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Abstract
Reconstructing components of a genomic mixture from data
obtained by means of DNA sequencing is a challenging prob-
lem encountered in a variety of applications including single
individual haplotyping and studies of viral communities. High-
throughput DNA sequencing platforms oversample mixture
components to provide massive amounts of reads whose rel-
ative positions can be determined by mapping the reads to a
known reference genome; assembly of the components, how-
ever, requires discovery of the reads’ origin – an NP-hard
problem that the existing methods struggle to solve with the
required level of accuracy. In this paper, we present a learning
framework based on a graph auto-encoder designed to exploit
structural properties of sequencing data. The algorithm is a
neural network which essentially trains to ignore sequencing
errors and infers the posterior probabilities of the origin of
sequencing reads. Mixture components are then reconstructed
by finding consensus of the reads determined to originate from
the same genomic component. Results on realistic synthetic
as well as experimental data demonstrate that the proposed
framework reliably assembles haplotypes and reconstructs
viral communities, often significantly outperforming state-of-
the-art techniques.

1 Introduction
Genetic makeup of a biological sample, inferred by means of
DNA sequencing, will help determine an individual’s suscep-
tibility to a broad range of chronic and acute diseases, support
the discovery of new pharmaceutical products, and personal-
ize and improve the delivery of health care. However, before
the promises of personalized medicine come to fruition, ef-
ficient methods for accurate inference of genetic variations
from massive DNA sequencing data must be devised.

Information about variations in an individual genome is
provided by haplotypes, ordered lists of single nucleotide
polymorphisms (SNPs) on the individual’s chromosomes
(Schwartz 2010). High-throughput DNA sequencing tech-
nologies generate massive amounts of reads that sample an
individual genome and thus enable studies of genetic varia-
tions (Schwartz 2010; Clark 2004; Sabeti 2002). Haplotype
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reconstruction, however, remains challenging due to limited
lengths of reads and presence of sequencing errors (Hashemi
2018). Particularly difficult is the assembly of haplotypes
in polyploids, organisms with chromosomes organized in k-
tuples with k > 2, where deep coverage is typically required
to achieve desired accuracy. This implies high cost and often
renders existing haplotype assembly techniques practically
infeasible (Motazedi 2018).

A closely related problem to haplotype assembly is that
of reconstructing viral communities. RNA viruses such as
hepatitis, HIV, and Ebola, are characterized by high muta-
tion rates which give rise to communities of viral genomes,
the so-called viral quasispecies. Determining genetic diver-
sity of a virus is essential for the understanding of its origin
and mutation patterns, and the development of effective drug
treatments. Reconstructing viral quasispecies (i.e., viral hap-
lotypes, as we refer to them for convenience) is even more
challenging than haplotype assembly (Ahn 2018) since the
number of constituent strains in a community is typically un-
known, and its spectra (i.e., strain frequencies) non-uniform.

Existing methods often approach haplotype assembly as
the task of grouping sequencing reads according to their chro-
mosomal origin into as many clusters as there are chromo-
somes. Separation of reads into clusters is rendered challeng-
ing by their limited lengths and the presence of sequencing
errors (Hashemi 2018); such artifacts create ambiguities re-
garding the origin of the reads. The vast majority of existing
haplotype assembly methods attempt to remove the afore-
mentioned ambiguity by altering or even discarding the data,
leading to minimum SNP removal (Lancia 2001), maximum
fragments cut (Duitama 2010), and minimum error correction
(MEC) score (Lippert 2002) optimization criteria. Majority
of haplotype assembly methods developed in recent years are
focused on optimizing the MEC score, i.e., determining the
smallest possible number of nucleotides in sequencing reads
that should be altered such that the resulting dataset is con-
sistent with having originated from k haplotypes (k denotes
the ploidy of an organism) (Xie 2016; Pirola 2015; Kuleshov
2014; Patterson 2015; Bonizzoni 2016). These include the
branch-and-bound scheme (Wang 2005), an integer linear
programming formulation in (Chen 2013), and a dynamic
programming framework in (Kuleshov 2014). All these tech-



niques attempt to find exact solution to the MEC score min-
imization problem; the resulting high complexity has moti-
vated search for computationally efficient heuristics. They
include the greedy algorithm in (Levy 2007) and methods
that compute posterior joint probability of the alleles in a hap-
lotype sequence via MCMC (Bansal 2008) and Gibbs (Kim
2007) sampling. A max-cut algorithm for haplotype assembly
in (Bansal 2008) is motivated by the clustering interpreta-
tion of the problem. The efficient algorithm proposed there,
HapCUT, has recently been upgraded as HapCUT2 (Edge
2017). In (Aguiar 2012), a novel flow-graph approach to hap-
lotype assembly was proposed, demonstrating performance
superior to state-of-the-art methods. More recent methods in-
clude a greedy max-cut approach in (Duitama 2011), convex
optimization framework in (Das 2015), and a communication-
theoretic motivated algorithm in (Puljiz 2016).

Haplotype assembly for polyploids (k > 2) is more chal-
lenging than that for diploids (k = 2) due to a much larger
space of possible solutions to be searched. Among the afore-
mentioned methods, only HapCompass (Aguiar 2012), SD-
haP (Das 2015) and BP (Puljiz 2016) are capable of solving
the haplotype assembly problem for k > 2. Other techniques
that can handle reconstruction of haplotypes for both diploid
and polyploid genomes include a Bayesian method HapTree
(Berger 2014), a dynamic programming method H-PoP (Xie
2016) shown to be more accurate than the techniques in
(Aguiar 2012; Berger 2014; Das 2015), and the matrix factor-
ization schemes in (Cai 2016; Hashemi 2018).

On another note, a number of viral quasispecies recon-
struction methods were proposed in recent years. Exam-
ples include ShoRAH (Zagordi 2011) and ViSpA (Astro-
vskaya 2011) that perform read clustering and read-graph
path search, respectively, to identify distinct viral compo-
nents. QuasiRecomb (Töpfer 2013) casts the problem as
the decoding in a hidden Markov model while QuRe (Pros-
peri 2012) formulates it as a combinatorial optimization.
PredictHaplo (Prabhakaran 2014) employs non-parametric
Bayesian techniques to automatically discover the number
of viral strains in a quasispecies. More recently, aBayesQR
(Ahn 2017) approached viral quasispecies reconstruction
with a combination of hierarchical clustering and Bayesian
inference while (Ahn 2018) relies on tensor factorization.

