tradeoff. In this section we provide explicit trade-offs
between privacy and utility of optimization algorithms. We state our results in 77

COROLLARY 2.13. Assume the setting of Theorem 2.8 holds,particularly, f is a

D-Lipschitz function, and assume D = ||zl|| = O(1). Let r be the minimum number

VT (1—q)dlog(1/s

of records each node has. Setting o = O <)) , after T = €2r? iterations

algorithm Algorithm 2.2 is(e, §)— differentially private and the empirical risk is bounded
by
Elfr - f1] <0 (42 4 ¥28)

COROLLARY 2.14. Assume the same setting of Theorem 2.9, and r be the minimum
number of records each user has. Let o = O (M(mg;(l/(s)), then Algorithm 2.2

as T — oo,

Blfr - 1] < 0 (£ 4-)

The proof of both corollaries follows by replacing o in Theorem 2.8 and 7?7 with
the appropriate value of o.

3. Numerical Results. In this section, we demonstrate performance of the
proposed privacy-preserving algorithms for decentralized consensus and optimization.
In both settings we show that, as expected, privacy and communication constraints slow
down convergence but the developed methods ultimately achieve performance similar
to that of non-private and full-communication algorithms. We start our numerical
studies with a network system having 10 nodes, and generate its edges randomly while
preserving the strong connectivity.

The construction begins with the Erdés—Rényi model [17] with edge probability
parameter equal to 0.9; then, 2 directed edges are dropped from each strongly con-
nected graph, leading to directed graphs. Building upon this basic structure, we can
construct networks with different connectivity. Recall that the window size parameter
B, introduced in Assumption 2.4, implies that the union graph over B consecutive time
steps, starting from any time that is a multiple of B, forms an almost-surely strongly
connected Erdgs—Rényi graph. When B = 1, the network is strongly connected at each
time step. We then apply sparsification such that the communication throughput is
brought down to various sparsity levels ¢ (larger ¢ means more entries are sparsified,
g = 0 means full communication). For privacy accounting in optimization we use the
TensorFlow Privacy library.'

3.1. Consensus. In the consensus problem, each node has access to a local
vector of dimension d = 64. Components of the initial local vector at node i, x?, are
generated uniformly at random from [—5,5]. To illustrate the effect of the privacy
mechanism, in Figure 1 we compare the performance of our Algorithm 1 for different
levels of noise o and sparsity ¢, and show the corresponding privacy guarantee €. In
Fig. la, we show the residual as a function of the number of iterations ¢. We observe
that sparsity and noise added to provide privacy only delay the convergence without

Lhttps://github.com /tensorflow /privacy

This manuscript is for review purposes only.



12 M. RIBERO, Y. CHEN, AND H. VIKALO

affecting its rate, matching the results of Theorem 2.6. As expected, higher values of
q result in slower convergence since less information is communicated; however, higher
q achieves higher privacy for fixed o because the probability of observing an entry
is lower. Fig. 1b shows that for a fixed sparsification level, the convergence becomes
faster as the number of nodes increases. Further results for varied values of parameters
and network topologies are in the supplementary material, Sec C.

We observe the noise effectively does not affect the final residual, neither the
rate of convergence: in Figure 1 it is clear that for all values of ¢ and o the speed of
convergence is the same, although the initial residual might differ depending on the
communication and privacy parameters. Eventually all methods converge.

3200
— ¢=0,0=0
10" 4 — g=0,0=17,6=10 3100
— ¢=0,0=170,e=1
107 4 9=0,0=1700,6=0.1 g 30007 — g=0,0=0
_ ) - g=02,0=0 ‘8 29001 — g=0,0=248,£=0.78
T 10771 N, —- g=02,0=17,6=10 S G=0.8,0=0
2 - - - % 2800 1 - - -
2 s —-= g=0.2,0=170,e=1 5] —— q=0.8,0=248,£=0.16
& 10754 - - - 5]
q=0.2,0=1700,6=0.1 é 27004
_ 5
1077 4 Z 2600 4
1074 2500 1 S e e —
10-1 1 T T S T : 24001 . - - : - -
0 200 400 600 800 1000 10 15 20 25 30 35 40
iteration t Number of nodes

(a) Residual vs. iterations for a 10-node network,(b) The number of iterations needed for residua
B=5and 6 =10"%. to drop below 10710 as a function of the numbe
of nodes.

