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Abstract. The rise of machine learning has been accompanied by growing privacy concerns4
and demands to protect users’ sensitive data. At the same time, the amount of data that needs to5
be processed has been rapidly growing, bringing forth concerns related to limited communication6
resources available in practical settings. To this end, in this paper we study decentralized versions of7
consensus and convex optimization problems over directed graphs with communication and privacy8
constraints. Leveraging a local differential privacy model, we provide provable privacy guarantees for9
decentralized algorithmic frameworks that rely on sparsification to reduce the communication cost;10
while motivated by meeting communication constraints, sparsification is interpreted and exploited as11
a privacy amplification mechanism. To our knowledge, these are the first consensus and decentralized12
optimization frameworks that provide differential privacy for decentralized learning on directed graphs13
under communication constraints. The proposed scheme is tested on the consensus model with14
synthetic datasets, and a tag prediction model with logistic regression over a realistic Stackoverflow15
dataset. The experiments validate theoretical results and demonstrate efficacy of the proposed16
differentially private schemes.17
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1. Introduction. Decentralized consensus and convex optimization have been21
studied in a number of fields including machine learning, signal processing, and22
control [42, 47, 46]. They have emerged as attractive alternatives to centralized23
solutions limited by latency challenges [12, 26], high cost of communicating data to24
the central server [27], and, in many settings, privacy concerns that prohibit central25
data aggregation [24, 45, 48]. In consensus, a set of n nodes, each one with a data26
vector xi ∈ Rd, for i ∈ [n] := {1, ..., n}, aims to find the mean vector x̄ = 1

n

∑n
i=1 xi.27

In decentralized optimization, the nodes collaborate to minimize the finite sum of local28
objective functions fi : Rd → R over a convex compact constraint set X , i.e., solve29

(1.1) min
x∈X

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
.30

Recent multiagent applications over IoT networks, mobile devices and federated31
learning systems have reignited attention to problems wherein a number of nodes32
locally collects data and a peer-to-peer interaction allows them to estimate a parameter33
or optimize a function [8, 21]. However, to deliver potential benefits of decentralized34
solutions, two issues need to be addressed. First, even if data remains local, shared35
updates may be high dimensional, e.g., in federated learning where the updates are36
deep learning models and the number of parameters to be exchanges may be in the37
millions [18]; in such settings, limited energy and bandwidth typical of practical38
systems create a communication bottleneck. Second, in recent applications such as39
recommender systems, federated learning, and online learning, users’ privacy may be40
compromised if sharing information potentially sufficient for identification [33, 1, 30].41
Previous solutions to these problems have focused on fixed topologies as in federated42
learning where a server communicates with all agent nodes in the network – the setting43
equivalent to a fully connected star network topology [30]. More general decentralized44
optimization topologies that have previously been studied include undirected graphs45
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[46, 38, 52, 34, 14, 24, 28]. However, real-world networks are known to be time-46
varying and support directed communication between the nodes; while there exist47
communication-efficient protocols for decentralized consensus and optimization in such48
setting [10], no prior work providing privacy guarantees therein exist.49

In this work, we consider differential privacy [15, 16] – a statistical framework that50
enables trade-off between data utility and privacy loss. The privacy loss of a query51
to a database is defined as the probability of identifying an individual record in the52
database from the output of the query. This requires trusting a central aggregator53
to compute the query output and mechanism, which is not available in the fully54
distributed and decentralized setting. We consider the local differential privacy model,55
introduced first by [23], where each node has to protect its outputs by perturbing56
any shared data or message. We propose (to our knowledge, the first) convergent57
algorithms for decentralized consensus and optimization over directed graphs that58
satisfy both communication and differential privacy constraints.59

In particular, our contributions can be summarized as follows:60
• We propose algorithms for decentralized consensus and convex optimization61

over time-varying directed graphs with communication, and local and record-62
level differential privacy constraints.63

• We provide convergence analysis for both algorithms; for the consensus al-64
gorithm, we establish linear convergence; for the optimization algorithm, we65
show O(lnT/

√
T ) convergence rate if the global objective function is convex66

and O(lnT/T ) convergence rate if, in addition, local objective functions are67
strongly convex.68

• We provide a tight privacy analysis and show record-level differential pri-69

vacy guarantees, with a utility-privacy trade-off of O
(
dn
εr +

√
nd3

εr

)
for convex70

functions, and O
(
p2nd2

ε2r2

)
for strongly convex local objectives.71

• We perform extensive numerical studies under various communication and72
privacy settings, and investigate accuracy/communication/privacy trade-offs.73

Notation. We represent vectors by lowercase bold letters and matrices by upper-74
case letters. [A]ij represents the (i, j) element of matrix A. ‖·‖ represents the standard75
Euclidean norm. For convenience, the symbols used in the paper are summarized in a76
table in the supplementary document, Sec A.77

1.1. Related work and significance. Prior work on consensus algorithms78
considered both directed and undirected graphs [5, 44], as well as time-varying graphs79
[20, 53, 43, 7]. By leveraging compressed communication, [24] developed the first80
linearly convergent communication-efficient consensus algorithm over undirected time-81
invariant graphs. [10] established the same type of results for directed time-varying82
graphs. Prior work on decentralized optimization includes a gradient descent scheme83
[38], the alternating direction method of multipliers (ADMM) [52], and decentralized84
dual averaging methods [14, 34]. More recently, [28] studied how decentralization85
and asynchronous SGD affect convergence. [24, 45] introduced a decentralized convex86
scheme with limited communication and convergence guarantees; note that all of the87
above prior work is limited to the undirected settings.88

The subgradient-push [35] and Directed Distributed Gradient Descent (D-DGD)89
[55] address optimization over directed graphs; they achieve O( lnT√

T
) convergence rate.90

In the same setting, [37] improve the convergence rate to linear for smooth and strongly91
convex functions. However, these approaches do not consider limited communication92
settings. [10] studies directed networks under communication constraints and proves93
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O( lnT√
T

) convergence rate. In the non-convex setting, [3] proposes Overlap Stochastic94

Gradient Push which combines the push-sum algorithm with stochastic gradient95
updates and proves the same sub-linear rate as in SGD.96

An approach to reducing communication by taking advantage of local SGD97
rounds is studied in [49]; this work is extended in [25] to the non-i.i.d. case. [50]98
proposes MATCHA, an algorithm that improves over previous approaches and reduces99
communication and computation costs by randomly sampling clients. They also show100
that local updates in distributed optimization can accelerate convergence rate of the101
algorithm.102

Decentralized optimization under privacy constraints has been studied in [11],103
which provides an overview of privatization mechanisms for data exchanged in net-104
works. This works shows an imposibility of convergence, under a different privacy105
model and where all messages in all iterations are noised. In contrast, we rely in the106
post-processing property of differential privacy to design our algorithm and achieve a107
better accuracy-privacy tradeoff. Authors in [19, 51] study consensus under different108
definitions of privacy. The focus of our work is on providing differential privacy guar-109
antees for decentralized consensus and optimization over communication-constrained110
time-varying networks; related prior work includes [4] which incorporates differential111
privacy guarantees but considers a setting wherein each user has a set of personalized112
parameters. In contrast, the parameters in our problem are shared across nodes and113
the aim is to achieve consensus or minimize the finite sum of local objective functions.114

None of the above considers both privacy and communication constraints, often115
present simultaneously in practice. cpSGD, introduced in [2], takes communication116
and privacy into account by using efficient quantization via random rotations, and117
introducing a binomial privacy mechanism that reduces the communication overhead.118
That work is inspired by federated learning and the obtained guarantees are valid only119
for the fully connected, undirected network topologies. Concurrent to our work, [9]120
studied the trade-off between communication and privacy, but they only consider the121
centralized model.122

