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Abstract—In matrix factorization problems, one seeks to
decompose a data matrix into a product of two matrices –
frequently, one captures meaningful information contained in the
data and the other specifies how this information is combined to
generate the data matrix. In this paper, matrix factorization that
arises in haplotype assembly, an important NP-hard problem
in genomics, is studied. Haplotypes are sequences of chromo-
somal variations in an individual’s genome that are of critical
importance for understudying the individual’s susceptibility to
various diseases. A novel formulation of haplotype assembly as
the partially-observed low-rank matrix factorization problem is
proposed and efficiently solved via a modified gradient descent
method that exploits salient structural properties of sequencing
data. In particular, the observed matrix in the problem at hand
contains noisy samples of the product of an informative matrix
with rows having entries from a finite alphabet and a matrix
with rows that are standard unit basis. Convergence of the
proposed algorithm is analyzed and its performance tested on
both synthetic and experimental data. The results demonstrate
superior accuracy and speed of the proposed method as compared
to state-of-the-art haplotype assembly techniques.

Index Terms—haplotype assembly, matrix factorization, low
rank, gradient descent

I. INTRODUCTION

In recent years, finding a low-rank approximation to a
partially observed matrix has gained a lot of attention (e.g.,
see [1], [2], [3], [4], [5], [6] and the references therein).
These studies have been motivated by a variety of applications,
including collaborative filtering problems where the goal is
to infer preference of users for unrated items based on a
limited number of rankings (as in, e.g., the Netflix problem
[7]). In many scenarios, it is of interest to represent the rank-
k matrix M ∈ Rn×m as M = UVT where U ∈ Rn×k

and V ∈ Rm×k. Examples include applications to clustering
[8] and sparse PCA [9]. The bi-linear parametrization of the
unknown matrix M leads to the problem of finding U and V
such that a chosen performance metric (e.g., the Frobenius
norm of the difference between the partially observed M
and UVT ) is optimized. Typically, the bi-linearity of the
representation renders the problem non-convex and, therefore,
challenging. Among the often used heuristic, alternating min-
imization where one keeps either U or V fixed and optimizes
over the other, has gained popularity [10], [6]. This is due to
the fact that each of the two subproblems is typically convex
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and hence can be solved in a computationally efficient manner,
which is of essential importance in large-scale settings.

A field that has been fundamentally transformed by the
increasing availability of large-scale datasets is that of bio-
logical and biomedical research. In particular, due to rapid
technological advancements that have dramatically brought
down its cost and improved its accuracy, high-throughput DNA
sequencing has become a ubiquitous tool and a key enabler for
personalized medicine [11]. Sequencing tasks typically gener-
ate very large data sets whose processing presents difficult
computational challenges. In this paper, we focus on one such
task – namely, the problem of reconstructing single individual
haplotypes from high-throughput sequencing data, typically
referred to as haplotype assembly – and cast it as a structured
low-rank matrix factorization problem.

Haplotypes provide information about genetic variations in
a single individual genome. Note that humans are diploid
organisms, i.e., have DNA organized in pairs of chromosomes
(each chromosome in a pair is inherited from one of the
parents). All but one of the chromosome pairs are homologous,
i.e., the chromosomes in each pair differ from each other in
a small fraction of positions. The most common variations
between two chromosomes in a homologous pair are single
nucleotide polymorphisms (SNPs), i.e., isolated variants along
the chromosome sequences. The pair of SNPs at a given
location, one from each chromosome in a pair, is referred to
as genotype. A haplotype is the sequences of SNPs that are
located on one chromosome in a homologous pair; therefore,
ordered variations between two chromosomes in a pair are
represented by a corresponding pair of haplotypes. Haplotype
information is of critical importance for personalized medicine
applications, including the discovery of an individual’s sus-
ceptibility to various diseases [12], whole genome association
studies [13], as well as the detection of genes under positive
selection and discovery of recombination patterns [14].

To infer a target genomic sequence, high-throughput se-
quencing platforms employ so-called shotgun sequencing strat-
egy where multiple copies of the target are generated and
randomly broken into relatively short fragments, and the order
of nucleotides in each fragment is determined. This procedure
effectively creates a library of overlapping reads where each
read in the library provides partial information about the chro-
mosome from which the corresponding fragment is generated.
In the haplotype assembly applications, the reference genome
is typically known and therefore a read can be mapped to the
reference (i.e., relative positions of the reads with respect to
the reference can be established). A read that stretches across
multiple SNPs of a chromosome may be used to assemble
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Fig. 1: An illustration how paired-end reads generated by next-generation sequencing platforms provide information needed
for haplotype assembly. The reads sample chromosomes/haplotypes but their origin (i.e., the chromosome from which they
originate) is not known and needs to be inferred along with the corresponding haplotypes.

the haplotype associated with that chromosome. However,
since SNPs are relatively rare – the SNP rate between two
chromosomes in a homologous pair of a human individual
is roughly 10−3 [15] – and the reads are relatively short
comprising only hundreds of bases, information they provide
may be insufficient to assemble haplotypes [16]. Fortunately,
recent sequencing technologies are capable of generating pairs
of reads that are separated by inserts of unknown content
but known length. These so-called paired-end reads help
connect information across large distances of a chromosome.
Fig. 1 illustrates how paired-end reads generated by high-
throughput sequencing platforms provide information needed
for the reconstruction of haplotypes.