Fig. 1: Convergence of Algorithm 1 for varied parameters ¢ and o, and the privacy
loss € achieved. In (a), we see sparsity and noise delay convergence in early iterations
but the convergence rate is unaffected. In (b) we show that for a fixed sparsification
level, the convergence becomes faster as the number of nodes increases.

2
10 . — q=0,0=0 q=0,0=0
1004 > — g=0,0=17,e=10 §q=0,0=17,e=10
— ¢=0,0=170,e=1 q=0,0=170,e=1
1072 q=0,0=1700,6=0.1 q=0,0=1700,6=0.1
R —- g=02,0=0 _ q=02,0=0
S —- g=02,0=17,6=10 S G=02,0=17,e=10
3 3
? 107° A —- 9=0.2,0=170,e=1 g q=0.2,0=170,e=1
o« . q=0.2,0=1700,£=0.1 = q=0.2,0=1700,£=0.1
1078 4
10-10 4 10-10 4
10-12 | 10-12 |
10714 L : : .. : 10714 L : : : . :
0 200 400 600 800 1000 0 200 400 600 800 1000
iteration t iteration t
(a) (b)

Fig. 2: Residual vs. iterations for a 10-node network, B =5 and § = 1074,
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DIFFERENTIALLY PRIVATE CONSENSUS AND OPTIMIZATION 13

3.2. Decentralized Optimization Problems. Next, we test performance of
Algorithm 2 on a multi-class tag classification task with a logistic regression model,
which leads to the optimization problem with features m;; and corresponding label
1i; of the form

n N

(3.1) min § £+ 37 D" In(1 + exp(—(mfxi)yi,))
i=1j=1

with regularization prameter pu.

The model is trained and tested on the Stackoverflow dataset, a language modelling
dataset with questions and answers collected from 342477 unique users. The objective
is to tag each sentence with appropriate categories. We present detailed preprocessing
of the dataset in the supplementary, Sec C. Following prior work [41], we use a build
vocabulary with 10000 frequent words and restrict each user’s dataset to have at most
128 sentences. We rely on padding and truncation to enforce 20 word sentences, and
represent them with index sequences corresponding to the vocabulary words, out of
vocabulary words, beginning and end of sentences.

The 150,000 data points are randomly split into 10 groups of equal size, where
each group is interpreted as being the local data for one of the nodes in the network.
FEach node uses 13,500 data points as training data and the remaining 1500 points as
the validation set. The testing data contains 37640 data points.

We consider a network with 10 nodes and evenly split 150,000 data points at
random into 10 groups, each one representing one node in the network. We leave
1500 points for validation for each node. For this problem we use a noise variance of
oD = 30, a the step size ay = % and the privacy parameter § = 1074,

In ?? we observe the effect of privacy and sparsity. Both constraints slightly delay
and affect convergence. However, Figure 3a shows that this has minimal impact on
the accuracy, and that after a few rounds all models reach a similar level of accuracy.
Finally, Figure 3b shows that we are able to maintain a fair privacy budget (e < 10)
for models, even at the end of the training; this is a reasonable budget for iterative
procedures in literature [1], showing that our algorithms are able to achieve very good
performance while guaranteeing privacy and meeting communication constraints.

4. Additional experiments.

4.1. Consensus. In Figure 1 of the main paper, we show convergence results for
the proposed consensus algorithm (algorithm 1). With the same parameter setups,
Figure 4 in this document illustrates the relationship between sparsity level and privacy
bound. As expected, smaller sparsity level ¢ and smaller ¢ lead to larger privacy loss.

4.2. Linear Regression. We test the linear regression problem where the goal
is to minimize the objective f(x) = 13"  |ly; — Dix||?, where D; € R*%5 and
y; € R2%0 denote the local measurement matrix and local measurement vector at node
i, respectively. To generate the data we synthesize the optimal solution x* from the
normal distribution. Then, y; is formed as y; = D;x* + &;, where £; denotes the noise
added to the local measurement at node ¢. For all ¢, D; is drawn at random from
the standard normal distribution and then normalized so that its rows sum to 1; &;
is generated from a Gaussian distribution with zero mean and variance 0.01. Local
vectors xV are randomly initialized; the stepsize decreases with the iterations and is
set to ay, = % in the k-th iteration.