Finally, it is worth pointing out that satisfying differential privacy constraints123
is typically more challenging in iterative settings, including those commonly used in124
optimization algorithms; the iterative nature of such algorithms requires splitting125
the privacy budget across iterations. [1, 54, 29] proposed privacy techniques that126
account for noisy SGD which adds Gaussian noise to the gradient before updating127
the parameters. This is further refined in [32] by leveraging Renyi differential privacy128
[31], a relaxation of the traditional (ε, δ)-differential privacy. In our work we analyse129
composition across iterations and dimensions using strong composition [22], that allows130
for a more interpretable bound. In our experiments we use Renyi-DP to provide a131
tighter, more realistic accounting of privacy.132

Organization. We start by introducing some preliminary definitions in subsec-133
tion 2.1, followed by the consensus algorithm and analysis in subsection 2.2. We134
continue with optimization algorithms and analysis in subsection 2.3, and experimental135
results in section 3. We include detailed proofs in section 5 and finish with a discussion136
in section 6.137

2. Private and Communication Efficient Decentralized Algorithms.138

2.1. Preliminaries.139
Communication-constrained networks. We model the connectivity in a network140

with n nodes by a time-varying directed graph. At time t, the in-neighbor connectivity141
matrix (row-stochastic), W t

in, and the out-neighbor connectivity matrix (column-142
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stochastic), W t
out, are defined as143

(2.1) [W t
in]ij =

{
> 0, j ∈ N t

in,i

0, otherwise
, [W t

out]ij =

{
> 0, i ∈ N t

out,j

0, otherwise
144

where N t
in,i is the set of nodes that can send messages to node i (including i) and145

N t
out,j is the set of nodes that can receive messages from node j (including j) at time146

t. Node i knows both N t
in,i and N t

out,i, which is sufficient for the construction of W t
in147

and W t
out.148

To comply with the communication constraints, the nodes in a network may need149
to limit their communication to only a fraction of a full message, which we facilitate by150
applying sparsification methods. To this end, let us introduce a sparsification operator151
Q : Rd → Rd; applying Q to a d-dimensional real vector returns a sparsified version of152
that vector. If node i can communicate k out of d entries of a message, the probability153
of any given entry actually being communicated is k

d .154
Differential privacy. Differential privacy was first introduced in [15] as a mechanism155

to prevent output queries to databases from disclosing the inclusion of a particular156
record on the dataset. Formally, it is a bound on the probability of losing a record’s157
privacy by including it in the computation of a query.158

Definition 2.1 ((approximate) Differential Privacy). We say that a randomized
algorithmM satisfies (ε, δ)-differential privacy ((ε, δ)-DP) if for any pair of datasets
D and D′ differing by only one record and any subset of outcomes S ∈ range(M) it
holds that

Pr(M(D) ∈ S) ≤ eε · Pr(M(D′) ∈ S) + δ.

Theorem 2.2 (Theorem A.1 in [16]). The `2-sensitivity of a query f evaluated159
on a dataset D with range in d is defined as ∆2(f) := maxD,D′ ‖f(D) − f(D′)‖2,160
where D and D′ are datasets differing in only one record. The Gaussian mechanism161
with parameter σ, Gf,σ, adds zero-mean Gaussian noise with variance σ2 to all d162
coordinates in query f ; formally, Gf,σ(D) = f(D) +N(0, σ2Id), allowing an abuse of163

notation. Gf,σ(D) is (ε, δ)-DP if σ ≥ ∆2(f)
ε

√
2 log(1.25

δ ).164

The Sampled Gaussian Mechanism with sampling rate p and noise variance σ2, SGMp,σ,165
first generates a subset of D by selecting points independently at random with proba-166
bility p, computes the query on this random subset, and adds to it samples from a167
zero-mean Gaussian distribution with variance σ2. Further details and illustrations of168
this mechanism are in the supplementary material, Sec B. Differential privacy assumes169
there is a trusted central aggregator that possesses all users’ data and computes private170
output queries, allowing the aggregation to add less noise. In the decentralized setting171
each user has it’s data locally, thus all users’ outcomes have to be noised, making the172
problem harder. In our case, all nodes share record-level differentially private messages.173
This means that we protect users against an attack wishing to learn if a specific record174
is in their data. To illustrate the different models, consider the setting where each175
node i has r records and Xi is a query to node i, and ∆2(Xi) = 1

r . Assume we want176
to disclose the mean of X1, X2, ..., Xn. In the central model, the sensitivity of query177
x̄ is 1

nr so we only add gaussian noise with variance O
(
L
εnr

)
. In the local model, we178

would have to add for each node i, thus noise standard deviation is augmented by a179
factor of n, n = O

(
L
εr

)
.180

2.2. Differentially-Private Communication-Efficient Consensus. In gen-181
eral, applying sparsification methods to existing consensus schemes, e.g. [6, 7, 35],182
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DIFFERENTIALLY PRIVATE CONSENSUS AND OPTIMIZATION 5

does not guarantee convergence since the sparsification operator causes non-vanishing183
error. In [10], authors rely on entry-wise sparsification of a message vector and the184
structure of the underlying connectivity matrices to propose a convergent consensus185
algorithm. This is accomplished by splitting the vector-valued consensus problem into d186
scalar-valued sub-problems with connectivity matrices {Win,m}dm=1 and {Wout,m}dm=1,187
re-normalized according to the sparsification patterns. We assume node i has access188
to vector xi and, following [10], introduce an auxiliary “surplus" vector yi ∈ Rd; at189
iteration t, yti records the change between consecutive state vectors, xti−xt−1

i . Both xti190
and yti can be communicated to the out-neighbors of node i. To simplify the notations,191
we introduce zti ∈ Rd defined as192

(2.2) zti =

{
xti, i ∈ {1, ..., n}
yti−n, i ∈ {n+ 1, ..., 2n} .

193

Let Q(zti) denote a vector obtained by sparsifying zti, and [Q(zti)]m be the m-th entry of194
Q(zti). The re-normalization of the in-neighbor and out-neighbor connectivity matrices195
is performed according to196
(2.3)

[Atm]ij =


[W t

in]ij∑
j∈St

m(i,j)[W
t
in]ij

if j ∈ Stm(i, j)

0 otherwise,
, [Btm]ij =


[W t

out]ij∑
i∈T t

m(i,j)[W
t
out]ij

if i ∈ T tm(i, j)

0 otherwise,
197

respectively, where Stm(i, j) = {j|j ∈ N t
in,i, [Q(ztj)]m 6= 0} ∪ {i} and T tm(i, j) = {i|i ∈198

N t
out,j , [Q(zti)]m 6= 0} ∪ {j}. The connectivity and communication weights across the199

network are summarized by mixing matrices; in particular, the m-th mixing matrix at200
iteration t is defined as201

(2.4) M̄ t
m =

[
Atm 0

I −Atm Btm

]
,202

Having defined zti and M̄ t
m, respectively, we now introduce the update for zti in the203

communication efficient and (ε, δ)-DP consensus algorithm (Algorithm 2.1):204

(2.5) zt+1
im =

2n∑
j=1

[M̄ t
m]ij [Q(ztj)]m + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm ,205

where F =

[
0 I
0 −I

]
and m represents the coordinate index. Vectors zti are updated206

according to the sparsification and multiplication of the mixing matrices at all time207
steps except those that are multiples of B, i.e.,208

(2.6) t mod B = B − 1.209

where B is the window size parameter indicating that starting from any time t = kB210
for all integers k ≥ 0, the union graph over B consecutive time steps forms a strongly211
connected graph (See Assumption 2.4).212

In the update (2.5), when the time step t satisfies (2.6), vectors z
Bbt/Bc
i , stored213

at time Bbt/Bc, are also included in the update. The term
∑2n
j=1[F ]ijz

Bbt/Bc
jm in the214

update facilitates to form the following update over B time steps:215

(2.7) z
(k+1)B
im =

2n∑
j=1

[M̄m((k + 1)B − 1 : kB) + γF ]ijQ(zkBj )m216
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, where M̄m((k + 1)B − 1 : kB) represents the product of mixing matrices from time217
kB to time (k + 1)B − 1. Since neither any single mixing matrix nor this product218
can ensure a non-zero spectral gap, γF is added to ensure a non-zero spectral gap.219
In addition, F has its (1, 1) and (2, 1) block equal to zero matrix and the rest two220
diagonal blocks and therefore the stored vectors are not communicated, leading to the221
update (2.5) above.222