In this paper, we propose a first ever neural network-based
learning framework, named GAEseq, to both haplotype as-
sembly and viral quasispecies reconstruction problems. The
framework aims to estimate the posterior probabilities of the
origins of sequencing reads using an auto-encoder whose
design incorporates salient characteristics of the sequencing
data. Auto-encoders (Fukushima 1975) are neural networks
that in an unsupervised manner learn a low-dimensional rep-
resentation of data; more specifically, they attempt to perform
a dimensionality reduction while robustly capturing essen-
tial content of high-dimensional data (Goodfellow 2016).
Auto-encoders have shown outstanding performance in a va-
riety of applications across different fields including natural
language processing (Socher 2011), collaborative filtering
(Rianne 2017), and information retrieval (Thomas 2016), to
name a few. Typically, auto-encoders consist of two blocks:
an encoder and a decoder. The encoder converts input data

into the so-called codes while the decoder reconstructs the
input from the codes. The act of copying the input data to
the output would be of little interest without an important
additional constraint – namely, the constraint that the dimen-
sion of codes is smaller than the dimension of the input. This
enables auto-encoders to extract salient features of the in-
put data. For both the single individual and viral haplotype
reconstruction problems, the salient features of data are the
origins of sequencing reads. In our work, we propose a graph
auto-encoder architecture with an encoder featuring a soft-
max function placed after the dense layer that follows graph
convolutional layers (Masci 2011; Rianne 2017); the softmax
function acts as an estimator of the posterior probabilities
of the origins of sequencing reads. The decoder assembles
haplotypes by finding the consensus sequence for each com-
ponent of the mixture, thus enabling end-to-end solution to
the reconstruction problems.

2 Methods
2.1 Problem formulation
LetH denote a k×n haplotype matrix where k is the number
of (single individual or viral) haplotypes and n is the haplo-
type length. Furthermore, let R denote an m× n SNP frag-
ment matrix whose rows correspond to sequencing reads and
columns correspond to SNP positions. Matrix R is formed by
first aligning reads to a reference genome and then identify-
ing and retaining only the information that the reads provide
about heterozygous genomic sites. One can interpret R as
being obtained by sparsely sampling an underlying ground
truth matrix M , where the ith row of M is the haplotype
sampled by the ith read. The sampling is sparse because the
reads are much shorter than the haplotypes; moreover, the
reads may be erroneous due to sequencing errors. Following
(Ahn 2018) , we formalize the sampling operation as

[PΩ(M)]ij =

{
Mij , (i, j) ∈ Ω
0, otherwise (1)

where Ω denotes the set of informative entries in R, i.e.,
the set of (i, j) such that the jth SNP is covered by the ith
read, and PΩ is the projection operator denoting the sam-
pling of haplotypes by reads. Sequencing is erroneous and
thus [PΩ(R)]ij may differ from [PΩ(M)]ij ; in particular,
given sequencing error rate p, [PΩ(R)]ij = [PΩ(M)]ij with
probability 1− p.

Since each read samples one of the haplotypes, R =
PΩ(UH) where U denotes the m × k matrix indicating
origins of the reads in R. In particular, each row of ma-
trix U is one of the k-dimensional standard unit vectors
e

(k)
i , 1 ≤ i ≤ k, with 1 in the ith position and the remaining

entries 0. If ith read samples jth haplotype, the ith row of U
is e(k)

j . If the origins of reads were known, each haplotype
could be reconstructed by finding consensus of reads which
sample that particular haplotype. We think of the assembly
as a two-step procedure: given the SNP fragment matrix R
we first identify the read origin indicator matrix U and then
use U to reconstruct the haplotype matrix H .

To characterize the performance of haplotype assembly
methods we rely on two metrics: the minimum error correc-



tion (MEC) score, which can be traced back to (Lippert 2002),
and the correct phasing rate, also referred to as reconstruc-
tion rate. The MEC score is defined as the smallest number
of observed entries in R that need to be altered (i.e., cor-
rected) such that the resulting data is consistent with having
originated from k distinct haplotypes, i.e.,

MEC =

m∑
i=1

min
j=1,2,...,k

HD(Ri:, Hj:), (2)

where HD(·, ·) denotes the Hamming distance between its
arguments (sequences, evaluated only over informative en-
tries), Ri: denotes the ith row of R and Hj: denotes the jth
row of H . The correct phasing rate (CPR) is defined as

CPR = 1− 1

kn
(min

k∑
i=1

HD(Hi:,M(Hi:))), (3)

whereM is the one-to-one mapping from the set of recon-
structed haplotype to the set of true haplotype (Hashemi
2018), i.e., mapping that determines the best possible match
between the two sets of haplotypes. To characterize perfor-
mance of methods for reconstruction of viral quasispecies
with generally a priori unknown number of components, in
addition to correct phasing rate we also quantify recall rate,
defined as the fraction of perfectly reconstructed components
in a population (i.e., recall rate = TP

TP+FN ), and predicted
proportion, defined as the ratio of the estimated and the true
number of components in a genomic mixture (Ahn 2018).

To assemble haplotypes from a set of reads we design and
employ a graph auto-encoder. Fig. 1 (b) shows the entire
end-to-end pipeline that takes the collection of erroneous
reads and generates reconstructed haplotypes. First, the SNP
fragment matrix R is processed by the graph encoder to infer
the read origin indicator matrix U ; then, a haplotype decoder
reconstructs matrix H . The graph auto-encoder is formalized
in the next section.

2.2 Graph auto-encoders
Graph auto-encoders are a family of auto-encoders specifi-
cally designed for learning on graph-structured data (Rianne
2017; Thomas 2016). In this paper, we design graph auto-
encoders for the assembly of the components of a genomic
mixture. As in conventional auto-encoder structures, the de-
veloped architecture consists of two parts: the graph encoder
and the decoder. The graph encoder Z = f(R,A) takes the
SNP fragment matrix R and the m× n graph adjacency ma-
trix A as inputs, and outputs the m × k node embedding
matrix Z. Note that we impose constraints on the node em-
bedding matrix so that the salient features extracted by a
graph auto-encoder approximate the read origin indicator
matrix U . Such a constraint does not prevent efficient train-
ing of the auto-encoders via backpropagation. The decoder
R̂ = g(Z) is utilized to reconstruct the SNP fragment matrix
R and the haplotype matrix H from the node embedding ma-
trix Z; this implies that the decoder is essentially capable of
imputing the unobserved entries in the SNP fragment matrix.