While the chromosomes of diploid organisms (e.g., humans)
are organized in pairs, chromosomes of polyploid species
are organized in K-tuples (e.g., triplets, quadruplets, etc.). If
the reads were free of sequencing errors, haplotype assembly
would be straightforward and would require partitioning the
reads in K clusters (K = 2 for diploids, K = 3 for
triploids, etc.), each collecting the reads corresponding to one
of the chromosomes in a K-tuple. However, sequencing is
erroneous – the latest systems have error rates on the order
of 10−3 − 10−2. This leads to ambiguities regarding the
origin of a read and therefore renders the haplotype assembly
challenging. For this reason, the vast majority of haplotype
assembly techniques attempts to remove the aforementioned
ambiguities by either discarding or altering sequencing data,
which has led to the minimum fragment removal, minimum
SNP removal and minimum error correction formulations of
the assembly problem [17]. Most of the recent haplotype
assembly methods focus on the minimum error correction
(MEC) formulation where the goal is to find the smallest num-
ber of nucleotides in reads that need to be changed so that any
read partitioning ambiguities would be resolved. It has been
shown that finding optimal solution to the MEC formulation
of the haplotype assembly problem is NP-hard [17], [18]. In
[19], the authors used a branch-and-bound scheme to minimize
the MEC objective over the space of reads, imposing a bound
obtained by a random partition of the reads. Unfortunately,

exponential growth of the complexity of this scheme makes
it computationally infeasible even for moderate haplotype
lengths. This has motivated several suboptimal heuristics. In a
pioneering work [20], a greedy algorithm seeking the most
likely haplotypes was used to assemble haplotypes of the
first complete diploid individual genome obtained via high-
throughput sequencing. To compute posterior joint proba-
bilities of consecutive SNPs, Bayesian methods relying on
MCMC and Gibbs sampling schemes were proposed in [21]
and [22], respectively; unfortunately, slow convergence of
Markov chains that these schemes rely on limits their practical
feasibility. Following interpretation of the problem as that
of grouping reads into clusters where each cluster collects
reads originating from one of the chromosomes, a max-cut
formulation of the haplotype assembly problem was proposed
in [23]; an efficient algorithm (HapCut) that solves it and
significantly outperforms the method in [20] was developed
and widely used subsequently. A flow-graph based approach
in [24], HapCompass, re-examined fragment removal strategy
and demonstrated superior performance over HapCut. Most
recent haplotype assembly methods include a greedy max-cut
approach in [25], convex optimization program for minimizing
the MEC score in [26], and a communication-theoretic inter-
pretation of the problem solved via belief propagation in [27].
Note that intended personalized medicine applications require
near-perfect accuracy of haplotype assembly, which is yet to
be attained. Moreover, emergence of very long insert sizes in
recent technologies such as fosmid [25] enables assembly of
extremely long haplotype blocks but also imposes significant
computational burden on the existing methods listed here.
Therefore, highly accurate yet computationally efficient and
scalable haplotype assembly methods are desired.

In this paper, we formulate haplotype assembly as the
partially observed low-rank matrix factorization problem and
propose a variant of the gradient descent algorithm to solve
it at low computational cost. The algorithm explicitly im-
poses constraints on the special structure of the matrix U in
factorization M = UVT that is inherent to the haplotype
assembly problem. Our proposed framework is related to
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the setting of the interesting work in [28] which provides a
method for the completion of a matrix that consists of columns
originating from one of k spaces, each of dimension r. Such
a composition makes the data matrix high rank but imposes
a special structure. While the problem setting we consider
also involves a matrix with rows drawn from a union of
1-dimensional spaces, our problem has additional structure
– namely, matrix elements are all from a discrete set. We
exploit this structure explicitly, which we find empirically to
improve the performance, and analyze the resulting algorithms.
In addition, the algorithms in our paper are quite different from
those in [28]. The paper is organized as follows. Section II
introduces notation and presents formulation of haplotype
assembly as a partially observed low-rank matrix factoriza-
tion problem. Section III presents the structurally-constrained
gradient descent algorithm while Section IV provides analysis
of its convergence. Benchmarking of the algorithm on both
simulated and experimental data is presented in Section V
while Section VI concludes the paper. Matlab code implemen-
tation of the algorithms described in this paper is available for
download from https://sourceforge.net/projects/scgdhap/.

II. MATHEMATICAL MODEL AND PROBLEM STATEMENT

Data processing steps that precede the actual haplotype
assembly include inference of the order of nucleotides in
reads (so-called base calling [29], [30]), aligning reads to
a reference [31], [32], and SNP and genotype calling [33].
Recall that SNPs occur at a relatively low frequency, e.g., one
polymorphism in 1000 nucleotides. Therefore, long segments
of each read will not cover any SNP locations, i.e., those
segments provide no information about haplotypes and are
hence discarded. Furthermore, a read covering only a single
SNP position does not help in the process of infering a
haplotype and is hence discarded as well. The remaining
n reads (more precisely, the segments of n reads bearing
information relevant for haplotype assembly) are organized
into an n × m SNP fragment matrix R, where m denotes
the haplotype length. The ith row of R, ri, essentially collects
the haplotype-relevant information provided by the ith read. In
humans and other diploid organisms SNP sites are bi-allelic,
meaning that at each haplotype position there can be only
two out of four possible nucleotides A, C, G or T; as in
[24], [34], [27], we also consider polyploid haplotypes that
have bi-allelic SNP positions. Therefore, we can label the
nucleotides in SNP positions using binary symbols {1,−1}
where the mapping between letters and binary symbols at any
position follows arbitrary convention. For convenience, entries
in ri that do not provide any SNP information are labeled by
0. After such a labeling, the resulting matrix R consists of
ternary {−1, 0, 1} entries. Specifically, the (i, j) entry of R
is the information about the jth SNP site provided by the ith

read; if the ith read does not cover the jth SNP site, the (i, j)
entry of R is Rij = 0. Below is an illustration of the SNP
fragment matrix. Note the typical structure of the rows of R
where two “islands” of non-zero entries (corresponding to SNP
information provided by paired-end reads) are separated by
all-zeros strings (corresponding to the non-informative inserts

between the reads).

R=



0 1 0 0 −1 0
−1 1 0 1 0 0

0 0 1 0 −1 −1
1 0 0 −1 0 0
1 0 1 0 0 0
0 1 −1 0 −1 0
0 −1 0 −1 0 0
0 0 1 1 0 0


.