Our proposed (ε, δ) differentially private procedure is summarized as Algorithm 2.1;223
it builds upon [10] to incorporate the Gaussian mechanism and aplifies it with sparsifi-224
cation. As we prove in Theorem 2.6, adding privacy guarantees has no detrimental225
effect on the convergence of decentralized consensus with sparsified updates, while226
Theorem 2.3 establishes that all messages guarantee (ε, δ) differential privacy.227

2.2.1. Privacy guarantees. In the consensus case, we assume the “honest-but-228
curious" security model [40] where all nodes execute the algorithm honestly but may229
attempt to learn additional information from the received messages. In the first230
iteration, each node receives a perturbed version of individual data vectors from its231
neighbors.232

Our adopted privacy mechanism adds a zero-mean Gaussian noise to query outputs,233
i.e., user vectors, where the noise standard deviation is proportional to the L2-sensitivity234
of the query.235

In the first iteration of our consensus algorithm, the sensitivity of the query at node236
i is ∆2(z1

i ) =
√
dC, where C denotes a bound on the magnitude of the components of237

the original message x0
i .238

Note that in the consensus problem it is only necessary to add noise to the initial239
vector, before the first iteration of the algorithm. This is the key insight to our240
differentially private algorithm: posterior messages do not touch the data again.241

This is because subsequent messages, being functions of the initial noisy message,242
are already privatized by the post-processing property of differential privacy [16]. This243
allows us to achieve a better accuracy-privacy trade-off than [39], [11].244

Algorithm 2.1 Communication Efficient and (ε, δ)-DP Consensus Algorithm

1: Input: Time horizon T , Initial state x0, Initialize y0 = 0, noise variance σ2,
network connectivity parameter B and γ

2: Noise initial data x0
i ← x0

i + bi for bi ∼ N(0, σ2Id×d), i = 1, ..., n
3: Initialize z0

4: for t = 1, ..., T do
5: Generate non-negative matrices W t

in, W t
out

6: for m = 1, ..., d do
7: construct a row-stochastic Atm and a column-stochastic Btm according to (2.3)

8: construct M̄ t
m according to definition (2.4)

9: for i = 1, ..., 2n do
10: zt+1

im =
∑2n
j=1[M̄ t

m]ij [Q(ztj)]m + 1{t mod B=B−1}γ[F ]ijz
Bbt/Bc
jm

11: end for
12: end for
13: end for
14: Result: Local consensus values zTi for nodes i = 1, ..., n

Before starting the loop, we define z0
j = [x0

j + bj , y
0
j ], where bj ∼ N(0σ2) in the245
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first iteration of the algorithm, node i receives246

(2.8) z1
im =

2n∑
j=1

[M t
m]ij [Q(ztj)]m +N(0, σ2).247

To protect user j we only need to ensure sensitivity of z1
im, the first aggregated message248

received by i from other nodes.249

Theorem 2.3. Set σ =
√
dC
ε

√
2 log(1.25

δ ), Algorithm 2.1 is (ε, δ)− differentially250

private.251

Proof. Note that the sensitivity of x0
i is ∆2(x0

i ) =
√
dC, thus (2.8) states the252

Gaussian mechanism for the first step and hence this iteration is (ε, δ)-DP. Since253
further iterations depend only on the original DP queries (without further access to254
raw data), the overall (ε, δ)-DP of the algorithm follows from the post-processing255
property of differential privacy [16].256

2.2.2. Convergence guarantees. Having provided privacy guarantees for Al-257
gorithm 2.1, we next study its convergence properties. In particular, we prove that the258
addition of privacy mechanism does not adversely affect convergence rate. We begin259
by making assumptions needed for the analysis.260

Assumption 2.4. The graph induced by sparsification is B-jointly connected, i.e.,261
starting from any time step t = kB where k = 0, 1, · · · , the union graph over B262

consecutive time steps,
⋃(k+1)B−1
t=kB G(t) is a strongly connected directed graph.263

This is a common assumption for algorithms on directed networks [37].264

Assumption 2.5. Given γ ∈ (0, 1), the set of all possible mixing matrices {M t
m},265

UM , is finite.266

We are now ready state the convergence result. We differ all proofs to section267
section 5268

Theorem 2.6. Suppose Assumption 2.4 and 2.5 hold. Fix

γ ∈ (0,min
m

{
1

(20 + 8n)n
(1− |λ3(M̄m((k + 1)B − 1 : kB))|)n

}
),

and let τ = maxC∈UM |λ2(C)| < 1 , x̄ = 1
n

∑n
i=1 x0

i , and t ≥ 0. Then running269
Algorithm 2.1 for t iterations, suppose t = kB − 1 + t′, where t′ = 0, · · · ,B − 1 and it270
holds that for any i ∈ [n] and t ≥ 1,271

(2.9)

‖xti − z̄t‖ ≤
√

2nd(τ1/B)t−(t′−1)
2n∑
j=1

d∑
m=1

|z0
jm|,

‖yti‖ ≤
√

2nd(τ1/B)t−(t′−1)
2n∑
j=1

d∑
m=1

|z0
jm|,

272

where z̄t = 1
n

∑n
i=1 xti + 1

n

∑n
i=1 yti. Further, E[xti] converges to x̄ at a linear rate273

O(τ t/B).274

Theorem 2.6 implies that the local state vector xti converges (at a linear rate)275
to the averaging consensus vector z̄t, while the surplus vectors yti vanishes to zero.276
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Since the noise added in the first iteration is unbiased, it always holds that E[z̄t] = z̄0.277
Therefore, by setting y0

i = 0 in the initialization of Algorithm 2.1, z̄0 = x̄ and we278
are able to guarantee linear convergence to x̄ in expectation. Note that the fastest279
consensus algorithms for directed time-varying graphs, be they for full communication280
as in the [13, 6] or with sparsification of messages as in [10], enjoy linear convergence.281
Unlike our Algorithm 2.1, however, those schemes do not provide privacy guarantees.282

2.3. Differentially-Private Communication-Efficient Optimization. Un-283
like consensus, decentralized optimization typically requires algorithms to access local284
raw data whenever gradients are computed; consequently, all iterations with gradient285
computation need to be protected. To this end, as in DP-SGD we deploy a privacy286
mechanism by perturbing the gradient287

(2.10) gti =

{
∇fi(xti), i ∈ {1, ..., n}
0, i ∈ {n+ 1, ..., 2n}

288

with a noise term sampled from a Gaussian N(0, σ2D2) distribution where D is an289
upper bound on the magnitude of the components of gti . Note that (2.10) implies the290
state vectors are updated via decentralized gradient descent while the surplus vectors291
are updated the same way as in Algorithm 2.1.292

Our proposed differentially private decentralized optimization scheme is formalized293
as Algorithm 2.2. Differential privacy of the iterates is enforced in line 8 of the294
algorithm. Despite incorporating privacy mechanism by adding noise to gradients,295
the algorithm converges when a decreasing learning rate is used. Formal privacy and296
convergence guarantees are provided below. Further, we study the trade-off between297
these two.298

2.3.1. Privacy guarantees. While the consensus algorithm only access the299
original data on the first iteration, gradient descent access it at every iteration to300
compute the current gradient. We have to take again a local DP approach but now301
ensure that each message is privatized, and use the composition theorem to ensure the302
track the overall algorithm DP guarantees.303

Traditionally, the full gradient is considered as one query and privatized with a304
gaussian vector bt drawn from bt ∼ N (0, σ2Id). Notice the expected norm of the noise305
is E[‖bt‖2] =

√
dσ2. Thanks to the sparsification, we only have to take into account306

(1− q)d dimensions, and get a privacy amplification factor of (1− q) and the privacy307
guarantee.308