To numerically represent information in the SNP fragment
matrix R, we encode its entries Rij using a set of 4 discrete

values – one for each of 4 possible nucleotides – where the
mapping between nucleotides and the discrete values can
be decided arbitrarily. To this end, we may simply represent
the nucleotides A, C, G and T by 1, 2, 3 and 4, respectively;
non-informative entries in each row of R, i.e., SNP posi-
tions not covered by a read, are represented by 0. Note that
the SNP fragment matrix can be represented by an undi-
rected bipartite graph G = (V,E,W) where the set of read
nodes ri ∈ A with i ∈ {1, ...,m} and the set of SNP nodes
sj ∈ B with j ∈ {1, ..., n} together form the set of vertices
V , i.e., A ∪ B = V . The weights w ∈ {1, 2, 3, 4} = W as-
signed to edges (ri, w, sj) ∈ E are the discrete values used
to represent nucleotides. With this model in place, we can
rephrase the graph encoder as Z = f(R,A1, A2, A3, A4),
where Aw ∈ {0, 1}m×n represents the graph adjacency ma-
trix for a nucleotide encoded by w. Equivalently, Aw has
1’s for the entries whose corresponding positions in R are
encoded by w. Since we are interested in imputing the unob-
served entries based on the observed entries in R instead of
simply copying the observed entries to R̂, it is beneficial to
reformulate the decoder as R̂ = g(Z,R). In other words, the
auto-encoder is trained to learn from the observed entries in
order to determine origin of reads, impute unobserved entries
of R, and reconstruct haplotypes in the genomic mixture.

2.3 Read origin detection via graph encoder

Recall the interpretation that the SNP fragment matrix R is
obtained by erroneously sampling an underlying ground truth
matrix M . This motivates development of a specific graph
encoder architecture, motivated by the ideas of the design in
(Rianne 2017), that is capable of detecting origin of sequenc-
ing reads in R via estimating the posterior probabilities of
the origin of each read.

Let Dr denote an m × m diagonal read degree matrix
whose entries indicate the number of SNPs covered by each
read, and let Ds denote an n×n diagonal SNP degree matrix
whose entries indicate the number of reads covering each
SNP. We facilitate exchange of messages between read nodes
and SNP nodes in the graph, initiating it from the set of read
nodes A; doing so helps reduce the dimensions of weights
and biases since the number of reads m is far greater than
the haplotype length n. Note that the dimension of messages
keeps reducing during the message passing procedure.

The messages from read nodes to SNP nodes are defined
as

M(1) = σ(

4∑
w=1

D−1
s ATwRW

(1)
w +B(1)

w ), (4)

where W (1)
w and B(1)

w denote the weights and biases of the
first convolutional layer for the nucleotide encoded with w,
respectively, σ denotes an element-wise activation function
such as ReLU(·) = max(·, 0), and (·)T denotes the transpose
of a matrix. The dimension of bothW (1)

w andB(1)
w is n×c(1),

where c(1) denotes the message length after the first message
passing step.

The messages from SNP nodes to read nodes are defined



Figure 1: (a) Segment of the SNP fragment matrix. Non-zero entries represent SNP information provided by sequencing reads;
labels 1-4 indicate the four nucleotides. Zero entries in a row indicate that the read does not cover corresponding SNP. In this
illustration, the first two rows represent reads originating from the same haplotype; the third and fourth reads both originated
from another haplotype; and so on. (b) The pipeline from the SNP fragment matrix to haplotypes via a graph auto-encoder.

Figure 2: A forward pass through the graph auto-encoder consisting of a stacked graph encoder that passes messages between
read and SNP nodes and constructs approximate read origin indicator matrix via the softmax function. Decoder reconstructs
haplotypes and SNP fragment matrix.

as

M(2) = σ(

4∑
w=1

D−1
r AwM(1)W

(2)
w +B(2)

w ), (5)

where W (2)
w and B(2)

w denote the weights and biases of the
second convolutional layer for the nucleotide encoded with
w, respectively. The dimension of both W (2)

w and B(2)
w is

c(1) × c(2), where c(2) denotes the message length after the
second message passing step.

Repeating message passing and stacking the convolutional
layers leads to formation of a deep model. The read nodes to
SNP nodes layer is readily generalized as

M(2i+1) = σ(

4∑
w=1

D−1
s ATwM(2i)W

(2i+1)
w +B(2i+1)

w ), (6)

where i ∈ {0, 1, 2, ...} and M(2i) = R for i = 0. The dimen-
sion of M(2i) is m × c(2i). Furthermore, the SNP nodes to
read nodes layer is generalized as

M(2i) = σ(

4∑
w=1

D−1
r AwM(2i−1)W

(2i)
w +B(2i)

w ), (7)

where i ≥ 1. The dimension of M(2i−1) is n× c(2i−1). Note
that the messages are passed from read nodes to SNP nodes
when the subscript of M is odd, and otherwise traverse in the
opposite direction.

Equation (6) and (7) specify the graph convolutional layer
while the dense layer is defined as

O = σ(M(l)Wd +Bd), (8)



where O denotes the output of the dense layer, Wd and Bd
are the weights and biases of the dense layer, respectively,
M(l) is the output of the last graph convolutional layer, and
l represents the number of graph convolutional layers. The
dimension of Wd is c(l) × k and the dimension of O and Bd
is m × k, where k denotes the ploidy (i.e., the number of
components in a genomic mixture).

To find Z which approximates the read origin indicator
matrix U (i.e., Z with each row close in the l2-norm sense
to a k-dimensional standard basis vector), we employ the
softmax function

Zij =
eβOij∑k
j=1 e

βOij
, (9)

where in our experiments we set β to 200. Having estimated
read origins by the node embedding matrix Z, the reads can
be organized into k clusters. This enables straightforward
reconstruction of haplotypes by determining the consensus
sequence for each cluster.