Let H = {h1, . . . ,hk} denote the set of haplotype se-
quences of a k-ploid organism. It is convenient to introduce a
projector operator PΩ(·) defined as

PΩ(M) =

{
Mij , if (i, j) ∈ Ω,

0, otherwise,

where Ω denotes the set of indices (i, j) such that Rij 6= 0
(i.e., Rij is an informative entry of R). Therefore, PΩ(M) is
an operator that describes how sequencing reads, each read
corresponding to a row of R, sample the haplotypes. For
instance, Rij = −1, (i, j) ∈ Ω implies that the ith read covers
the jth SNP positions and provides information encoded as
“-1”; it is unknown, however, which of the k haplotypes is
sampled by the ith read. In general, matrix R can be thought
of as being obtained by sampling, with errors, a low-rank n×m
matrix M,

M = UVT ,

where U and V are n× k and m× k matrices, respectively,
and where k denotes the ploidy (the number of haplotypes) of
an organism.1 The jth column of V, vj , is the sequence of
the jth haplotype, i.e., vj = hj ∈ H. The ith row of U, ui,
is the indicator of the origin of the ith read. More specifically,
the rows of U are the k-dimensional standard unit vectors
consisting of all 0’s except for one entry which is equal to 1.
For instance, ui = el indicates that the ith read is obtained
by sampling the lth chromosome/haplotype. Note that each
row of the (unobservable) matrix M, mi, is a full haplotype
sequence (i.e., mi ∈ H).

DNA sequencing is erroneous and thus PΩ(R) 6= PΩ(M).
We assume the model where the entries in R are perturbed
versions of the corresponding entries in M, i.e., the (i, j) ∈ Ω
entry in R, Rij , is obtained as

Rij =

{
Mij , w.p. 1− p,
−Mij , w.p. p,

where p denotes the sequencing/genotyping error rate.

The goal of haplotype assembly can now be formulated as
follows: Given the SNP fragment matrix R, find the matrix of
haplotype sequences V. This is the problem of factorizing a
noise-perturbed low-rank matrix with missing entries that we
solve with a modified gradient search algorithm described in
the following section.

1In the diploid (k = 2) case, V drops the rank since v1 = −v2 and thus
M is rank-1. In the k-ploid case (k > 2), the rank of V (and M) is k.
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III. GRADIENT DESCENT ALGORITHM FOR SNP
FRAGMENT MATRIX FACTORIZATION

As stated in Section II, given the SNP fragment matrix R,
the haplotype assembly problem can be solved by performing
the low-rank matrix factorization

M = UVT (1)

of the unobservable matrix M from its noisy sample with
missing entries, R. This can be done in a computationally
efficient manner by relying on, e.g., gradient descent. We
first describe the conventional gradient descent algorithm and
then show how imposing the special structure of U in (1)
can lead to significant improvements in the accuracy of the
factorization.

A. Basic gradient descent algorithm

Define the objective function

f(U,V) = ‖PΩ(R−UVT )‖2F , (2)

where ‖ · ‖F denotes the Frobenius norm of its argument. We
would like to find U and V that minimize f(U,V) in (2).2 Let
U0 and V0 denote the initial guesses of U and V, respectively.
Gradient descent search iteratively updates estimates of U0

and V0, computing in each iteration t = 0, 1, 2, . . .

Vt+1 = Vt − α∇f(Ut,Vt) (3)

and
Ut+1 = Ut − β∇f(Ut,Vt+1), (4)

where ∇f(Ut,Vt) and ∇f(Ut,Vt+1) denote the partial
derivatives of f(U,V) with respect to U and V evaluated
at (Ut,Vt) and (Ut,Vt+1), respectively, and where α and
β denote judiciously chosen step sizes of the iterations.
Once a stopping criterion is met, the iterative procedure is
terminated and the entries of Vtmax (where tmax denotes
the last iteration) are rounded to ±1 to yield an estimate
V̂ of the matrix of haplotypes (i.e., the (i, j) entry of V̂
is formed as V̂ij = sign(Vij,tmax

)). The described gradient
descent procedure is formalized below as Algorithm 1.

Algorithm 1 Gradient Descent

Input: The SNP matrix R
1: Initialization: Use power iteration method to generate k

left-singular vectors U0 and right-singular vectors V0.
2: repeat
3: ∇f(Vt) = −2(PΩ(R−UtV

T
t ))TUt

4: Vt+1 = Vt − α∇f(Vt)
5: ∇f(Ut) = −2PΩ(R−UtV

T
t+1)Vt+1

6: Ut+1 = Ut − β∇f(Ut)
7: until termination criterion is met.

Output: An estimate of the haplotype matrix V generated by
quantizing entries of the most recent iteration Vtmax

to
±1.

2We are primarily interested in finding V, the matrix that consists of
unknown haplotypes. For the purpose of haplotype assembly, U is a byproduct
of the optimization.

B. Modified gradient descent algorithm that exploits the spe-
cial structure of U

The conventional gradient descent algorithm described in
Section III-A does not exploit the special structure of matrix
U – in particular, it ignores the fact that the rows of U are
standard unit vectors which may have detrimental effects on
the accuracy of the method. To enforce the structure of U, we
replace the iterations (3)-(4) by

Vt+1 = Vt − α∇f(Ut,Vt) (5)

and
Ut+1 = arg min

ui∈Φ
f(U,Vt+1), (6)

where the optimization in (6) is done by exhaustively
searching over k vectors in Φ = {e1, e2, . . . , ek} =
{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} to find the most
likely Ut+1. Since the number of haplotypes k is relatively
small (typically, k ≤ 6), the complexity of the exhaustive
search (6) is very low. This procedure is formalized below
as Algorithm 2 and referred to as structurally-constrained
gradient descent. As we shall see in the results section,
the structurally-constrained gradient descent algorithm enables
significant performance improvements over the unconstrained
gradient search.