Theorem 2.7. Assuming σ = O(
D
√
T (1−q)d log(1/δ

ε ), after T iterations, Algo-309
rithm 2.2 satisfies (ε, δ) differential privacy.310

Proof. Assuming |gtim| ≤ D, which is readily achieved by the Lipschitz assumption,311
the sensitivity of zt+1

im is given by ∆2(αtgim) = αtD. We use advanced composition312
(See Corollary 1 in [31]) over dimensions (1− q)d, and over T iterations, and obtain313
the desired result.314

2.3.2. Convergence guarantees. We now shift our attention from the privacy315
to convergence guarantees. To facilitate the analysis, we first study a broader problem:316
we focus on convergence under arbitrary gaussian noise variance σ. Then, we study317
the utility - privacy trade-off by imposing necessary assumptions for privacy on the318
noise variance, that guarantee we meet privacy requirements.319

We can now state the convergence result.320
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Algorithm 2.2 Communication-Efficient and (ε, δ)-DP Decentralized Optimization
Algorithm

Input: Time horizon T Initial state x0, Initialize y0 = 0, sparsification level q,
noise variance σ2, network connectivity parameter B and γ
set z0 = [x0; y0]
for t = 1, ..., T do

Generate non-negative matrices W t
in, W t

out

for m = 1, ..., d do
construct a row-stochastic Atm and a column-stochastic Btm according to 2.3
construct M̄ t

m according to definition
for i = 1, ..., 2n do

zt+1
im =

2n∑
j=1

[M̄ t
m]ij [Q(ztj)]m + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm

− 1{t mod B=B−1}αbt/Bc(g
Bbt/Bc
im +N(0, σ2)),

end for
end for

end for
Result: Local optimum values zTi for nodes i = 1, ..., n

Theorem 2.8. Suppose Assumptions 2.4-2.5 on mixing matrices hold, and fix321

γ ∈ (0,minm

{
1

(20+8n)n (1− |λ3(M̄m((k + 1)B − 1 : kB))|)n
}

). Assume |gtim| ≤ D. If322

the objective function f is convex, and the step size αt decays as O(1/
√
T ), Algorithm323

2.2 converges at a rate of O(lnT/
√
T ), Concretely,324

(2.11) (E[fmin,T ]− f∗) ≤ C1∑bT/Bc
k=0 αk

+
C2

∑bT/Bc
k=0 α2

k∑bT/Bc
k=0 αk

≤ C1√
T/B − 1

+
C2 ln(T/B)√
T/B − 1

325

where fmin,T := mint=1,··· ,T f(z̄t) and f∗ is the optimal value, and326

(2.12) C1 =
n
√
dD2

2
+

√
2dD√
n

2n∑
j=1

‖z0
j‖

1− τ2
,327

328

(2.13) C2 =
(d+ σ2)nD2

2
+

√
2dD√
n

2n∑
j=1

‖z0
j‖+

2
√

2nd2(d+ σ2)D2

1− τ
+

4
√
d(d+ σ2)D2

n
329

Theorem 2.9. Suppose Assumptions 2.4-2.5 on mixing matrices hold, fix γ ∈330

(0,minm

{
1

(20+8n)n (1− |λ3(M̄m((k + 1)B − 1 : kB))|)n
}

). Assume |gtim| ≤ D and let331

x̂i
T =

∑bT/Bc
t=1 (t−1)xt

i

t(t−1)/2 for T ≥ B and K = bT/Bc. If the objective function f is convex332

and the local objective function fi is µi strongly-convex, then there exists some constant333
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C3 > 0, C4 > 0 such that for all i334
(2.14)

E[f(x̂Ti )− f(x∗)] ≤ C3

K

n∑
j=1

‖x0
j‖1 +

C4

K
(1 + ln(K − 1)) +

p2nD2d

K
(1 + σ2)

E[

n∑
j=1

µj‖x̂Tj − x∗‖2] ≤ C3

K

n∑
j=1

‖x0
j‖1 +

C4

K
(1 + ln(K − 1)) +

p2nD2d

K
(1 + σ2)

335

where the step size αt = p
t for p ≥ 4n∑n

i=1 µi
, x∗ is the optimal solution, C3 = 5

√
2nndD
1−τ336

and C4 =
5
√

2nd(1+σ2)n2dD2

1−τ .337

Theorem 2.10. Suppose Assumptions 2.4-2.5 on mixing matrices hold for a spe-338
cific γ. Assume |gtim| ≤ D = O(1). If the objective function f is convex, and the339
step size αt decays as O(1/

√
T ), Algorithm 2.2 converges at a rate of O(lnT/

√
T ).340

Concretely,341

(2.15) (E[fmin,T ]− f∗) ≤ O
(
C1√
T

+
C2 lnT√

T

)
342

where fmin,T := mint=1,··· ,T f(z̄t) and f∗ is the optimal value, and343

(2.16) C1 = O(n
√
d+
√
nd), C2 = O

(
(d+ σ2)n+

√
ndD +

√
nd2(d+ σ2)

)
344

Theorem 2.11. Suppose Assumptions 2.4-2.5 on mixing matrices hold, fix γ ∈345

(0,minm

{
1

(20+8n)n (1− |λ3(M̄m((k + 1)B − 1 : kB))|)n
}

). Assume |gtim| ≤ D and let346

x̂i
T =

∑bT/Bc
t=1 (t−1)xt

i

t(t−1)/2 for T ≥ B and K = bT/Bc. If the objective function f is convex347

and the local objective function fi is µi strongly-convex, then there exists some constant348
C3 > 0, C4 > 0 such that for all i349
(2.17)

E[f(x̂Ti )− f(x∗)] ≤ C3

K

n∑
j=1

‖x0
j‖1 +

C4

K
(1 + ln(K − 1)) +

p2nD2d

K
(1 + σ2)

E[

n∑
j=1

µj‖x̂Tj − x∗‖2] ≤ C3

K

n∑
j=1

‖x0
j‖1 +

C4

K
(1 + ln(K − 1)) +

p2nD2d

K
(1 + σ2)

350

where the step size αt = p
t for p ≥ 4n∑n

i=1 µi
, x∗ is the optimal solution, C3 = 5

√
2nndD
1−τ351

and C4 =
5
√

2nd(1+σ2)n2dD2

1−τ .352

Remark 2.12. It is of interest to explore the impact of q (defined in) on the353
convergence speed. As the mixing matrices are constructed over sparsified graphs, q354
affects the number of non-zero entries in the matrix and further affects the second355
largest magnitude of eigenvalues. Specifically, when the graph connectivity parameter356
B is fixed, greater q leads to greater τ and further slows down the convergence process.357

Theorem 2.8 and 2.9 provide convergence results for Algorithm 2.2 with different358
assumptions: convexity of the global function (Theorem 2.8) and, in addition, strong-359
convexity of local functions (Theorem 2.9). The resulting convergence rates match360
those of the full communication gradient-push and D-DGD algorithms [35, 55], the361
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communication-efficient algorithm in [10], and the stochastic gradient-push [36], under362
respective assumptions.363

In the following section we study relevant instances where these assumptions hold,364
including linear regression and logistic regression.365

2.3.3. Utility - privacy tradeoff. In this section we provide explicit trade-offs366
between privacy and utility of optimization algorithms. We state our results in ??367

Corollary 2.13. Assume the setting of Theorem 2.8 holds,particularly, f is a368
D-Lipschitz function, and assume D = ‖z0

j‖ = O(1). Let r be the minimum number369

of records each node has. Setting σ = O

(√
T (1−q)d log(1/δ)

εr

)
, after T = ε2r2 iterations370

algorithm Algorithm 2.2 is(ε, δ)− differentially private and the empirical risk is bounded371
by372

E[fT − f∗] ≤ O
(
dn
εr +

√
nd3

εr

)
373

Corollary 2.14. Assume the same setting of Theorem 2.9, and r be the minimum374

number of records each user has. Let σ = O

(√
T (1−q)d log(1/δ)