In the implementation of the proposed algorithm, the gradient bound is set to

D = 10 and the privacy parameter § is set to § = 107°. We compute the residual for

This manuscript is for review purposes only.
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0.9 4 0.170 { 5
»»»» T <A A AP S /’,
= .
0.8 4 — g=0,0=0 e
—-- g=0,0=300 0.165 —— g=0,0=300
q=0.6,0=0 5 . — q=0.6,0=300
0.7 4 o -
= —-- q=0.6,0=300 5 - q=0.8,0=300
3 - - 8 0.160 -
] — q=08,0=0 2 7 --- ¢=0,0=150
3 -
3 061 q=0.8,0=300 ) ne --- ¢=0.6,0=150
& g =
£ L q=0.8,0=150
054 0.155 4
0.47 0.150
r r r T T r r T T T r r T T T
0 20 40 60 80 100 120 140 0 2 4 6 8 10 12 14 16
Iteration k Iteration k
(a) Accuracy (b) Privacy bound

Fig. 3: Results on logistic regression on Stackoverflow. In (a) we observe sparsity and
privacy delay convergence but they do not affect performance. In (b) we show the
privacy loss over several iterations; we are able to maintain a reasonable budget for all
combinations of parameters.

1.6 1

1.4 1

1.2 4

1.0

0.8 1

Privacy bound

0.6

0.4 1

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity level

Fig. 4: Privacy bound for varied sparsity levels.

each iteration and show the results in Figure 5a. We observe that both sparsity and
privacy slow down the convergence.

Privacy bound for schemes with varied values of parameters are shown in Figure
5b, illustrating how privacy degrades over iterations.

4.3. Logistic Regression.

4.3.1. Datasets.

Stackoverflow. Following prior work [41], we use a build vocabulary with 10000
frequent words and restrict each user’s dataset to have at most 128 sentences. We
rely on padding and truncation to enforce 20 word sentences, and represent them

with index sequences corresponding to the vocabulary words, out of vocabulary words,
beginning and end of sentences.
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— q=0,0=0
—- g=0,0=15
q=06,0=0
10-2 4 —-=- q=0.6,0=15
— g=08,0=0
103 ] g=08,0=15

102 4

Residual

10t 4

Privacy bound

1074 4 S e Y, ——

0 2500 5000 7500 10000 12500 15000 17500 20000 0 200 400 600 800 1000
Iteration k Iteration k

(a) Residual (b) Residual and corresponding privacy bound
for varied parameters; 6 = 1075.

Fig. 5: Results of algorithm 2 on linear regression for synthetic data. B =5. In (a)
we show the sparsification and privacy will delay the convergence. In (b) we show how
the privacy bound increases as we increase sparsity level and noise standard deviation.

The 150,000 data points are randomly split into 10 groups of equal size, where
each group is interpreted as being the local data for one of the nodes in the network.
Each node uses 13,500 data points as training data and the remaining 1500 points as
the validation set. The testing data contains 37640 data points.

'''' —— n=10,g=02,00=0
—— n=20,g=02,00=0
n=30,g=02,00=0
—-- n=10,g=0.2,0D =30
—-= n=20,g=02,0D=30
n=30,g=0.2,0D=30

0.80 0.80

i —.- n=20,g=0,0D0=30
i n=30,q=0,00=30

Accuracy
o
o
&
Accuracy
o
o
&

0.70 1 0.70 1

0 5 10 15 20 25 30 [ 5 10 15 20 25 30
Iteration k Iteration k

Fig. 6: Accuracy for varied network size.

4.3.2. Varying the network size. In this experiment we explore how the size of
the network affects the performance of the proposed algorithm 2. Here the total number
of data points is fixed and the number of local data points is inversely proportional
to the number of nodes in the network. In Figure 6, we see that the increasing the
network size and adding more noise delays the convergence without having much effect
on the final accuracy.