2.4 Haplotype decoder
Thus far, we have conveniently been representing alleles as
the numbers in {1, 2, 3, 4}. It is desirable, however, that in
the definition of a loss function the distance between nu-
merical values representing any two alleles is identical, no
matter which pair of alleles is considered; this ensures the
loss function relates to the MEC score – the metric of interest
in haplotype assembly problems. Following (Ahn 2018), we
define the loss function of the auto-encoder as the squared
Frobenius norm of the difference between a one-hot SNP
fragment matrix R and the reconstructed matrix R̂ = ZH
at the informative positions, i.e., L = 1

2 ||PΩ(R− ZH)||2F ,
where R ∈ {0, 1}m×4n and H ∈ {0, 1}k×4n are formed
by substituting discrete values w ∈ {1, 2, 3, 4} by the set
of four dimensional standard basis vectors e(4)

i , 1 ≤ i ≤ 4.
With such a notational convention, the proposed loss func-
tion approximates the MEC score; it only approximates the
score, rather than coincides with it, because Z is an approx-
imation of the read-origin matrix U . Therefore, the graph
auto-encoder is trained to approximately minimize the MEC
score. Fig. 2 illustrates the data processing pipeline that takes
as inputs reads in the SNP fragment matrix and produces the
matrix of haplotypes as well as imputes missing entries in the
SNP fragment matrix. The proposed graph auto-encoders for
haplotype assembly and viral quasispecies reconstruction are
formalized as Algorithm 1 and Algorithm 2, respectively. For
the viral quasispecies reconstruction problem, the number of
clusters k is typically unknown; detailed strategy based on
(Ahn 2018) for the automated inference of k can be found in
Supplementary Document B.

3 Results
The hyper-parameters of GAEseq are determined by train-
ing on 5 synthetic triploid datasets with coverage 30× and
validated on different 5 synthetic triploid datasets with the
same coverage. The results reported in this section are ob-
tained on test data. Detailed description of the computational

Algorithm 1 Graph auto-encoder for haplotype assembly
1: Input: SNP fragment matrix R, the number of experi-

ments nexp and the number of haplotpyes k
2: Output: Reconstructed haplotypes H
3: while nexp 6= 0 do
4: Initialize W (i)

w , B(i)
w , Wd and Bd using Xavier initializa-

tion where w ∈ {1, 2, 3, 4} and i ∈ {1, 2}
5: for nepoch = 1 to 100 do
6: M(1) ← σ(

∑
w D

−1
s ATwRW

(1)
w + B

(1)
w )

7: M(2) ← σ(
∑
w D

−1
r AwM(1)W

(2)
w + B

(2)
w )

8: O ← σ(M(2)Wd +Bd)

9: Zij ← e
βOij∑k

j=1 e
βOij

with β = 200

10: CalculateH by majority voting
11: L ← 1

2
||PΩ(R− ZH)||2F

12: Record reconstructed haplotypes and the MEC score
13: UpdateW (i)

w ,B(i)
w ,Wd andBd using Adam Optimizer

where w ∈ {1, 2, 3, 4} and i ∈ {1, 2}
14: end for
15: nexp ← nexp − 1
16: end while
17: Output the reconstructed haplotypes H corresponding to

the lowest MEC score

Algorithm 2 Graph auto-encoder for viral quasispecies re-
construction

1: Input: SNP fragment matrix R, the number of experi-
ments nexp, the MEC improvement rate threshold η and
the estimated initial number of components k0

2: Output: Reconstructed viral haplotypes H and the in-
ferred frequencies

3: Initial τ ← 0, MECflag← 0 and kτ ← k0

4: while τ = 0 or kτ = kτ − 1 do
5: for k ∈ {kτ , kτ + 1} do
6: Run Algorithm 1 with k
7: end for
8: if MECimpr(kτ ) ≤ η then
9: kτ+1 ← b(kτ + max{1, ki})/2c, {i ∈
{1, · · · , τ -1} : ki ≤ kτ}; MECflag← 1

10: else
11: if MECflag = 0 then
12: kτ+1 ← 2kτ
13: else
14: kτ+1 ← b(kτ +min ki)/2c, {i ∈ {1, · · · , τ -1} :

ki > kτ}
15: end if
16: end if
17: τ ← τ + 1
18: end while
19: Output the viral quasispecies H with k = kτ + 1 and the

inferred frequencies

platform and the choice of hyper-parameters can be found in
Supplementary Document A.



Table 1: Performance comparison on biallelic Solanum Tuberosum semi-experimental data.
MEC CPR

Coverage Mean SD Mean SD

15

GAEseq 8.200 4.686 0.822 0.048
HapCompass 100.700 66.150 0.763 0.046
H-PoP 28.700 32.667 0.783 0.066
AltHap 59.100 28.125 0.709 0.054

25

GAEseq 8.400 4.719 0.831 0.081
HapCompass 124.800 132.156 0.810 0.063
H-PoP 33.800 47.434 0.798 0.046
AltHap 92.600 83.649 0.756 0.068

35

GAEseq 10.700 3.234 0.857 0.087
HapCompass 217.400 174.135 0.775 0.072
H-PoP 41.700 53.971 0.823 0.094
AltHap 164.000 101.583 0.754 0.093

Figure 3: The precision-recall curves for Solanum Tuberosum semi-experimental data with coverage 15×, 25× and 35×

Table 2: Performance comparison of GAEseq, PredictHap, TenSQR and aBayesQR on a real HIV-1 5-virus-mix data. Genes
where all the strains are perfectly reconstructed are denoted as boldface.

p17 p24 p2-p6 PR RT RNase int vif vpr vpu gp120 gp41 nef
GAEseq PredProp 1 1 1 1 1.2 1 1 1 1 1.2 1 1 1

CPRHXB2 100 99.4 100 100 100 100 100 100 100 100 96.2 96.7 100
CPR89.6 100 99.4 100 100 100 100 100 100 100 99.2 99.4 100 98.2

CPRJR−SCF 100 100 100 100 100 100 100 100 100 100 99.9 100 99.3
CPRNL4−3 100 100 100 100 100 100 100 100 100 100 100 100 99.8

CPRY U2 100 100 100 100 100 100 100 100 100 100 99.6 100 98.1
PredictHap PredProp 1 0.6 1 1 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8

CPRHXB2 100 0 100 100 100 98.9 100 100 100 93.2 0 0 0
CPR89.6 100 100 100 100 100 100 99.8 100 100 0 97.8 100 98.8

CPRJR−SCF 100 100 100 100 100 100 100 100 100 100 99.7 100 100
CPRNL4−3 100 99.1 100 100 100 100 100 100 100 100 100 100 100

CPRY U2 100 0 100 100 100 0 0 0 100 100 98.6 100 100
TenSQR PredProp 1 1.6 1 1 1.4 1 1 1 1 1.6 2.2 1.2 0.8