εr

)
, then Algorithm 2.2375

as T →∞,376

E[fT − f∗] ≤ O
(
p2nd2(1−q)

ε2r2

)
377

The proof of both corollaries follows by replacing σ in Theorem 2.8 and ?? with378
the appropriate value of σ.379

3. Numerical Results. In this section, we demonstrate performance of the380
proposed privacy-preserving algorithms for decentralized consensus and optimization.381
In both settings we show that, as expected, privacy and communication constraints slow382
down convergence but the developed methods ultimately achieve performance similar383
to that of non-private and full-communication algorithms. We start our numerical384
studies with a network system having 10 nodes, and generate its edges randomly while385
preserving the strong connectivity.386

The construction begins with the Erdős–Rényi model [17] with edge probability387
parameter equal to 0.9; then, 2 directed edges are dropped from each strongly con-388
nected graph, leading to directed graphs. Building upon this basic structure, we can389
construct networks with different connectivity. Recall that the window size parameter390
B, introduced in Assumption 2.4, implies that the union graph over B consecutive time391
steps, starting from any time that is a multiple of B, forms an almost-surely strongly392
connected Erdős–Rényi graph. When B = 1, the network is strongly connected at each393
time step. We then apply sparsification such that the communication throughput is394
brought down to various sparsity levels q (larger q means more entries are sparsified,395
q = 0 means full communication). For privacy accounting in optimization we use the396
TensorFlow Privacy library.1397

3.1. Consensus. In the consensus problem, each node has access to a local398
vector of dimension d = 64. Components of the initial local vector at node i, x0

i , are399
generated uniformly at random from [−5, 5]. To illustrate the effect of the privacy400
mechanism, in Figure 1 we compare the performance of our Algorithm 1 for different401
levels of noise σ and sparsity q, and show the corresponding privacy guarantee ε. In402
Fig. 1a, we show the residual as a function of the number of iterations t. We observe403
that sparsity and noise added to provide privacy only delay the convergence without404

1https://github.com/tensorflow/privacy

This manuscript is for review purposes only.
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affecting its rate, matching the results of Theorem 2.6. As expected, higher values of405
q result in slower convergence since less information is communicated; however, higher406
q achieves higher privacy for fixed σ because the probability of observing an entry407
is lower. Fig. 1b shows that for a fixed sparsification level, the convergence becomes408
faster as the number of nodes increases. Further results for varied values of parameters409
and network topologies are in the supplementary material, Sec C.410

We observe the noise effectively does not affect the final residual, neither the411
rate of convergence: in Figure 1 it is clear that for all values of q and σ the speed of412
convergence is the same, although the initial residual might differ depending on the413
communication and privacy parameters. Eventually all methods converge.414

0 200 400 600 800 1000
iteration t

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
sid

ua
l

q= 0, σ= 0
q= 0, σ= 17, ε= 10
q= 0, σ= 170, ε= 1
q= 0, σ= 1700, ε= 0.1
q= 0.2, σ= 0
q= 0.2, σ= 17, ε= 10
q= 0.2, σ= 170, ε= 1
q= 0.2, σ= 1700, ε= 0.1

(a) Residual vs. iterations for a 10-node network,
B = 5 and δ = 10−4.
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Fig. 1: Convergence of Algorithm 1 for varied parameters q and σ, and the privacy
loss ε achieved. In (a), we see sparsity and noise delay convergence in early iterations
but the convergence rate is unaffected. In (b) we show that for a fixed sparsification
level, the convergence becomes faster as the number of nodes increases.
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Fig. 2: Residual vs. iterations for a 10-node network, B = 5 and δ = 10−4.
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3.2. Decentralized Optimization Problems. Next, we test performance of415
Algorithm 2 on a multi-class tag classification task with a logistic regression model,416
which leads to the optimization problem with features mij and corresponding label417
yij of the form418

(3.1) min
x

µ2 ‖x‖2 +

n∑
i=1

N∑
j=1

ln(1 + exp(−(mT
ijxi)yij))

 .419

with regularization prameter µ.420
The model is trained and tested on the Stackoverflow dataset, a language modelling421

dataset with questions and answers collected from 342477 unique users. The objective422
is to tag each sentence with appropriate categories. We present detailed preprocessing423
of the dataset in the supplementary, Sec C. Following prior work [41], we use a build424
vocabulary with 10000 frequent words and restrict each user’s dataset to have at most425
128 sentences. We rely on padding and truncation to enforce 20 word sentences, and426
represent them with index sequences corresponding to the vocabulary words, out of427
vocabulary words, beginning and end of sentences.428

The 150, 000 data points are randomly split into 10 groups of equal size, where429
each group is interpreted as being the local data for one of the nodes in the network.430
Each node uses 13, 500 data points as training data and the remaining 1500 points as431
the validation set. The testing data contains 37640 data points.432

We consider a network with 10 nodes and evenly split 150, 000 data points at433
random into 10 groups, each one representing one node in the network. We leave434
1500 points for validation for each node. For this problem we use a noise variance of435
σD = 30, a the step size αt = 0.02

t and the privacy parameter δ = 10−4.436
In ?? we observe the effect of privacy and sparsity. Both constraints slightly delay437

and affect convergence. However, Figure 3a shows that this has minimal impact on438
the accuracy, and that after a few rounds all models reach a similar level of accuracy.439
Finally, Figure 3b shows that we are able to maintain a fair privacy budget (ε < 10)440
for models, even at the end of the training; this is a reasonable budget for iterative441
procedures in literature [1], showing that our algorithms are able to achieve very good442
performance while guaranteeing privacy and meeting communication constraints.443

4. Additional experiments.444

4.1. Consensus. In Figure 1 of the main paper, we show convergence results for445
the proposed consensus algorithm (algorithm 1). With the same parameter setups,446
Figure 4 in this document illustrates the relationship between sparsity level and privacy447
bound. As expected, smaller sparsity level q and smaller σ lead to larger privacy loss.448

4.2. Linear Regression. We test the linear regression problem where the goal449
is to minimize the objective f(x) = 1

n

∑n
i=1 ‖yi − Dix‖2, where Di ∈ R200×5 and450

yi ∈ R200 denote the local measurement matrix and local measurement vector at node451
i, respectively. To generate the data we synthesize the optimal solution x∗ from the452
normal distribution. Then, yi is formed as yi = Dix

∗ + ξi, where ξi denotes the noise453
added to the local measurement at node i. For all i, Di is drawn at random from454
the standard normal distribution and then normalized so that its rows sum to 1; ξi455
is generated from a Gaussian distribution with zero mean and variance 0.01. Local456
vectors x0

i are randomly initialized; the stepsize decreases with the iterations and is457
set to αk = 0.2

k in the k-th iteration.458
In the implementation of the proposed algorithm, the gradient bound is set to459

D = 10 and the privacy parameter δ is set to δ = 10−5. We compute the residual for460
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Fig. 3: Results on logistic regression on Stackoverflow. In (a) we observe sparsity and
privacy delay convergence but they do not affect performance. In (b) we show the
privacy loss over several iterations; we are able to maintain a reasonable budget for all
combinations of parameters.
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Fig. 4: Privacy bound for varied sparsity levels.

each iteration and show the results in Figure 5a. We observe that both sparsity and461
privacy slow down the convergence.462

Privacy bound for schemes with varied values of parameters are shown in Figure463
5b, illustrating how privacy degrades over iterations.464

4.3. Logistic Regression.465

4.3.1. Datasets.466
Stackoverflow. Following prior work [41], we use a build vocabulary with 10000467

frequent words and restrict each user’s dataset to have at most 128 sentences. We468
rely on padding and truncation to enforce 20 word sentences, and represent them469
with index sequences corresponding to the vocabulary words, out of vocabulary words,470
beginning and end of sentences.471
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Fig. 5: Results of algorithm 2 on linear regression for synthetic data. B = 5. In (a)
we show the sparsification and privacy will delay the convergence. In (b) we show how
the privacy bound increases as we increase sparsity level and noise standard deviation.