Algorithm 2 Structurally-Constrained Gradient Descent

Input: The SNP matrix R
1: Initialization: Use power iteration method to generate k

left-singular vectors U0 and right-singular vectors V0.
2: Φ = {(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, · · · , 1)}.
3: repeat
4: ∇f(Vt) = −2(PΩ(R−UtV

T
t ))TUt

5: Vt+1 = Vt − α∇f(Vt)
6: Ut+1 = arg min

ui∈Φ

∑
(i,j)∈Ω

‖PΩ(R−UtV
T
t+1)‖2F

7: until termination criterion is met.
Output: An estimate of the haplotype matrix V generated by

quantizing entries of the most recent iteration Vtmax
to

±1.

Remark 1: For fast convergence, it is important to start the
iterations with a reasonably accurate initial guess. For instance,
in the diploid (k = 2) case we initialize the algorithm with the
singular vector corresponding to the leading singular value of
the matrix R. Performing actual singular value decomposition
is roughly cubic in the dimension of R and, for large problem
dimensions typical of haplotype assembly, not feasible in
practice. However, we only need to find s, the leading singular
vector of R, and then estimate the haplotype sequence as
sign(s). This can be done in a computationally efficient way
using the power iteration technique. In particular, the power
iteration procedure requires computing in the jth iteration
vectors x(j) and y(j) defined as

x(j) = Ry(j−1), y(j) = RTx(j). (7)

To demonstrate convergence of the power iteration scheme
(7), let us denote the singular values of R as σi(R), where
σ1(R) ≥ σ2(R) ≥ ... ≥ 0. With a random initialization
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y(0), power iterations will converge to the singular vector s
if the inequality σ1(R) > σ2(R) holds strictly. The speed
of the convergence of power iterations depends on the ratio
σ2(R)/σ1(R). This can be easily shown by an analysis of
the consecutive projections of the iteratively updated vectors
x(j) onto the singular vector s. In particular, the projection of
x(j) onto s is (sTx(j))s. A closer look into the singular value
decomposition shows that sTx(j)s = (σ1(R))2sTx(j−1)s and
(x(j)−sTx(j)s) ≤ (σ2(R))2(x(j−1)−sTx(j−1)s). Therefore,

||x(j) − sTx(j)s||
||sTx(j)s||

≤
(
σ2(R)

σ1(R)

)2 ||x(j−1) − sTx(j−1)s||
||sTx(j−1)s||

≤
(
σ2(R)

σ1(R)

)2j ||x(0) − sTx(0)s||
||sTx(0)s||

.

Clearly, power iterations will converge with any initialization
if σ1(R) > σ2(R), and the speed of convergence depends on
the ratio of σ1(R) and σ2(R) – the larger the ratio, the faster
the convergence.

Remark 2: Another computationally efficient approach to
minimizing (2) is by means of alternating minimization (see,
e.g., [6] and the references therein for a recent treatment of
the subject). In alternating minimization, (2) is optimized by
alternatively finding via least-squares

Vt+1 = argmin
V

∑
(i,j)∈Ω

∥∥PΩ(R−UtV
T )
∥∥2

F

and

Ut+1 = argmin
U

∑
(i,j)∈Ω

∥∥PΩ(R−UVT
t+1)

∥∥2

F
(8)

until a termination criterion is met and then rounding the
entries in Vtmax

to ±1, where tmax denotes the last iteration.
Similar to the discussion of gradient descent in Section III.A-
B, the above described alternating minimization procedure
does not exploit the special structure of U. To enforce that
in iteration t+ 1 the rows of Ut+1 are standard unit vectors,
we can replace the least squares solution in (8) by the
exhaustive search over k vectors in Φ = {e1, e2, . . . , ek} =
{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}. The resulting
structurally-constrained alternating minimization for haplotype
assembly is formalized as Algorithm 3 below.

Algorithm 3 Structurally-Constrained Alt. Minimization

Input: The SNP matrix R
1: Initialization: Use power iteration method to generate k

left-singular vectors U0 and right-singular vectors V0.
2: Φ = {(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, · · · , 1)}.
3: repeat
4: Vt+1 = arg min

V

∑
(i,j)∈Ω

‖PΩ(R−UtV
T )‖2F

5: Ut+1 = arg min
ui∈Φ

∑
(i,j)∈Ω

‖PΩ(R−UVT
t+1)‖2F

6: until termination criterion is met.
Output: An estimate of the haplotype matrix V generated by

quantizing entries of the most recent iteration Vtmax to
±1.

Note that step 4 of Algorithm 3 involves computing the jth

row vector of Vt+1, vj,t+1, according to vj,t+1 = Ū−1
t r̄t

where the (q, l) entry of the k × k matrix Ūt is given by
Ūql,t =

∑
(i,j)∈Ω Uiq,tUil,t, the qth element of the k×1 vector

r̄t is r̄q,t =
∑

(i,j)∈ΩRijUiq,t, and where Uiq,t denotes the
(i, q) entry of Ut.

IV. CONVERGENCE OF THE
STRUCTURALLY-CONSTRAINED GRADIENT DESCENT

In this section we analyze convergence of the structurally-
constrained gradient descent algorithm (Algorithm 2 in Sec-
tion III.B) for finding factorization M = UVT from R,
the noisy observations of PΩ(M), where the matrix U is
constrained to have rows that belong to the set of unit vectors
ei ∈ Φ and the entries in V are ±1.3 As part of this analysis,
we provide a recommendation for choosing coefficient α in
(5). We begin with the following lemma.
Lemma 1: The Hessian of the scalar function f(U,V)
in (2) computed with respect to V where the rows of
U are constrained to be from Φ = {e1, e2, . . . , ek} =
{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} is a positive
semi-definite matrix.

Proof. See Appendix A.

The results of the convergence analysis are summarized in the
following theorem.
Theorem 1: Let the step size α in (5) be selected as

α = C
‖∇f(Vt)

T ‖2F
‖PΩ(Ut∇f(Vt)T )‖2F

,

where C ∈ (0, 1) is a constant. Then the solution (U∗,V∗)
found by the structurally constrained gradient search algorithm
described in Section III is a stationary point of the objective
function f(U,V) in (2).

Furthermore, if a fresh set Γ of uniformly distributed test
samples is available, then executing one iteration of the algo-
rithm from (U∗,V∗) will reveal whether or not f(U∗,V∗) is
a global minimum.