CPRHXB2 100 98.9 100 100 99.2 100 100 100 100 92.8 96.0 99.0 0
CPR89.6 100 100 100 100 98.0 100 100 100 100 94.0 97.2 100 95.7

CPRJR−SCF 100 100 100 100 100 100 100 100 100 100 98.3 97.7 99.8
CPRNL4−3 100 99.3 100 100 99.5 100 100 100 100 100 99.8 99.5 99.7

CPRY U2 100 99.3 100 99.7 99.7 100 100 100 100 100 94.9 100 98.6
aBayesQR PredProp 1 1 1 1 1 1 1 1 1.2 1 0.8 0.8 1.2

CPRHXB2 100 99.4 100 100 98.5 100 99.9 100 100 99.6 98 0 95.8
CPR89.6 100 98.7 100 100 98.6 100 100 100 100 92 96.5 98.9 95.5

CPRJR−SCF 100 99.6 100 100 99 100 100 100 100 98.8 97.7 99.1 98.2
CPRNL4−3 100 100 100 100 98.9 100 100 99.8 100 100 96.3 98.8 100

CPRY U2 100 99.7 100 100 99.2 100 99.5 99.7 100 100 0 98.6 99.2



3.1 Performance comparison on biallelic
Solanum Tuberosum semi-experimental data

We first evaluate performance of GAEseq on realistic simula-
tions which, for convenience and to distinguish from perhaps
more rich synthetic and experimental data discussed in sup-
plementary documents, we refer to as ”semi-experimental
data”. The semi-experimental data is obtained by simulating
mutations, shotgun sequencing procedure, read alignment
and SNP calling steps in a fictitious experiment on a single
individual Solanum Tuberosum (polyploid with k = 4). De-
tails on how exactly the semi-experimental data is generated
and processed can be found in Supplementary Document C.
We compare the performance of GAEseq on this data with
publicly available software HapCompass (Aguiar 2012), an
algorithm that relies on graph-theoretic models to perform
haplotype assembly, H-PoP (Xie 2016), a dynamic program-
ming method, and AltHap (Hashemi 2018), a method based
on tensor factorization. The performance of different methods
is evaluated in terms of the MEC score and CPR. All the con-
sidered softwares were executed with their default settings,
i.e. we follow instructions in the papers they were originally
proposed; there are no parameter tuning steps required for
these methods. We report the MEC scores and CPR achieved
by the considered algorithms in Table 1. For each sequenc-
ing coverage, the mean and standard deviation (SD) of the
adopted metrics are evaluated over 10 samples. As shown in
the table, GAEseq achieves the lowest average MEC score as
well as the lowest standard deviation of the MEC score at all
sequencing coverage settings. Moreover, GAEseq achieves
the highest average CPR at all coverage settings. Note that
the MEC score increases with sequencing coverage since
higher coverage implies more reads. The results demonstrate
that the adopted graph abstraction enables GAEseq to achieve
high accuracy of the reconstruction task by learning poste-
rior probabilities of the origins of reads. Fig. 3 shows the
precision-recall curves for data with coverage 15×, 25× and
35×. Note that GAEseq performs very accuratly at high se-
quencing coverage while its performance deteriorates at low
coverage. An extended version of Table 1 with additional
coverage settings is in Supplementary Document C.

We further test the performance of GAEseq on simulated
biallelic diploid, polyallelic triploid and tetraploid data, and
on real Solanum Tuberosum data; in addition to H-Pop, Al-
tHap and HapCompass, comparisons on diploid data also
include performance of HapCUT2 (Edge 2017). GAEseq
outperforms all the considered algorithms by achieving lower
MEC score and higher CPR. Further details can be found in
Supplementary Document D and E.

3.2 Performance comparison on gene-wise
reconstruction of real HIV-1 data

The real HIV-1 data with pairwise distances between 2.61%−
8.45% and relative frequencies between 10% and 30% is an
in vitro viral population of 5 known HIV-1 strains gener-
ated by Illumina’s MiSeq Benchtop Sequencer (Di 2014).
These reads are then aligned to the HIV-1HXB2 reference
genome. According to (Di 2014), we remove reads of length
lower than 150bp and mapping quality scores lower than

60 for better results. We compare the performance of GAE-
seq on gene-wise reconstruction of the HIV population to
that of other state-of-the-art methods such as PredictHaplo
(Prabhakaran 2014), TenSQR (Ahn 2018) and aBayesQR
(Ahn 2017), following their default settings. For fair bench-
marking, we use the same dataset as (Ahn 2018) which is
why the results of our benchmarking tests match those in
(Ahn 2018). The correct phasing rate and the inferred strain
frequencies are evaluated for all reconstructed strains be-
cause the ground truth for the 5 HIV-1 strains is available at
(https://bmda.dmi.unibas.ch/software.html). Following (Ahn
2018), we evaluate predicted proportion by setting the pa-
rameter η needed to detect the number of HIV-1 strains to
0.09. The results in Table 2 show that GAEseq perfectly
reconstructs all 5 HIV-1 strains in 8 genes while other meth-
ods correctly reconstruct components in 5 or 6 genes. This
demonstrates that GAEseq’s inference of read origins based
on posterior probabilities enables high accuracy of the recon-
struction tasks. Regarding the 5 genes where GAEseq and
other methods do not achieve perfect reconstruction (p24,
vpu, gp120, gp41, nef): closer examination of viral strains
reconstructed by various methods suggests translocations
of short viral segments within those 5 genes in the “gold
standard” dataset created by (Di 2014). Those short transloca-
tion cause mismatch between the actual ground truth and the
sequences (Di 2014) generated. Further results on reconstruc-
tion of HIV viral communities can be found in Supplement
Document F.