4.3.3. Different topology. So far, the network topology is randomly generated
at each iteration according to Erdés—Rényi model with some removing edges to make
the graph directed. Next, we consider a different type of the generative model. In
particular, we consider a topology periodically varying between the two networks
shown in Figure 7. This is a much sparser network than the previous ones, rendering
the algorithms slower as reflected by the results in Figure 5.
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AVANN

N

Fig. 7: Topology for periodically changing network
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Fig. 8: Results of running the proposed algorithm 2 in the decentralized logistic
regression model on a periodic network in Figure 4.

In particular, Figure 5 shows the loss and accuracy for the logistic regression
model of algorithm 2; all the remaining parameters of the experiment are the same as
in the main paper: the standard deviation oD = 30, the step size ay = O'tﬂ and the
privacy parameter § = 1074,

Both privacy and sparsity constraints delay the convergence but do not affect the

final loss and accuracy.
5. Formal convergence theorems and proofs.

THEOREM 2.4. (Theorem 2.4 in main body). Suppose Assumption 2.4 and 2.5
hold. Fix

. 1 - n
7€ Omin{ g (0~ MaCin((h+ 0B = 1: KED)" ),
and let T = maxceu,, [A2(C)] <1, % =137 %0 and t > 0. Then running

Algorithm 2.1 for t iterations, suppose t = kB — 1+t , wheret' =0,--- B —1 and it
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holds that for any i € [n] and t > 1,

Ix} — 2'|| < v2nd(r!/B) == ZZ Ll
(5.1)

2n d
lytll < vV2nd(r/B)= @D S 3 0

j=1m=1

where z' = L3 xt+ L3yl Further, E[x!] converges to X at a linear rate
O(r'/8).

Proof. To start with, we observe that the update in Algorithm 1 can be simplified
as
2n
v B|t/B
= Z[Mt 1 [Q(Z))m + it mod B=B—1}V[Flij WLf/ !
j=1
(5.2) on
B|t/B
Z l] Jm+]1{t mod B=B— 1}7[ }z] j77|_lt/ !
This holds because the mixing matrix is constructed such that its entries which multiply
zero-valued (i.e., “sparsified”) entries of Q(z!) are set to be zero themselves. Next, we
review the following lemma which help complete the proof after the incorporation of

the noise expectation.

LEMMA 5.1. [Theorem 2.4 in [10]] Suppose Assumptions 2.4 and 2.5 hold, and
instate the notations and hypotheses above. Then, there exist o € (0,1) and T = v2n

such that the following statements hold.
(a) For 1<i<nandt=kB—1+4+1t, wheret' =0,--- ,B—1,

2n d
(5.3) |z} — 2| < T (/)= ZZ Zjml,
j=1m=1

where Z = 121 xy+ 2 Zl vy
(b) For1+n<i<2n andt—kB—1+t’, where t’ =0,--- ,B—1,

2n d
(5.4) B N Ca i N W £

j=1m=1

Now we can continue the proof of our theorem. In particular, using Lemma 5.1
above, we have the first part (inequality) in the theorem proved, and establish z! = z°
for all t > 0. Since the noise added in the initialization part is unbiased, we have that
E[z°] = 2z° where z° represents the initialization without noise. Then we can conclude
lim; 00 F[x!] = 2° = % and the convergence rate is O(7/5). 0

THEOREM 2.6. (Theorem 2.6 in main body) Suppose Assumptions 2.4-2.5 on mix-
ing matrices hold, fir v € (0, min,, {m( [As(Mp,((k+1)B—1: kB))Dn})

Assume |gt,,| < D. If the objective function f is convex, and the step size oy decays
as O(1/V/T), Algorithm 2.2 converges at a rate of O(InT//T), Concretely,

This manuscript is for review purposes only.