Proof. Recall that the objective function of the optimization
problem under consideration is

f(U,V) = ‖PΩ(R−UVT )‖2F .

Keeping U constant, the gradient of f(U,V) with respect to
V is readily computed as

∇f(V) = −2(PΩ(R−UVT ))TU.

In each iteration step, the algorithm computes a new value of
the matrix V as

Vt+1 = Vt − α∇f(Vt).

3As shown in the results section, structurally-constrained gradient descent
(Algorithm 2) appears to fairly consistently outperform alternating minimiza-
tion (Algorithm 3) as well as Algorithm 1 on data sets of interest. For that
reason, Algorithm 2 will be our method of choice and thus we here focus on
analyzing that method.
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The corresponding change in the value of the objective func-
tion f(U,V) is found as

f(Ut,Vt+1)− f(Ut,Vt)

= ‖PΩ(R−UtV
T
t+1)‖2F − ‖PΩ(R−UtV

T
t )‖2F

=
∥∥PΩ

(
R−Ut

(
Vt − α∇f(Vt)

)T )∥∥2

F

−
∥∥PΩ(R−UtV

T
t )
∥∥2

F

=
∥∥PΩ(R−UtV

T
t + αUt∇f(Vt)

T )
∥∥2

F

−
∥∥PΩ(R−UtV

T
t )
∥∥2

F

= 2α
∑

(i,j)∈Ω

(
R−UtV

T
t

)
ij
·
(
Ut∇f(Vt)

T
)
ij

+ α2
∑

(i,j)∈Ω

(
(Ut∇f(Vt)

T )ij
)2

= −4α
∑

(i,j)∈Ω

(
R−UtV

T
t

)
ij
·
(
UtU

T
t PΩ(R−UtV

T
t )
)
ij

+ 4α2
∑

(i,j)∈Ω

(
UtU

T
t PΩ(R−UtV

T
t )ij

)2
= −4α

∑
(i,j)

PΩ

(
R−UtV

T
t

)
ij
·
(
UtU

T
t PΩ(R−UtV

T
t )
)
ij

+ 4α2
∑

(i,j)∈Ω

(
UtU

T
t PΩ(R−UtV

T
t )ij

)2
.

(9)

For any two matrices A ∈ Rn×m and B ∈ Rn×k, it is
straightforward to show that∑

(i,j)

(BTA)2
ij =

∑
(i,j)

Aij ·BBTAij . (10)

Using identity (10), the first term in the last line of equation
(9) can be written as

− 4α
∑
(i,j)

PΩ

(
R−UtV

T
t

)
ij
·
(
UtU

T
t PΩ(R−UtV

T
t )
)
ij

= −α
∑
(i,j)

(
2UT

t PΩ(R−UtV
T
t )
)2
ij

= −α
∥∥− 2UT

t PΩ(R−UtV
T
t )
∥∥2

F

= −α
∥∥∇f(Vt)

T
∥∥2

F
(11)

Moreover, the second term in the last line of equation (9) can
be written as

4α2
∑

(i,j)∈Ω

(
UtU

T
t PΩ(R−UtV

T
t )ij

)2
= α2

∥∥PΩ

(
− 2UtU

T
t PΩ(R−UtV

T
t )
)∥∥2

F

= α2
∥∥PΩ

(
Ut∇f(Vt)

T
)∥∥2

F
.

(12)

By choosing the step size

α = C

∥∥∇f(Vt)
T
∥∥2

F∥∥PΩ(Ut∇f(Vt)T )
∥∥2

F

, (13)

where C is a constant, and substituting (11) and (12) into (9),

we readily obtain

f(Ut,Vt+1)−f(Ut,Vt) = (C2−C)
‖∇f(Vt)

T ‖4F
‖PΩ(Ut∇f(Vt)T )‖2F

.

Clearly, if C ∈ (0, 1), it must hold that

f(Ut,Vt+1)− f(Ut,Vt) ≤ 0

for every t and therefore the value of the objective function
monotonically improves with each iteration of the algorithm.
Moreover, since

Ut+1 = argmin
ui∈Φ

∑
(i,j)∈Ω

∥∥PΩ(R−UtV
T
t+1)

∥∥2

F
,

it follows that

f(Ut+1,Vt)− f(Ut,Vt) ≤ 0

at each iteration t of the algorithm. Therefore,

f(Ut+1,Vt+1)− f(Ut,Vt) ≤ 0

and the proposed structurally constrained gradient search al-
gorithm converges.

Furthermore, it is easy to see that at convergence V∗ is
a local minimum of f(U∗,V) and hence the derivative with
respect to V is 0. Thus (U∗,V∗) is a stationary (i.e., zero-
derivative) point.

Finally, suppose we had fresh samples Γ that were uni-
formly distributed and independent of Ω, U∗ and V∗. Note
that, if we take an expectation over Γ, the loss function
becomes ‖R−UVT ‖, where R is the true rank-one matrix.
This particular function, while non-convex, has the special
property that the global minimum is the only stationary point.
Thus, if the size of Γ is large enough, concentration results
will guarantee that if one iteration of the algorithm with these
new samples significantly changes the (U∗,V∗) pair, then this
pair is not the global optimum; and conversely if (U∗,V∗) do
not change significantly then they are the global optimum pair.

V. RESULTS

To obtain the numerical results in this section, we imple-
mented our algorithms in Matlab and ran the codes on a single
core processor laptop (2.7 GHz Intel Core i5, 8GB RAM).

A. Performance metrics

When the ground truth is known, as in simulation studies,
the ability of an algorithm to reconstruct a haplotype may be
measured by the reconstruction rate. In the case of diploids,
the reconstruction rate is conveniently defined as [35]

Rr=1−min(D(h1, ĥ1) +D(h2, ĥ2), D(h1, ĥ2) +D(h2, ĥ1))

2m

where D(hi, ĥj) =
m∑
l=1

d(hil, ĥ
j
l ) denotes the generalized

Hamming distance between hi and ĥj , (h1,h2) is the pair
of true haplotypes, and (ĥ1, ĥ2) is the pair of reconstructed
haplotypes. A related measure of performance is the switch
error rate (SWER), i.e., the rate at which switches occur in
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TABLE I: Comparison of the reconstruction rates of Algo-
rithm 1, Algorithm 2, and Algorithm 3 on bi-allelic diploid
haplotypes of length 700 using data from [35].