4 Conclusions
In this article, we introduce auto-encoders to the problem of
reconstructing components of a genomic mixture from high-
throughput sequencing data that is encountered in haplotype
assembly and analysis of viral communities. In particular, a
graph auto-encoder is trained to group together reads that
originate from the same component of a genomic mixture
and impute missing information in the SNP fragment matrix
by learning from the available data. The graph convolutional
encoder attempts to discover origin of the reads while the
decoder aims to reconstruct haplotypes and impute missing
information, effectively correcting sequencing errors. Studies
on semi-experimental data show that GAEseq can achieve
significantly lower MEC scores and higher CPR than the
competing methods. Benchmarking tests on simulated and
experimental data demonstrate that GAEseq maintains good
performance even at low sequencing coverage. Studies on
real HIV-1 data illustrate that GAEseq outperforms existing
state-of-the-art methods in viral quasispecies reconstruction.
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Supplementary Document A : Computational
settings
The models were implemented on a 3.70GHz Intel i7-8700K
processor, 2 NVIDIA GeForce GTX 1080Ti computer graph-
ics cards and 32GB RAM. Randomness of the initial weights
of the auto-encoder may cause the neural network to remain
in a local minimum during training. To overcome this, we run
GAEseq multiple times and choose the result with the lowest
MEC score. Given a SNP fragment matrix, we run GAEseq
200 times, train 200 models and get 200 reconstructed haplo-
type matrix candidates; the algorithm selects the candidate
corresponding to the lowest MEC score automatically. In the
GAEseq software, users can specify how many times to run
the algorithm; the software will run automatically as opposed
to manually running GAEseq multiple times.

As for hyperparameters, the number of graph convolu-
tional layers in the auto-encoder was set to 2 (in particular,
one read-nodes-to-SNP-nodes layer and one SNP-nodes-to-
read-nodes layer); dimension of messages reduces linearly
during message passing between the layers. For example,
if the number of reads is m, the haplotype length is n, the
ploidy is k and we use 2 graph convolutional layers and
a dense layer, the dimensions of the weight and bias ma-
trix of the first and second layer are n ×

⌈
(n− n−k

3 )
⌉

and⌈
(n− n−k

3 )
⌉
×
⌈
(n− 2× n−k

3 )
⌉
, respectively. The dimen-

sions of the weight and bias matrix of the denser layer are
set to

⌈
(n− 2× n−k

3 )
⌉
× k and m × k, respectively. We

use the Adam optimizer (Diederik 2015), set the step size
to 0.0001, and set all other parameters to their default val-
ues in Tensorflow. We also use Xavier initialization (Xavier
2010) with default settings and the number of epoches set
to 100. In our studies, we found that an architecture with
two graph convolutional layers achieves significantly better
results than state-of-the-art haplotype assembly methods. To
ensure the model generalizes well to unobserved entries, we
added dropout regularization to message passing between the
layers; for each layer, the dropout probability is 0.1. For all
experiments on viral quasispecies reconstruction, the initial
number of clusters k0 is set to 2.

Supplementary Document B : Determining the
number of components in a viral quasispecies
When reconstructing haplotypes sampled by a collection of
sequencing reads, GAEseq requires as input the number of
haplotypes, k. While the ploidy of an individual organism in
the haplotype assembly problem is known a priori, cardinality
of a viral community needs to be estimated. To determine k,
we examine the improvement rate of the MEC score defined
as

MECimpr(k) =
MEC(k)−MEC(k + 1)

MEC(k)
. (1)

Recall that the MEC score is defined as the smallest number
of the observed entries in R that need to be altered such that
the resulting data is consistent with having originated from k
distinct haplotypes. The score decreases monotonically with
k; however, once k reaches the actual number of components,
the improvement rate of the MEC score (MECimpr) satu-
rates. To find the saturation point, we compare MECimpr

with a pre-defined threshold. Following (Ahn 2018), the num-
ber of components is determined via binary search. Specifi-
cally, starting from an initial k0, the number of components
is updated as kτ ← 2kτ−1 until MECimpr(kτ ) ≤ η; at
this point, the number of components starts to decrease as
kτ+1 ← b(kτ+max{1, ki})/2cwhere {i ∈ {1, · · · , τ−1} :
ki ≤ kτ}. Once MECimpr(kτ ) > η, the number of compo-
nents increases again as kτ+1 ← b(kτ +min ki)/2c where
{i ∈ {1, · · · , τ − 1} : ki > kτ}. If kτ = kτ−1, the search
procedure stops by assigning kτ+1 ← kτ + 1 which is the
estimated number of strains. The recommended choice of
the threshold η is discussed in (Ahn 2017) where the es-
timation of the number of components via MECimpr was
demonstrated to be robust with respect to the choice of the
threshold.

Supplementary Document C : Performance
comparison on biallelic Solanum Tuberosum
semi-experimental data

The semi-experimental data is obtained by simulating mu-
tations, shotgun sequencing procedure, read alignment and
SNP calling steps in an experiment on a single individual
Solanum Tuberosum. In particular, we use Haplogenerator
(Motazedi 2018) to generate haplotypes by introducing inde-
pendent mutations that follow the lognormal distribution of
a randomly selected genome region from Solanum Tubero-
sum chromosome 5 (Potato Genome Sequencing Consortium
2011) of length 5000 bp. The mean distance between neigh-
boring SNPs and the standard deviation (SD) are set to 21 bp
and 27 bp, respectively, as previously suggested by (Motazedi
2018). Due to Haplogenerator’s limitations, we constrain mu-
tations to transitions and do not consider transversions (i.e.,
mutations are constrained to be between A and C and between
G and T). 2× 250 bp-long Illumina’s MiSeq reads of inner
distance 50 bp and standard deviation 10 bp are generated
to uniformly sample haplotypes using ART software (Huang
2012) with default setting. Following this step, the generated
reads are aligned to the reference genome using the BWA-
MEM algorithm (Li 2009); the reads having mapping quality
score lower than 60 or being shorter than 70 bp are discarded.
SNPs are called if, at any given site, the abundance of a minor
allele exceeds a predetermined threshold; the SNP fragment
matrix is formed by collecting all such heterozygous sites.
Seven different sets of semi-experimental data obtained by
sampling at varying coverage (10×, 15×, 20×, 25×, 30×,
35× and 40×) are generated; each set consists of 10 samples.
We first generate genome regions of length 5000 bp by par-
titioning the Solanum Tuberosum chromosome 5 and then
randomly select 70 among them (generated haplotypes and
reads are different for each sample). The sequencing error
rate is automatically set by the built-in quality profiles of ART
inferred from large amounts of recalibrated sequencing data
(Huang 2012). Table 1 shows the performance comparison
of GAEseq, AltHap, HapCompass and H-PoP on biallelic
Solanum Tuberosum semi-experimental data.



Table 1: Performance comparison of GAEseq, AltHap, HapCompass and H-PoP on biallelic Solanum Tuberosum semi-
experimental data.