18 M. RIBERO, Y. CHEN, AND H. VIKALO

c C, ZLT/BJ Cy Coln(T/B)
525 (5.5) (Elfminr] — f*) < £ < *
(5:5)  (E[fumin,r] = f7) 77T, /B, = JT/B—1 JT/B-

526 where fminr = ming_y ... 7f(z') and f* is the optimal value, and

nvdD? de Hz°||
Z

527 (5.6) C, = 5

(57) Gy = A InD” deZn R R i VL CE )

2

530 Proof. Similar to the steps in the consensus case, we start by the following
531 observation to simplify the update in Algorithm 2:

2n
2= ST IMEG[QE ) m + 1 mod sos—13Y[Flijzon D
j=1

=14 mod B=B- 1}0‘Lt/BJ(ng/ L4+ N(0,0%))

532 o
B

Z z] Jm+]l{t mod B=B— 1}’7[ ]z_] jn|_1t/ !

—1{ mod B=B— 1}O¢Lt/BJ(9m£/ L4 N(0,0%))
533 Let [Vfi(z)]m = g, + N(0,62D?)1(i<,) be the m'® entry of V f;(z!) and we
534  then compute

(5.8) §
_ * * ak _ * =
535 [28TVE — x| = |12t [ ||*vaz PP - 2— D (2" —x, Vi(2f®)).
=1
536
= * = * o - 7
537 E[|z% Y8 — x*||?| Fug] = ||2°8 — x*||? +E[||?k > V(2P| Frsl
i=1
Q. -

538 —2— 7B _ x* \Y% i kB
2 S V)
539 < 2" — x*||? + BJ| %% Zsz 12| F )
540 - 2% 3 (—2VdD|Z*E — 2| + £i(2F) — fi(x"))
541 i=1

542 where the last inequality is derived from

543 (@0 = x*, Vfi(2lP)) > (8F — 25,V fi(27)) + fu(z®) — fix")

544 > —VdD|2" — 2P| + fi(2®) - fi(2*F) + f(2"F) - fi(x")
—2VdD|2*F — 2P| + f,(2"F) — fi(x")
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547 Now, the unconditional expectation satisfies
_ N _ N ak\/aD - _
sis E[z*T08 - x*|?) < B[|2F - x*|?] + B[ 2 Zsz )P CEE S Bl - 2
549 -2t Z E[f:(2"%)] ~ fi(2").
550

551  Summing over k from 0 to oo and rearranging yields

LT/B] LT/B]
2 > a(B[f(ZP) - f) < |2° = x| + n(d+0*)D* ) o
k=0 k=0
552 (5.9) o LT/B]
4 4/dD ]
=1 k=0

553 Similar to the derivations for Lemma 3 in [10], we next obtain an upper bound for
554 the last term in (5.9).
555 Since the update in Algorithm 2.2 implies

k—1 2n
(r—=1)B
A = S M (kB — 1: 002, — 3 S Mol (k ~ DB~ 1~ DBy, (2~
556 Jj=1 r=1j=1
= o[ Vi(z V%)
557 fori € {l,---,2n} and m € {1,--- ,d} and using the fact that the mixing matrix and

.
)
558 its product have column sum equal to 1,

1 2n
skB __ § : kB
Jj=1
(k 1B 2n

2n 2n
1 (r— 1 (—
S Y S UTRE T > a9
j=1 j=1

r=1 j=1

560 Then using the gradient norm bound and noise variance, we derive the following upper
561 bound for the last term in (5.9)

n |T/B] 2n [T/B]
Z Z apE[||z"° — 25 ||] <m2||z0\| Z Tk
i=1 k=0 j=1
\T/B] k—1
562 (5.10) +/2nd(d+0®)nD Y Y Tagar
k=1 r=1
|T/B]-1

+2yd+0*D Y o
k=0

563 Applying ab < 1(a + b)?, we have following bounds:

LT/B] LT/ 5]

564 (5.11) Z Tt < - Z ak+
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(5.12)

\T/B] k-1 ( LT/B) ket A |T/B]-1 |T/B]
566 Z o, < = Z a; ZTk "+ Z o? Z <

k=1 r=1 r= k=r+1
567 Then
568 B[, Jmin f(z Zfl =

569 Defining fmin := ming f(z'), we have

LT/B] [T/B] [T/B]
570 (5.13) (E[fmin] — Z o < Z ar(f — N <CL+Cy Z o,
k=0
571 where
dD? 2dD z)
572 (5.14) Ch = n\g V2 Z | ”