Data
error
rate

Sequenc-
ing

coverage
Algo. 1 Algo. 2 Algo. 3

0.1 5 0.6701 0.9513 0.9458
0.1 8 0.6758 0.9965 0.9942
0.1 10 0.6770 0.9986 0.9980
0.2 5 0.6233 0.7850 0.7250
0.2 8 0.6460 0.8992 0.8925
0.2 10 0.6577 0.9340 0.9291
0.3 5 0.5301 0.6070 0.5561
0.3 8 0.5547 0.6430 0.6115
0.3 10 0.5726 0.7021 0.6735

the reconstructed haplotype sequences. The switch between
positions l and l+ 1 in the ith haplotype sequence is defined
as the event ĥil = hil and ĥil+1 6= hil+1, or ĥil 6= hil and
ĥil+1 = hil+1.

Another frequently used metric for quantification of the ac-
curacy of haplotype assembly is the minimum error correction
(MEC) score. For an arbitrary k ≥ 2,

Z =

n∑
i=1

min(D(ri,h
1), · · · , D(ri,h

k)), (14)

where D(ri,h) =
∑

j:(i,j)∈Ω d(R(i, j), hj) is the generalized
Hamming distance, and where R(i, j) is the (i, j) entry in R.
Note that we define the distance d between two symbols in
the ternary alphabet {−1, 1, 0} as

d(a, b) =

{
1 if a 6= 0 and b 6= 0 and a 6= b,

0 otherwise.

The MEC score quantifies the smallest number of informative
entries (non-zeros) in R that should be changed (flipped) so
that R could be interpreted as a noise-free sample of M –
i.e., the MEC score is the most likely number of errors in
PΩ(R). Most of the existing haplotype assembly methods have
been designed with the goal of minimizing the MEC score
[36]. The algorithm that we propose in Section III essentially
greedily minimizes the MEC score. The MEC score metric is
particularly useful when dealing with experimental data where
ground truth is not known and thus the MEC score serves as
a proxy for the reconstruction rate and SWER metrics.

B. Simulation results

To benchmark the proposed algorithms, we first perform
tests on synthetic data. For the diploid case (i.e., rank-1 M
that is characteristic of, e.g., human genome), we rely on the
data sets from [35] often used for comparing methods for hap-
lotype assembly of diploids (these data sets emulate haplotype
assembly under varied coverage, sequencing error rates and
haplotype block lengths; we omit the results for extremely low
coverage). For the polyploid case (k > 2), we synthesize the

data that emulates latest sequencing technologies capable of
assembly of long haplotype blocks and use it for a comparison
with competing methods.

For the sake of compactness of the presentation, before com-
paring proposed algorithms with existing haplotype assembly
methods we first directly compare Algorithms 1, 2 and 3 from
Section III. Their accuracy when applied to the assembly of
haplotype blocks of length 700 in [35], expressed in terms
of the reconstruction rates, is shown in Table I. Note that the
sequencing coverage in Table I is the average number of times
each position in a haplotype is sampled by the sequencing
reads (i..e, the average number of reads that “cover” a SNP
position). As can be seen from Table I, structurally-constrained
gradient descent (Algorithm 2) consistently outperforms the
other two methods; we observed the same behavior in other
experiments. Therefore, for the remaining benchmarking stud-
ies, we show only the comparison of Algorithm 2 with the
existing haplotype assembly methods.

Rank-1 case: haplotype assembly for diploids. Using the
data sets from [35], we compare the performance of our
Algorithm 2 with several existing haplotype assembly methods
and report the results in Table II and Table III. Specifically, we
show the comparison of the achieved reconstruction rates with
those of HapCut [23], SpeedHap [37], FastHare [38], 2d-med
[39], MLF [40] and SHR-tree [41]. As evident from the table,
structurally-constrained gradient descent (SCGD) outperforms
all the competing methods in most of the situations (with the
exception of few scenarios characterized by extremely low
sequencing coverage). Note that the percentage of observed
entries in R in Tables II and III is 2% and 1%, respectively.

Rank-k, k > 2 case: haplotype assembly for polyploids.
For higher rank cases, we synthesize haplotype sequences
by setting the distance between each pair of adjacent SNPs
at random. In particular, the space between adjacent SNPs
is generated as an instance of a geometric random variable
with parameter pSNP (the SNP rate). We simulate sequencing
process suited for the reconstruction of long haplotype blocks
by randomly generating paired-end reads having length 500bp
and inserts having average length 104bp and standard deviation
103. We insert errors into the generated reads at the rates
typical of state-of-the-art sequencing platforms [29], [30].
Note that the genotype calling (i.e., determining most likely
pair of SNPs in each position of the haplotype sequences) is
performed using a Bayesian approach [33] (details omitted for
brevity).

Unlike the diploid case where a slew of haplotype assembly
methods exist, few techniques for the assembly of polyploid
haplotypes are available. We make a comparison with a re-
cently developed HapCompass [24] and the belief propagation
algorithm in [27], and show the results in Table IV (tetraploid
data) and Table V (hexaploid data). As seen there, our method
significantly outperforms the competing techniques in terms of
the MEC scores and runtime in all scenarios; it also achieves
the best SWERs except for scenarios with very low sequencing
coverage.
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TABLE II: Reconstruction rates for several haplotype assembly algorithms on diploid data from [35], block length m = 350.
The best results are in boldface fonts.