The 150, 000 data points are randomly split into 10 groups of equal size, where472
each group is interpreted as being the local data for one of the nodes in the network.473
Each node uses 13, 500 data points as training data and the remaining 1500 points as474
the validation set. The testing data contains 37640 data points.475
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Fig. 6: Accuracy for varied network size.

4.3.2. Varying the network size. In this experiment we explore how the size of476
the network affects the performance of the proposed algorithm 2. Here the total number477
of data points is fixed and the number of local data points is inversely proportional478
to the number of nodes in the network. In Figure 6, we see that the increasing the479
network size and adding more noise delays the convergence without having much effect480
on the final accuracy.481

4.3.3. Different topology. So far, the network topology is randomly generated482
at each iteration according to Erdős–Rényi model with some removing edges to make483
the graph directed. Next, we consider a different type of the generative model. In484
particular, we consider a topology periodically varying between the two networks485
shown in Figure 7. This is a much sparser network than the previous ones, rendering486
the algorithms slower as reflected by the results in Figure 5.487

This manuscript is for review purposes only.



16 M. RIBERO, Y. CHEN, AND H. VIKALO

Fig. 7: Topology for periodically changing network
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Fig. 8: Results of running the proposed algorithm 2 in the decentralized logistic
regression model on a periodic network in Figure 4.

In particular, Figure 5 shows the loss and accuracy for the logistic regression488
model of algorithm 2; all the remaining parameters of the experiment are the same as489
in the main paper: the standard deviation σD = 30, the step size αt = 0.02

t and the490
privacy parameter δ = 10−4.491

Both privacy and sparsity constraints delay the convergence but do not affect the492
final loss and accuracy.493

5. Formal convergence theorems and proofs.494

Theorem 2.4. (Theorem 2.4 in main body). Suppose Assumption 2.4 and 2.5
hold. Fix

γ ∈ (0,min
m

{
1

(20 + 8n)n
(1− |λ3(M̄m((k + 1)B − 1 : kB))|)n

}
),

and let τ = maxC∈UM |λ2(C)| < 1 , x̄ = 1
n

∑n
i=1 x0

i , and t ≥ 0. Then running495
Algorithm 2.1 for t iterations, suppose t = kB − 1 + t′, where t′ = 0, · · · ,B − 1 and it496
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holds that for any i ∈ [n] and t ≥ 1,497

(5.1)

‖xti − z̄t‖ ≤
√

2nd(τ1/B)t−(t′−1)
2n∑
j=1

d∑
m=1

|z0
jm|,

‖yti‖ ≤
√

2nd(τ1/B)t−(t′−1)
2n∑
j=1

d∑
m=1

|z0
jm|,

498

where z̄t = 1
n

∑n
i=1 xti + 1

n

∑n
i=1 yti. Further, E[xti] converges to x̄ at a linear rate499

O(τ t/B).500

Proof. To start with, we observe that the update in Algorithm 1 can be simplified501
as502

(5.2)

zt+1
im =

2n∑
j=1

[M̄ t
m]ij [Q(ztj)]m + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm

=

2n∑
j=1

[M̄ t
m]ijz

t
jm + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm

503

This holds because the mixing matrix is constructed such that its entries which multiply504
zero-valued (i.e., “sparsified”) entries of Q(ztj) are set to be zero themselves. Next, we505
review the following lemma which help complete the proof after the incorporation of506
the noise expectation.507

Lemma 5.1. [Theorem 2.4 in [10]] Suppose Assumptions 2.4 and 2.5 hold, and508
instate the notations and hypotheses above. Then, there exist σ ∈ (0, 1) and Γ =

√
2nd509

such that the following statements hold.510
(a) For 1 ≤ i ≤ n and t = kB − 1 + t′, where t′ = 0, · · · ,B − 1,511

(5.3) ‖zti − z̄‖ ≤ Γ(τ1/B)t−(t′−1)
2n∑
j=1

d∑
m=1

|z0
jm|,512

where z̄ = 1
n

∑n
i=1 x0

i + 1
n

∑n
i=1 y0

i ;513
(b) For 1 + n ≤ i ≤ 2n and t = kB − 1 + t′, where t′ = 0, · · · ,B − 1,514

(5.4) ‖zti‖ ≤ Γ(τ1/B)t−(t′−1)
2n∑
j=1

d∑
m=1

|z0
jm|.515

Now we can continue the proof of our theorem. In particular, using Lemma 5.1516
above, we have the first part (inequality) in the theorem proved, and establish z̄t = z̄0517
for all t ≥ 0. Since the noise added in the initialization part is unbiased, we have that518
E[z̄0] = z0 where z0 represents the initialization without noise. Then we can conclude519
limt→∞E[xti] = z̄0 = x̄ and the convergence rate is O(τ t/B).520

Theorem 2.6. (Theorem 2.6 in main body) Suppose Assumptions 2.4-2.5 on mix-521

ing matrices hold, fix γ ∈ (0,minm

{
1

(20+8n)n (1− |λ3(M̄m((k + 1)B − 1 : kB))|)n
}

).522

Assume |gtim| ≤ D. If the objective function f is convex, and the step size αt decays523
as O(1/

√
T ), Algorithm 2.2 converges at a rate of O(lnT/

√
T ), Concretely,524
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(5.5) (E[fmin,T ]− f∗) ≤ C1∑bT/Bc
k=0 αk

+
C2

∑bT/Bc
k=0 α2

k∑bT/Bc
k=0 αk

≤ C1√
T/B − 1

+
C2 ln(T/B)√
T/B − 1

525

where fmin,T := mint=1,··· ,T f(z̄t) and f∗ is the optimal value, and526

(5.6) C1 =
n
√
dD2

2
+

√
2dD√
n

2n∑
j=1

‖z0
j‖

1− τ2
,527

528

(5.7) C2 =
(d+ σ2)nD2

2
+

√
2dD√
n

2n∑
j=1

‖z0
j‖+

2
√

2nd2(d+ σ2)D2

1− τ
+

4
√
d(d+ σ2)D2

n
529

Proof. Similar to the steps in the consensus case, we start by the following530
observation to simplify the update in Algorithm 2:531

zt+1
im =

2n∑
j=1

[M̄ t
m]ij [Q(ztj)]m + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm

− 1{t mod B=B−1}αbt/Bc(g
Bbt/Bc
im +N(0, σ2))

=

2n∑
j=1

[M̄ t
m]ijz

t
jm + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm

− 1{t mod B=B−1}αbt/Bc(g
Bbt/Bc
im +N(0, σ2))

532

Let [∇f̃i(zti)]m = gtim + N(0, σ2D2)1(i≤n) be the mth entry of ∇f̃i(zti) and we533
then compute534
(5.8)

‖z̄(k+1)B − x∗‖2 = ‖z̄kB − x∗‖2 + ‖αk
n

n∑
i=1

∇f̃i(zkBi )‖2 − 2
αk
n

n∑
i=1

〈z̄kB − x∗,∇f̃i(zkBi )〉.535

536

E[‖z̄(k+1)B − x∗‖2|FkB] = ‖z̄kB − x∗‖2 + E[‖αk
n

n∑
i=1

∇f̃i(zkBi )‖2|FkB]537

− 2
αk
n

n∑
i=1

〈z̄kB − x∗,∇fi(zkBi )〉538

≤ ‖z̄kB − x∗‖2 + E[‖αk
n

n∑
i=1

∇f̃i(zkBi )‖2|FkB]539

− 2
αk
n

n∑
i=1

(−2
√
dD‖z̄kB − zkBi ‖+ fi(z̄

kB)− fi(x∗))540

541

where the last inequality is derived from542

〈z̄kB − x∗,∇fi(zkBi )〉 ≥ 〈z̄kB − zkBi ,∇fi(zkBi )〉+ fi(z
kB
i )− fi(x∗)543

≥ −
√
dD‖z̄kB − zkBi ‖+ fi(z

kB
i )− fi(z̄kB) + fi(z̄

kB)− fi(x∗)544

≥ −2
√
dD‖z̄kB − zkBi ‖+ fi(z̄

kB)− fi(x∗)545546
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Now, the unconditional expectation satisfies547

E[‖z̄(k+1)B − x∗‖2] ≤ E[‖z̄kB − x∗‖2] + E[‖αk
n

n∑
i=1

∇f̃i(zkBi )‖2] + 4
αk
√
dD

n

n∑
i=1

E[‖z̄kB − zkBi ‖]548

− 2
αk
n

n∑
i=1

E[fi(z̄
kB)]− fi(x∗).549

550

Summing over k from 0 to ∞ and rearranging yields551

(5.9)

2

bT/Bc∑
k=0

αk(E[f(z̄kB)]− f∗) ≤ ‖z̄0 − x∗‖2 + n(d+ σ2)D2

bT/Bc∑
k=0

α2
k

+
4
√
dD

n

n∑
i=1

bT/Bc∑
k=0

αkE[‖z̄kB − zkBi ‖].