(5.15) ¢, = {EInD? \deZH o)+ 2@D2+4@D2

574
2
575 Note that we can express (5.13) equivalently as
. Cy CaY ity of
576 (5.16) (Elfwin] = ") < m— + [T/B] _
k=0 %k k=0 Ok

577 If we select the schedule of stepsizes according to ay = O(1/+/t), the first term on the
578 right hand side of (5.16) satisfies

1/2
579 (5.17) Tcl =0 /
Do 1 VT -1

580 while for the second term it holds that

N a? InT
sa1 (5.18) 2 ZTH Ay N
D i Qi 2(\/T -1

582  Recall that o = O(ML then

a0
InT d InT T(In(1/6))? InT
583 02117 :o(ini+(d+ (H(Q/ ) ) n )
2(vT — 1) 1—7 (/T -1) € (VT —1)
584 THEOREM 2.8. (Theorem 2.8 in main body) Suppose Assumptz'ons 2.4-2.5 on mix-

585 ing matrices hold, fix v € (0, min,, {m( [As(My,((k+1)B—1: k:B))Dn})

S —1)x!

556 Assume |gl, | < D and let %;" = =

forT > B and K = |T/B]. If the
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objective function f is convex and the local objective function f; is u; strongly-convex,
then there exists some constant Cs > 0,C4 > 0 such that for all i
(5.19)
Cs C *nDd
AT * 3 0 4 p 2
B =060 < 32 3 gl + 0l =)+ E 1 +)

. C Cy *nD?d
Zugux x| SZHXOM?(HIMK )+ 240 4 02)

where the step size oy = L for p > Z" - x* is the optimal solution, C3 = @

5¢/2nd(1+02 n2dD2
and Cy = ( )

1—71

Proof. Let v € R% be any arbitrary vector and f; be the noise vector at V f; (xg)
(denoted as V f} shortly). Since g = Vf;(x}) = Vf} when i € {1,---,n}, for all
t>0,

2n
zZih! :Z[Mﬁn]ij[Q( m + Lt mod B=B-1}7V[Flij2 fntzt/BJ
j=1
— 1§t mod B=B—1}|t/B] (goL/e] +€fntq,t/BJ]l(i§n))
Blt/B

Z z] ]m+]]-{t mod B=B— 1}’7[ }ZJ 371_:/ :

— 14t mod B=5- 1}aLf/BJ(gm5t/BJ +§BWBJ1 (i<n))
and, moreover,

1 2n 1 2n
_ /B Blt/B]
quirl:;zz;m— aLt/BJZ]l{t modBBl}(zL/J_FgL/ Lii<n))
(5.20) =t =
_ QB Blt/B Blt/B
T JZ U1/5) | BlBly
Then,
(5.21)
o 2n 0[2 2n
208 —v]? = (|24 v]? = =Y (g + 6 ) (@ V) R Y el
Jj=1 j=1

(5.22)

+ &P LGl

2 n
— Oék _ [0}
1 P — S (VA B )+ S S v gt
j=1

Jj=1

This manuscript is for review purposes only.



610
611
612

613

614

615

616
617

618

619

620

22

M. RIBERO, Y. CHEN, AND H. VIKALO

Now, we rewrite each cross-term (V ff)'(z" — v) as

(5.23)

D (VB (2P —v) = n(f(xFF)—f

(V) (@ —v) = (Vf}) (2" —x5) + (VF) (xj = V)

v

o
+ B — v

> —2VdD||z — x| + (f;(z) — f;(v)) + 2

(%) =3 o1 fi(),

Hence, we have shown that

E[|[z*VF — v|*|Fip] < |2 — v |? — 200 (f(2*F) — f(v)) —

—VaD|z' — xt|| + f(xt) — fi(v) + 2
—VdD||7" — x| + (f;(x}) — f;(2') +

2t — v

(f5(@") = f;(v))