Data error
rate Coverage

Structurally-
constrained

grad. descent
SPH FAST 2d MLF SHR Hap-

Cut BP

0.1 5 0.9587 0.9592 0.9453 0.9130 0.8582 0.7244 0.9130 0.8670
0.1 8 0.9957 0.9843 0.9852 0.9641 0.9327 0.7416 0.9641 0.8722
0.1 10 0.9978 0.9836 0.9948 0.9781 0.9616 0.7285 0.9781 0.8727
0.2 5 0.7872 0.7287 0.7456 0.7284 0.7278 0.6318 0.8306 0.8194
0.2 8 0.8802 0.8247 0.8529 0.7912 0.7985 0.6699 0.8616 0.8607
0.2 10 0.9482 0.8555 0.8774 0.8169 0.8314 0.6682 0.8672 0.8672
0.3 5 0.6262 0.5784 0.6021 0.6061 0.6063 0.5575 0.5817 0.5386
0.3 8 0.6656 0.6294 0.6259 0.6230 0.6339 0.6043 0.6206 0.5715
0.3 10 0.6967 0.6381 0.6437 0.6340 0.6408 0.6189 0.6641 0.5956

TABLE III: Reconstruction rates for several haplotype assembly algorithms on diploid data from [35], block length m = 700.
The best results are in boldface fonts.

Data error
rate Coverage

Structurally-
constrained

grad. descent
SPH FAST 2d MLF SHR Hap-

Cut BP

0.1 5 0.9513 0.9471 0.9408 0.8805 0.8094 0.7158 0.9158 0.8704
0.1 8 0.9965 0.9848 0.9859 0.9483 0.8632 0.7429 0.8957 0.8716
0.1 10 0.9986 0.9861 0.9955 0.9649 0.8839 0.7260 0.8892 0.8741
0.2 5 0.7850 0.6810 0.7118 0.6969 0.6820 0.6171 0.8250 0.8119
0.2 8 0.8992 0.8006 0.8078 0.7512 0.7475 0.6529 0.8562 0.8545
0.2 10 0.9340 0.8127 0.8719 0.7780 0.7650 0.6748 0.8610 0.8610
0.3 5 0.6070 0.5232 0.5915 0.5961 0.5944 0.5622 0.5553 0.5224
0.3 8 0.6430 0.6158 0.6147 0.6126 0.6139 0.6113 0.5966 0.5500
0.3 10 0.7021 0.6271 0.6165 0.6219 0.6248 0.6251 0.6455 0.5881

TABLE IV: SWER rates and MEC scores for the structurally constrained gradient descent (Algorithm 2 from Section III),
HapCompass [24] and belief propagation [27] when applied to the assembly of biallelic tetraploid (k = 4) haplotypes with
block length m = 1000. The best results are in boldface fonts.

Error Rate Coverage Structurally-constrained GD HapCompass Belief Propagation
SWER MEC Time(s) SWER MEC Time(s) SWER MEC Time(s)

0.002 5 0.0927 1558 64.1 0.1105 3510 1913.3 0.0680 3641 171.3
0.002 10 0.0516 2422 142.3 0.0837 7298 1329.5 0.0645 7550 172.7
0.002 15 0.0373 3123 209.1 0.0738 12239 2482.2 0.0639 11436 386.4
0.01 5 0.0831 1729 98.4 0.1113 3461 11160.3 0.0700 3727 362.7
0.01 10 0.0584 2807 164.8 0.0807 7772 856.1 0.0691 7715 719.7
0.01 15 0.0345 3382 199.8 0.0853 12195 1666.4 0.0687 11752 810.6
0.05 5 0.0962 2374 93.7 0.0983 4873 2749.0 0.0788 4117 162.2
0.05 10 0.0632 4341 175.1 0.0807 10323 1556.4 0.0808 8534 412.7
0.05 15 0.0415 5722 285.3 0.0853 16030 1201.0 0.0855 13018 703.4
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TABLE V: SWER rates and MEC scores for the structurally constrained gradient descent (Algorithm 2 from Section III),
HapCompass [24] and belief propagation [27] when applied to the assembly of biallelic hexaploid (k = 6) haplotypes with
block length m = 1000. The best results are in boldface fonts.

Error Rate Coverage Structurally-constrained GD HapCompass Belief Propagation
SWER MEC Time(s) SWER MEC Time(s) SWER MEC Time(s)

0.002 5 0.0814 1823 81.6 0.0862 4548 8075.3 0.0762 4958 160.6
0.002 10 0.0452 3033 127.3 0.0595 9283 7277.2 0.0806 10339 161.3
0.002 15 0.0362 3864 168.3 0.0567 15007 11841.0 0.0764 15713 193.8
0.01 5 0.1035 2211 120.3 0.1564 4561 6744.2 0.0602 5009 440.8
0.01 10 0.0606 3615 193.7 0.0677 9560 3595.0 0.0676 10479 442.8
0.01 15 0.0413 5525 305.9 0.0571 14072 5041.3 0.0590 15851 432.4
0.05 5 0.0765 3021 102.3 0.0908 5285 2736.2 0.0568 5445 1063.3
0.05 10 0.0504 5724 181.7 0.0591 11107 1423.8 0.0572 11319 587.8
0.05 15 0.0452 7229 386.3 0.0595 16871 1668.1 0.0596 17115 1176.5

C. Experimental results

We further tested the performance of our proposed algo-
rithm on the experimental data generated as part of the 1000
Genomes Project, an international study meant to provide a
detailed map of human genetic variation [42]. In particular,
we used the data for an individual NA12878 (often used
to benchmark performance of different haplotype assembly
algorithms) consisting of reads generated by the 454 se-
quencing platform (the data is available for download from
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). The MEC scores
and the runtimes of the structurally constrained gradient search
are compared to those of HapCompass [24] and belief propa-
gation [27] in Table VI (for all 22 homologous chromosomes).
As can be seen there, our proposed algorithm achieves better
accuracy at significant improvement in speed as compared to
the competing schemes.