MEC CPR
Coverage Mean SD Mean SD

10

GAEseq 18.500 4.552 0.848 0.074
HapCompass 100.300 43.584 0.769 0.039
H-PoP 19.700 25.254 0.803 0.086
AltHap 64.100 32.953 0.727 0.072

15

GAEseq 8.200 4.686 0.822 0.048
HapCompass 100.700 66.150 0.763 0.046
H-PoP 28.700 32.667 0.783 0.066
AltHap 59.100 28.125 0.709 0.054

20

GAEseq 16.800 15.873 0.862 0.062
HapCompass 95.600 53.883 0.795 0.047
H-PoP 30.500 37.023 0.791 0.078
AltHap 82.100 56.658 0.737 0.068

25

GAEseq 8.400 4.719 0.831 0.081
HapCompass 124.800 132.156 0.810 0.063
H-PoP 33.800 47.434 0.798 0.046
AltHap 92.600 83.649 0.756 0.068

30

GAEseq 27.200 19.887 0.914 0.033
HapCompass 306.800 187.934 0.796 0.081
H-PoP 34.200 32.798 0.879 0.088
AltHap 263.000 499.659 0.762 0.133

35

GAEseq 10.700 3.234 0.857 0.087
HapCompass 217.400 174.135 0.775 0.072
H-PoP 41.700 53.971 0.823 0.094
AltHap 164.000 101.583 0.754 0.093

40

GAEseq 16.400 7.333 0.835 0.034
HapCompass 208.000 176.699 0.833 0.070
H-PoP 30.4 28.487 0.823 0.102
AltHap 195.8 281.641 0.762 0.084

Supplementary Document D : Performance
comparison on simulated biallelic diploid data and
polyallelic triploid and tetraploid data.
To further test GAEseq, we evaluate its performance on syn-
thetic data. Once again we use Haplogenerator (Motazedi
2018) to generate haplotypes of a randomly synthesized refer-
ence genome of length 5000 bp. The mean distance between
neighboring SNPs and the standard deviation (SD) are set
to 5 bp and 3 bp respectively, creating haplotype blocks of
length about 500. All the possible mutations were allowed
and set to be equally likely, leading to not only biallelic but
also polyallelic SNPs in the synthesized haplotype data. Il-
lumina’s MiSeq read generation, read alignment and SNP
calling procedures are implemented following the same pro-
cedure as in the case of semi-experimental data from Sec-
tion 3.1. The data synthesized in this fashion consists of 24
different sets, each with 10 samples, as we explore different
ploidy (k = 2, 3 and 4) and sequencing coverage (5×, 10×,
15×, 20×, 25×, 30×, 35× and 40×).

For the diploid synthetic data sets, we represent an allele
by 0 if it coincides with the corresponding reference allele
and by 1 if it is an alternative allele. SNP positions with only
alternative alleles are removed. In addition to H-PoP, Hap-

Compass and AltHap, we also compare GAEseq with Hap-
CUT2 (Edge 2017); by design, use of HapCUT2 is limited to
haplotype assembly of diploids. The metrics of performance
are the previously introduced MEC score and CPR. Table 2
shows the mean and standard deviation of the MEC score
and CPR for diploid data. The results are evaluated over 10
samples for each combination of ploidy and coverage. GAE-
seq achieves the lowest average MEC score and the lowest
standard deviation of the MEC score for almost all coverage
settings; its performance is followed by those of H-PoP, Hap-
Compass, HapCut2 and AltHap. The average CPR achieved
by GAEseq is very close to 1 for all coverage settings, in-
dicating that GAEseq is able to near-perfectly reconstruct
haplotypes of diploid species even when the coverage is very
low; its performance is followed by those of H-PoP, Hap-
Cut2, HapCompass and AltHap. When the coverage is 20×,
the average CPR achieved by GAEseq is 100% while it is
approximately 98.9%, 97.2%, 96.1% and 74.3% for H-PoP,
HapCut2, HapCompass and AltHap, respectively.

For the polyploid synthetic data sets, both H-PoP and Hap-
Compass are restricted to reconstruction of biallelic haplo-
types and are not applicable to the assembly of polyallelic
ones. Furthermore, recall that HapCUT2 can only be ap-



Table 2: Performance comparison of GAEseq, HapCut2, HapCompass, H-PoP and AltHap on simulated biallelic diploid data.

MEC CPR
Coverage Mean SD Mean SD

5

GAEseq 23.300 4.165 0.996 0.002
HapCUT2 110.500 23.922 0.975 0.006
HapCompass 87.500 25.903 0.965 0.010
H-Pop 40.000 30.551 0.989 0.011
AltHap 884.200 659.565 0.699 0.204

10

GAEseq 30.700 6.667 0.999 0.001
HapCUT2 213.600 63.132 0.980 0.005
HapCompass 159.600 58.329 0.974 0.005
H-Pop 34.600 6.736 0.997 0.004
AltHap 583.900 948.344 0.796 0.218

15

GAEseq 47.800 8.587 0.999 0.001
HapCUT2 339.800 59.066 0.978 0.003
HapCompass 268.300 67.003 0.971 0.005
H-Pop 47.900 9.539 0.998 0.002
AltHap 342.900 379.213 0.852 0.169

20

GAEseq 70.900 10.754 1.000 0.001
HapCUT2 519.400 57.386 0.972 0.010
HapCompass 408.000 81.067 0.961 0.018
H-Pop 129.700 191.788 0.989 0.030
AltHap 668.400 579.261 0.787 0.201

25

GAEseq 85.200 16.130 1.000 0.001
HapCUT2 613.000 157.786 0.977 0.006
HapCompass 460.700 97.637 0.968 0.007
H-Pop 85.700 17.192 0.998 0.003
AltHap 1151.600 649.058 0.743 0.150

30

GAEseq 97.800 8.954 1.000 0.000
HapCUT2 685.300 180.714 0.979 0.006
HapCompass 591.600 150.400 0.968 0.009
H-Pop 98.000 8.743 0.999 0.001
AltHap 554.000 612.292 0.871 0.185

35

GAEseq 107.300 8.138 1.000 0.001
HapCUT2 827.600 202.643 0.978 0.006
H-Pop 702.200 180.647 0.968 0.007
H-Pop 107.900 8.006 0.999 0.001
AltHap 668.800 730.814 0.891 0.146