2jxt - |

Zugllxw v|[*- QZ\[DIIZ’“B x5l

j=1

n
Ok NIxFB — vI|2
o mlxE v
Jj=1

4 2
~k prnxw 75| + %Z(\/&Dm\/ﬁpf
j=1

< |2 = v* = 200 (f (2"") — f(v)) ~

n
. IxkB — |2
> gl vl
Jj=1

4
~k prnxw el + Zd(l +0?)D2
j=1

Then we can replace v by the optimal solution x* and this gives

(5.25)
B2 || Fis] < |25 — x| — 200(7(2) -
2 n
A% S D) 2 + s
Jj=1 Jj=1
Since f(x) =

n
ag kB 2
—?ZMHXJ‘ —x"|

1—1—0

Z i1 fj(x) is convex, each local objective function f; is y1;-strongly-

convex and the upper bound on the gradient magnitude is |g},,| < D, the following
two inequalities hold:

(a)

(b)

(5.26) £~ Fx) 2 5 (S w7t —x
=1
_t * L. t
(5.27) F@) ~ F07) 2 =2t = 2 + (<)

where L = nVdD, forany i =1,--- ,n

— f(x")
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The above imply that foralli =1,....n

n

Z )iz" - **IIX —2'|| + f(xi) — f(x).

(5.28)  2(f(z") —

M\H
3\H

Now, for each i =1,...,n,

= * = * Qg 1 S = * *
E[fz"FV8 — x*|?| Frs] < (12" — x7|* — ;<5<Zuj>||z’“3 = x| = Llx® = 2" 4+ n(f(xF) - f(x*)))

n

4
=Syl -+ a’“Z\fDHx’“B *’“BH+O"“ZWD+UWD)

j=1
Let ay, = 325 since pz%bl B> 4,
B8 = P Fis] < (1= [ =P = G () = 1)
+n(,f—i1)||x§’3—zw||— Y Zugl\xm x|
+——— k;+1 ZfDHx’“B Z"B| + kHQZ (VdD + oVdD)>. 1

Multiply both sides of the above inequality by k(k + 1) and taking the expectation
yields for all T > B, let K = |T/B],

(5.29)
D K— n
K(K - 1)E[|z"" —x"|) < -~ Z )= Fx) Y B — x|
k=1 j=1
pL K-—1 p n
4+ = LE kB_*kB I VE kB_ * 112
n [||XZ z ||] n(k+1)(;ua) [HXJ X H ]
4pK71 n p2 n K—-1 k
= t DE][||xB — z*5 = dD dD)? — .
”kzl ;\f % ||+n;f +af>kz_jlk+ll

To derive the upper bound on E[Z L [xEB — 248, we refer to Lemma 3 in [10]

and Corollary 1 and 2 in [36]. In partlcular we have the following

K n
(5.30) B> IxP =2 < > I + Ch(1+ In K).
k=1 j=1
where
V2nd 2nd?(1 2)nD
(5.31) ol = 1_"7, o =Y 1(_4;0 n
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Therefore,
(5.32)
K-1 n 57,
tE[n(f(xF7) = F(x) + Y pyllxh® —x7|°] < 7 ng %311
k=1 j=1
+ Cfl(l + ln(K —-1)))
P’ - 2\ 2
+% Z d(1+o%)D
Jj=1
Hence,
(5.33)
1 " 5L
kB kB
KK 1) 2 kE[(f(xi7) — +;MJ||X —x*|)?] ? CsZ||X]||1
+ 04(1 + ln(K —1)))+
2 Zn:du +0?)D?
K
j=1
By convexity, for each ¢ € [n] it holds that
(5.34) a0
9 K-1
e D ) —f(x* +Z i lx5E x| = (&K +Z [ =2
K(K-1) = =
where xz = % for K > 2.
/ 2 2
Setting C5 = 5LCY = 5‘/?”%”“3 and Cy = 5LC) = > 2nd(11t‘f)n 4D completes

the proof.

6. Conclusion. In this paper we propose differentially private and communica-
tion efficient algorithms for decentralized consensus and optimization over directed
time-varying graphs. Our results introduce these techniques to a large class of real world
applications operating under resource constraints. We provide theoretical guarantees
and numerical validation of the proposed methods in several settings.

Future work includes extending these results to non-convex settings with more
sophisticated tasks such as language modelling and speech processing. Moreover, it is
of interest to study stochastic gradient methods as they will reduce local computations.
Finally, an orthogonal direction worth exploring involves security models that account
for adversarial attacks.
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