VI. CONCLUSION

We proposed and analyzed the structurally-constrained gra-
dient descent algorithm for factorizing partially observed low-
rank matrices that arise in haplotype assembly, i.e., in the
problem of reconstructing haplotypes from high-throughput
DNA sequencing reads. The rows of data matrices encountered
in this application correspond to sequencing reads; each read is
aligned to a reference and spans only those columns associated
with single nucleotide polymorphisms covered by the read.
Since the reads are much shorter than the haplotype blocks,
most of the entries in each row of the data matrix are missing
– hence the matrix is only partially observed. Moreover, each
row can be thought of as being sampled from one among
few haplotype sequences – therefore, the matrix is low rank.
Finally, since the sequencing is erroneous, the observed matrix
contains incorrect entries.

The structurally-constrained gradient descent algorithm im-
poses the special structure of the matrices in the sought
after decomposition. Specifically, one of the matrices in the
factorization consists of rows that are standard basis. We
impose that constraint in the gradient descent to achieve
significant improvement over the naive structure-unaware gra-
dient descent algorithm. We analyzed the convergence of the

TABLE VI: The MEC scores and runtimes for the structurally
constrained gradient descent (Algorithm 2 from Section III),
HapCompass [24] and belief propagation [27] when applied
to the experimental data generated by the 1000 Genomes
Project [42].

chr SCGD (Alg. 2) HapCompass BP
MEC time(s) MEC time(s) MEC time(s)

1 1300 3.35 1496 9468.7 1488 29.2
2 1763 4.84 1938 10971.0 1921 28.7
3 1434 4.27 1627 8878.1 1615 29.0
4 1663 6.74 1863 9859.5 1849 31.4
5 1330 4.37 1505 8623.8 1488 26.2
6 2326 19.21 2771 8969.2 2719 27.5
7 1262 5.60 1423 8076.2 1417 22.4
8 1177 4.01 1261 8613.7 1255 23.6
9 895 2.92 1007 6145.0 1004 17.2

10 1093 3.73 1266 6576.4 1257 22.9
11 967 3.02 1121 6042.9 1115 19.7
12 915 2.60 1052 5610.8 1042 16.9
13 883 3.11 969 4942.0 960 14.6
14 561 1.84 658 4011.5 656 11.4
15 612 1.49 690 3679.4 686 10.1
16 760 2.73 889 4431.6 885 12.2
17 795 2.83 902 2745.5 895 7.7
18 594 1.63 651 3986.7 650 11.1
19 495 1.12 523 2303.9 517 6.4
20 459 1.39 496 2897.8 491 7.9
21 331 1.05 363 2046.7 354 5.4
22 232 0.73 269 1688.6 269 4.6

proposed algorithm and extensively tested its performance on
both synthetic and experimental data, comparing it with several
state-of-the-art methods for haplotype assembly. The results
demonstrate superior performance of the developed technique
in terms of both accuracy and speed over competing schemes.

The present work is application driven and focused on
developing a practical solution to the haplotype assembly
problem and providing fundamental convergence guarantees
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of the proposed algorithm. As part of the future theoretical
work, it is of interest to establish performance guarantees by
determining bounds on the fraction of matrix entries that need
to be observed in order to provide a desired level of accuracy.
Moreover, it is of interest to explore related applications of
high-throughput DNA sequencing including tumor haplotype
assembly and viral quasispecies reconstruction.

APPENDIX

A. Proof of Lemma 1

Let Eij and Est be the m × k matrices having entry 1 in
the (i, j) and (s, t) position, respectively, and zeros elsewhere.
The Hessian of a function f(U,V) with respect to the m× k
matrix V is given by (see, e.g., [43])

HV =

m∑
i=1

k∑
j=1

m∑
s=1

k∑
t=1

(
vec

∂2f(U,V)

∂Vst∂Vij

)
⊗(vecEij)(vecEst)

T ,

(15)
where ⊗ denotes the Kronecker product and vecA denotes
a vectorized version of the matrix A, i.e., if A consists of
columns a1,a2, . . . ,al then vecA = [aT1 aT2 . . . aTl ]T .
Note that in our problem f(U,V) is a scalar function and,
therefore, so is the term

(
vec∂

2f(U,V)
∂Vst∂Vij

)
in (15). Moreover,

note that vecEij is an mk × 1 vector having entry 1 in the
((j − 1)m+ i)th position and zeros elsewhere and vecEst is
an mk × 1 vector having entry 1 in the ((t − 1) ×m + s)th

position and zeros elsewhere. Therefore, (vecEij)(vecEst)
T

is an mk×mk matrix having 1 in the ((j−1)m+i, (t−1)m+s)
position and zeros elsewhere. When i = s and t = j, this is a
diagonal matrix.

It is straightforward to show that

∂f(U,V)

∂Vst
= −2

∑
(l,s)∈Ω

(
Rls −

k∑
p=1

UlpVsp
)
Ult. (16)

Furthermore,

∂2f(U,V)

∂Vst∂Vij
=

0 if s 6= i,

2
∑

(l,i)∈Ω

UltUlj if s = i. (17)

Due to the constraint that ui is a standard basis, UltUlj = 0

for t 6= j. Therefore, ∂2f(U,V)
∂Vst∂Vij

is non-zero only if s = i and
t = j, i.e.,

∂2f(U,V)

∂Vst∂Vij
= 2

∑
(l,i)∈Ω

U2
ljδ(s− i, t− j), (18)

where

δ(s− i, t− j) =

{
1, if s = i and t = j,
0, otherwise.

Note that this second derivative is always non-negative.
Since ∂2f(U,V)

∂Vst∂Vij
is non-zero only when i = s and t = j,

(vec∂
2f(U,V)
∂Vst∂Vij

)⊗(vecEij)(vecEst)
T is not an all-zeros matrix

only when i = s and t = j; this implies that all the non-zero
terms in the (15) are diagonal matrices. Moreover, HV is a
diagonal matrix since it is obtained as a summation of diagonal
matrices. Its diagonal element ∂2f(U,V)

∂V 2
ij

in the ((j−1)×m+

i, (j − 1) × m + i) position is given by (18) and is clearly
non-negative.

As a result, the Hessian matrix HV is positive semi-definite,
as stated by the lemma.

�
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