552

Similar to the derivations for Lemma 3 in [10], we next obtain an upper bound for553
the last term in (5.9).554

Since the update in Algorithm 2.2 implies555

zkBim =

n∑
j=1

[Mm(kB − 1 : 0)]ijz
0
jm −

k−1∑
r=1

2n∑
j=1

[Mm((k − 1)B − 1 : (r − 1)B)]ijαr−1[∇f̃j(z(r−1)B
j )]m

− αk−1[∇f̃i(z(k−1)B
i )]m

556

for i ∈ {1, · · · , 2n} and m ∈ {1, · · · , d} and using the fact that the mixing matrix and557
its product have column sum equal to 1,558

z̄kBm =
1

n

2n∑
j=1

zkBjm

=
1

n

2n∑
j=1

z0
jm −

1

n

(k−1)B∑
r=1

2n∑
j=1

[∇f̃j(z(r−1)B
j )]m −

1

n

2n∑
j=1

αk−1[
˜∇fj(z(k−1)B
j )]m

559

Then using the gradient norm bound and noise variance, we derive the following upper560
bound for the last term in (5.9)561

(5.10)

n∑
i=1

bT/Bc∑
k=0

αkE[‖z̄kB − zkBi ‖] ≤
√

2nd

2n∑
j=1

‖z0
j‖
bT/Bc∑
k=1

αkτ
k

+
√

2nd(d+ σ2)nD

bT/Bc∑
k=1

k−1∑
r=1

τk−rαkαr−1

+ 2
√
d+ σ2D

bT/Bc−1∑
k=0

α2
k

562

Applying ab ≤ 1
2 (a+ b)2, we have following bounds:563

(5.11)
bT/Bc∑
k=1

αkτ
k ≤ 1

2

bT/Bc∑
k=1

α2
k +

1

1− τ2
564
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565
(5.12)
bT/Bc∑
k=1

k−1∑
r=1

τk−rαkαr−1 ≤
1

2

bT/Bc∑
k=1

α2
t

k−1∑
r=1

τk−r+
1

2

bT/Bc−1∑
r=1

α2
r−1

bT/Bc−1∑
k=r+1

τk−r ≤ 1

1− τ

bT/Bc∑
k=1

α2
k566

Then567

E[ min
t=1,··· ,T

f(z̄t)]→ 1

n

n∑
i=1

fi(x
∗) = f∗.568

Defining fmin := mintf(z̄t), we have569

(5.13) (E[fmin]− f∗)
bT/Bc∑
k=0

αk ≤
bT/Bc∑
k=0

αk(f(z̄kB)− f∗) ≤ C1 + C2

bT/Bc∑
k=0

α2
k,570

where571

(5.14) C1 =
n
√
dD2

2
+

√
2dD√
n

2n∑
j=1

‖z0
j‖

1− τ2
,572

573

(5.15) C2 =
(d+ σ2)nD2

2
+

√
2dD√
n

2n∑
j=1

‖z0
j‖+

2
√

2nd2(d+ σ2)D2

1− τ
+

4
√
d(d+ σ2)D2

n
574

Note that we can express (5.13) equivalently as575

(5.16) (E[fmin]− f∗) ≤ C1∑bT/Bc
k=0 αk

+
C2

∑bT/Bc
k=0 α2

k∑bT/Bc
k=0 αk

.576

If we select the schedule of stepsizes according to αt = O(1/
√
t), the first term on the577

right hand side of (5.16) satisfies578

(5.17)
C1∑T
t=0 αt

= C1
1/2√
T − 1

579

while for the second term it holds that580

(5.18)
C2

∑T
t=0 α

2
t∑T

t=0 αt
= C2

lnT

2(
√
T − 1)

581

Recall that σ = O(
√
T ln(1/δ)

ε ), then582

C2
lnT

2(
√
T − 1)

= O(

√
d

1− τ
lnT

(
√
T − 1)

+ (d+
T (ln(1/δ))2

ε2
)

lnT

(
√
T − 1)

)583

Theorem 2.8. (Theorem 2.8 in main body) Suppose Assumptions 2.4-2.5 on mix-584

ing matrices hold, fix γ ∈ (0,minm

{
1

(20+8n)n (1− |λ3(M̄m((k + 1)B − 1 : kB))|)n
}

).585

Assume |gtim| ≤ D and let x̂i
T =

∑bT/Bc
t=1 (t−1)xt

i

t(t−1)/2 for T ≥ B and K = bT/Bc. If the586
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objective function f is convex and the local objective function fi is µi strongly-convex,587
then there exists some constant C3 > 0, C4 > 0 such that for all i588
(5.19)

E[f(x̂Ti )− f(x∗)] ≤ C3

K

n∑
j=1

‖x0
j‖1 +

C4

K
(1 + ln(K − 1)) +

p2nD2d

K
(1 + σ2)

E[

n∑
j=1

µj‖x̂Tj − x∗‖2] ≤ C3

K

n∑
j=1

‖x0
j‖1 +

C4

K
(1 + ln(K − 1)) +

p2nD2d

K
(1 + σ2)

589

where the step size αt = p
t for p ≥ 4n∑n

i=1 µi
, x∗ is the optimal solution, C3 = 5

√
2nndD
1−τ590

and C4 =
5
√

2nd(1+σ2)n2dD2

1−τ .591

Proof. Let v ∈ Rd be any arbitrary vector and ξtj be the noise vector at ∇fj(xtj)592
(denoted as ∇f tj shortly). Since gtj = ∇fj(xtj) = ∇f tj when i ∈ {1, · · · , n}, for all593
t ≥ 0,594

zt+1
im =

2n∑
j=1

[M̄ t
m]ij [Q(ztj)]m + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm

− 1{t mod B=B−1}αbt/Bc(g
Bbt/Bc
im + ξ

Bbt/Bc
jm 1(i≤n))

=

2n∑
j=1

[M̄ t
m]ijz

t
jm + 1{t mod B=B−1}γ[F ]ijz

Bbt/Bc
jm

− 1{t mod B=B−1}αbt/Bc(g
Bbt/Bc
im + ξ

Bbt/Bc
jm 1(i≤n))

595

and, moreover,596

(5.20)

z̄t+1
m =

1

n

2n∑
j=1

ztjm −
1

n
αbt/Bc

2n∑
j=1

1{t mod B=B−1}(g
Bbt/Bc
im + ξ

Bbt/Bc
jm 1(i≤n))

= z̄tm −
αbt/Bc

n

2n∑
j=1

(g
Bbt/Bc
jm + ξ

Bbt/Bc
j 1(j≤n)).

597

Then,598

‖z̄(k+1)B − v‖2 = ‖z̄kB − v‖2 − αk
n

2n∑
j=1

(gkBj + ξkBj 1(j≤n))
′(z̄kB − v) +

α2
k

n2
‖

2n∑
j=1

gkBj + ξkBj 1(j≤n)‖2

(5.21)

599

= ‖z̄kB − v‖2 − αk
n

n∑
j=1

(∇fkBj + ξkBj )′(z̄kB − v) +
α2
k

n2
‖

n∑
j=1

∇fkBj + ξkBj ‖2.