40

GAEseq 124.000 10.499 1.000 0.001
HapCUT2 1015.400 219.442 0.977 0.006
HapCompass 896.500 204.603 0.965 0.008
H-Pop 124.500 10.277 0.999 0.001
AltHap 1073.300 1099.181 0.847 0.184

plied to diploid haplotypes. We therefore limit performance
comparison of GAEseq on polyploid synthetic data to only
AltHap; Tables 3 and 4 illustrate the mean and standard devi-
ation of the MEC score and CPR for triploid and tetraploid
data, respectively. The results are evaluated over 10 sam-
ples for each combination of ploidy and coverage. As can
be seen in these tables, GAEseq outperforms AltHap for all
ploidy and coverage settings. As shown in Table 3, GAE-
seq performs well on triploid data, achieving 92% average
CPR and relatively small standard deviation even for the low
coverage of 5×; at the same time, performance of AltHap
deteriorates rapidly with increased ploidy, achieving 72% av-

erage CPR while GAEseq achieves 98.2% at coverage 30×.
As illustrated in Table 4, in applications to tetraploid data
the performance of GAEseq starts to gracefully deteriorate –
when the coverage is 10×, GAEseq achieves average CPR
of approximately 80% while in the same scenario AltHap
achieves average CPR of approximately 65%. When the cov-
erage is increased to 40×, GAEseq achieves average CPR of
approximately 87.8% while AltHap achieves average CPR
of approximately 76.2%.



Table 3: Performance comparison of GAEseq and AltHap on simulated polyallelic triploid data.

MEC CPR
Coverage Mean SD Mean SD

5
GAEseq 103.400 51.379 0.920 0.047
AltHap 1908.500 237.324 0.559 0.059

10 GAEseq 112.800 45.917 0.958 0.037
AltHap 1769.300 948.754 0.760 0.091

15 GAEseq 165.800 106.999 0.945 0.073
AltHap 1058.100 864.563 0.796 0.123

20 GAEseq 241.300 159.657 0.959 0.047
AltHap 1287.100 578.507 0.682 0.070

25 GAEseq 314.900 158.326 0.934 0.070
AltHap 1430.200 757.482 0.775 0.093

30 GAEseq 292.400 203.242 0.974 0.040
AltHap 2133.200 1082.576 0.729 0.109

35 GAEseq 306.200 196.918 0.982 0.037
AltHap 2928.700 869.617 0.723 0.075

40 GAEseq 502.200 247.380 0.922 0.088
AltHap 2943.600 1113.480 0.737 0.104

Table 4: Performance comparison of GAEseq and AltHap on simulated polyallelic tetraploid data.

MEC CPR
Coverage Mean SD Mean SD

5
GAEseq 266.700 46.371 0.739 0.041
AltHap 2641.700 410.159 0.544 0.056

10 GAEseq 415.100 74.608 0.800 0.051
AltHap 2807.200 938.668 0.658 0.075

15 GAEseq 592.200 112.282 0.798 0.054
AltHap 2742.500 1055.672 0.718 0.081

20 GAEseq 628.900 245.841 0.843 0.047
AltHap 1929.700 1008.766 0.729 0.063

25 GAEseq 881.900 189.987 0.845 0.058
AltHap 1987.100 1091.893 0.779 0.084

30 GAEseq 944.100 182.440 0.848 0.041
AltHap 2265.200 1277.366 0.759 0.051

35 GAEseq 815.900 295.195 0.866 0.063
AltHap 3906.400 1131.654 0.747 0.056

40 GAEseq 949.500 319.238 0.878 0.046
AltHap 3775.300 1036.702 0.762 0.075

Supplementary Document E : Performance
comparison on real Solanum Tuberosum data

We further test the performance of GAEseq on real potato
data (accession SRR6173308) at Solanum Tuberosum chro-
mosome 5 (Potato Genome Sequencing Consortium 2011).
The 10 samples of real potato data are generated by first
randomly selecting 10 genome regions of length varying
from 5032 to 7573 and then aligning the Illumina HiSeq
2000 paired-end reads to the selected genome regions. Af-
ter the read alignment step using the BWA-MEM algorithm
(Li 2009), the SNP calling step is implemented to create the
SNP fragment matrix. Reads having mapping quality score
lower than 60 or shorter than 70 bp are discarded. Since the
ground truth haplotypes are not available for this dataset, we

only evaluate the performance of GAEseq and the compet-
ing methods in terms of the MEC score. Table 5 compares
the performance of GAEseq, AltHap, HapCompass and H-
PoP averaged over 10 selected regions of the real Solanum
Tuberosum data. As can be seen from the table, GAEseq
outperforms all the competing schemes in terms of both the
average MEC score and its standard deviation, achieving
379.8 average MEC score. GAEseq is followed by H-PoP
and AltHap while HapCompass achieves the highest average
MEC score.



Table 5: Performance comparison of GAEseq, AltHap, Hap-
Compss and H-PoP on the real Solanum Tuberosum data.

MEC
Mean SD

GAEseq 379.8 271.61
HapCompass 2726 2393.7
H-PoP 409.5 282.24
AltHap 742.1 469.5

Supplementary Document F : Further results on
reconstruction of HIV viral communities
Table 6 shows the gene-wise reconstruction results on the
real HIV-1 data that include inferred frequencies (omitted
from Table 2 in the main paper for brevity).

We further evaluate the performance of GAEseq on the
4036bp long gag-pol region. Following (Ahn 2018), we di-
vide the gag-pol region into overlapping blocks, reconstruct
the viral components in each block independently, and com-
bine the results to reconstruct the full region of interest.
Specifically, the region is divided into a sequence of blocks
of length 500bp where the consecutive blocks overlap by
250bp. We run GAEseq to perform reconstruction of viral
components in each of the total 18 blocks and merge the
results to retrieve the entire region of interest. Particularly,
the mismatches between strains reconstructed on two consec-
utive blocks in the overlapping region are corrected based on
majority voting using reads that are covering the mismatched
positions and are assigned to the aligned strains. Following
this procedure, GAEseq perfectly reconstructed all of 5 HIV-1
strains in the gag-pol region, achieving 100% Reconstruc-
tion Rate for all 5 strains and Predicted Proportion of 1 on
355241 remained paired-end reads. The frequencies of 5 HIV-
1 strains are estimated as 15.21%, 19.34%, 25.56%, 27.61%
and 12.27% by counting the proportion of reads assigned to
the same strain; these results are consistent with the frequen-
cies estimated by aBayesQR and TenSQR softwares.
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