(5.22)

600
601
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Now, we rewrite each cross-term (∇f tj )′(z̄t − v) as602

(5.23)

(∇f tj )′(z̄t − v) = (∇f tj )′(z̄t − xtj) + (∇f tj )′(xtj − v)

≥ −
√
dD‖z̄t − xtj‖+ fj(x

t
j)− fj(v) +

µj
2
‖xtj − v‖2

= −
√
dD‖z̄t − xtj‖+ (fj(x

t
j)− fj(z̄t)) + (fj(z̄

t)− fj(v))

+
µj
2
‖xtj − v‖2

≥ −2
√
dD‖z̄t − xtj‖+ (fj(z̄

t)− fj(v)) +
µj
2
‖xtj − v‖2.

603

Using f(x) = 1
n

∑n
j=1 fj(x),604

(5.24)
n∑
j=1

(∇fkBj )′(z̄kB−v) ≥ n(f(xkB)−f(v))+
1

2

n∑
j=1

µj‖xkBj −v‖2−2

n∑
j=1

√
dD‖z̄kB−xkBj ‖.605

Hence, we have shown that606

E[‖z̄(k+1)B − v‖2|FkB] ≤ ‖z̄kB − v‖2 − 2αk(f(z̄kB)− f(v))− αk
n

n∑
j=1

µj‖xkBj − v‖2607

+
4αk
n

n∑
j=1

√
dD‖xkBj − z̄kB‖+

α2
k

n2

n∑
j=1

(
√
dD + σ

√
dD)2608

≤ ‖z̄kB − v‖2 − 2αk(f(z̄kB)− f(v))− αk
n

n∑
j=1

µj‖xkBj − v‖2609

+
4αk
n

n∑
j=1

√
dD‖xkBj − z̄kB‖+

α2
k

n2

n∑
j=1

d(1 + σ2)D2.610

611

Then we can replace v by the optimal solution x∗ and this gives612

E[‖z̄(k+1)B − x∗‖2|FkB] ≤ ‖z̄kB − x∗‖2 − 2αk(f(z̄kB)− f(x∗))− αk
n

n∑
j=1

µj‖xkBj − x∗‖2

+
4αk
n

n∑
j=1

√
dD‖xkBj − z̄kB‖+

α2
k

n2

n∑
j=1

d(1 + σ2)D2.

(5.25)

613

614

Since f(x) = 1
n

∑n
j=1 fj(x) is convex, each local objective function fi is µi-strongly-615

convex and the upper bound on the gradient magnitude is |gtim| ≤ D, the following616
two inequalities hold:617

(a)

(5.26) f(z̄t)− f(x∗) ≥ 1

2n
(

n∑
j=1

µj)‖z̄t − x∗‖618

(b)

(5.27) f(z̄t)− f(x∗) ≥ −L
n
‖xti − z̄t‖+ f(xti)− f(x∗)619

where L = n
√
dD, for any i = 1, · · · , n.620
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The above imply that for all i = 1, . . . , n,621

(5.28) 2(f(z̄t)− f(x∗)) ≥ 1

2
(

1

n

n∑
j=1

µj)‖z̄t − x∗‖ − L

n
‖xti − z̄t‖+ f(xti)− f(x∗).622

Now, for each i = 1, . . . , n,623

E[‖z̄(k+1)B − x∗‖2|FkB] ≤ ‖z̄kB − x∗‖2 − αk
n

(
1

2
(

n∑
j=1

µj)‖z̄kB − x∗‖ − L‖xkBi − z̄kB‖+ n(f(xkBi )− f(x∗)))624

− αk
n

n∑
j=1

µj‖xkBj − x∗‖2 +
4αk
n

n∑
j=1

√
dD‖xkBj − z̄kB‖+

α2
k

n

n∑
j=1

(
√
dD + σ

√
dD)2.625

626

Let αk = p
k+1 ; since p

∑n
i=1 µi

n ≥ 4,627

E[‖z̄(k+1)B − x∗‖2|FkB] ≤ (1− 2

k + 1
)‖z̄kB − x∗‖2 − p

(k + 1)
(f(xkBi )− f(x∗))628

+
pL

n(k + 1)
‖xkBi − z̄kB‖ − p

n(t+ 1)

n∑
j=1

µj‖xkBj − x∗‖2629

+
4p

n(k + 1)

n∑
j=1

√
dD‖xkBj − z̄kB‖+

p2

n(k + 1)2

n∑
j=1

(
√
dD + σ

√
dD)2.630

631

Multiply both sides of the above inequality by k(k + 1) and taking the expectation632
yields for all T ≥ B, let K = bT/Bc,633

K(K − 1)E[‖z̄KB − x∗‖2] ≤ − p
n

K−1∑
k=1

tE[n(f(xkBi )− f(x∗)) +

n∑
j=1

µj‖xkBj − x∗‖2]

+
pL

n

K−1∑
k=1

kE[‖xkBi − z̄kB‖]− p

n(k + 1)
(

n∑
j=1

µj)E[‖xkBj − x∗‖2]

+
4p

n

K−1∑
k=1

t

n∑
j=1

√
dDE[‖xkBj − z̄kB‖] +

p2

n

n∑
j=1

(
√
dD + σ

√
dD)2

K−1∑
k=1

k

k + 1
.

(5.29)

634

635

To derive the upper bound on E[
∑K−1
k=1 ‖xkBi − z̄kB‖], we refer to Lemma 3 in [10]636

and Corollary 1 and 2 in [36]. In particular, we have the following637

(5.30) E[

K∑
k=1

‖xkBi − z̄kB‖] ≤ C ′3
n∑
j=1

‖x0
j‖1 + C ′4(1 + lnK).638

where639

(5.31) C ′3 =

√
2nd

1− τ
, C ′4 =

√
2nd2(1 + σ2)nD

1− τ
640
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Therefore,641

1

K(K − 1)

K−1∑
k=1

tE[n(f(xkBi )− f(x∗)) +

n∑
j=1

µj‖xkBj − x∗‖2] ≤ 5L

T
(C ′3

n∑
j=1

‖x0
j‖1

+ C ′4(1 + ln(K − 1)))

+
p2

K

n∑
j=1

d(1 + σ2)D2

(5.32)

642

643

Hence,644

1

K(K − 1)

K−1∑
k=1

kE[(f(xkBi )− f(x∗)) +

n∑
j=1

µj‖xkBj − x∗‖2] ≤ 5L

K
(C ′3

n∑
j=1

‖x0
j‖1

+ C ′4(1 + ln(K − 1)))+

p2

K

n∑
j=1

d(1 + σ2)D2

(5.33)

645

646

By convexity, for each i ∈ [n] it holds that647
(5.34)

2

K(K − 1)

K−1∑
k=1

t(f(xkBi )−f(x∗))+

n∑
j=1

µj‖xkBj −x∗‖2 ≥ f(x̂K)−f(x∗)+

n∑
j=1

µj‖x̂K−x∗‖2,648

where x̂i
K =

∑K
k=1(k−1)xk

i

k(k−1)/2 for K ≥ 2.649

Setting C3 = 5LC ′3 = 5
√

2nndD
1−τ and C4 = 5LC ′4 =

5
√

2nd(1+σ2)n2dD2

1−τ completes650
the proof.651

6. Conclusion. In this paper we propose differentially private and communica-652
tion efficient algorithms for decentralized consensus and optimization over directed653
time-varying graphs. Our results introduce these techniques to a large class of real world654
applications operating under resource constraints. We provide theoretical guarantees655
and numerical validation of the proposed methods in several settings.656

Future work includes extending these results to non-convex settings with more657
sophisticated tasks such as language modelling and speech processing. Moreover, it is658
of interest to study stochastic gradient methods as they will reduce local computations.659
Finally, an orthogonal direction worth exploring involves security models that account660
for adversarial attacks.661
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