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Abstract—Haplotype assembly from high-throughput sequenc-
ing data is a computationally challenging problem. In fact, most
of its formulations, including the most widely used one that
relies on optimizing the minimum error correction criterion,
are known to be NP-hard. Since finding exact solutions to
haplotype assembly problems is difficult, suboptimal heuristics
are often used. In this paper, we propose a novel method
for optimal haplotype assembly that is based on depth-first
branch-and-bound search of the solution space. Drawing on ideas
from sphere decoding algorithms in digital communications, we
exploit statistical information about errors in sequencing data to
constrain the search of the haplotype space and thus efficiently
find the optimal solution. Theoretical analysis and extensive
simulation studies, as well as benchmarking on 1000 Genomes
Project experimental data, demonstrate efficacy of the proposed
method.

Index Terms—haplotype assembly, sphere decoding, depth-first
branch-and-bound search, expected complexity

I. INTRODUCTION

Tremendous advancements in high-throughput DNA se-
quencing technology have enabled affordable sequencing of
individual genomes and opened up the possibility for rou-
tine detection and studies of genetic variations. In diploid
organisms, such as humans, DNA is organized into pairs of
chromosomes. Majority of the chromosome pairs are homol-
ogous, i.e., they have similar sequences that are not exactly
identical but differ at a small fraction of nucleotide positions.
The most common differences between two chromosomes in
a homologous pair come in the form of single nucleotide
polymorhisms (SNPs), isolated variants along the chromosome
sequences. A pair of SNPs at the corresponding positions of
the homologous chromosomes constitutes a genotype. Haplo-
types are ordered collections of SNPs that are located on the
same chromosome. Information about haplotypes is essential
for enabling a number of personalized medicine applications.
These applications include the discovery of how prone an
individual is to various diseases and the search for optimal
drug therapies [1], whole genome association studies [2], and
studies of recombination patterns [3].

While SNP detection and genotype calling can be performed
using low-throughput methods, it was high-throughput DNA
sequencing that made the haployping of single individuals a
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Fig. 1: An illustration of the typical workflow in single
individual haplotype reconstruction.

reality. Each read provided by a high-throughput sequenc-
ing platform is a sample fragment of one chromosome of
an individual. When a read covers multiple SNP positions,
it provides information that can be used to assemble the
haplotype associated with the chromosome from which the
read was sampled. Today’s sequencing platforms are capable
of providing paired-end reads, i.e., pairs of reads that are
separated by inserts of known length. This helps bridge large
distances along a chromosome which is needed due to a
relatively low frequency of polymorphisms – it is estimated
that the SNP rate between two human chromosomes in a
homologous pair is approximately 10−3 [4].

Haplotype assembly from error-free reads is straightforward
and entails aligning reads to a reference and partitioning them
in two groups, each corresponding to one of the chromo-
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somes in a pair. The reads that belong to a partition provide
unambiguous information about the haplotype. However, se-
quencing is erroneous which, combined with constraints on
read and insert lengths, make the haplotype assembly problem
challenging. Specifically, sequencing errors cause ambiguities
since the reads imperfectly sampled from a chromosome
may provide conflicting information about the corresponding
haplotype; moreover, errors induce uncertainty in assigning
reads to chromosomes. For this reason, most of the existing
haplotype assembly methods attempt to resolve error-induced
ambiguities [5]. In this paper, we focus on the minimum error
correction (MEC) criterion and methods that are concerned
with finding the smallest number of nucleotides whose chang-
ing to a different value would resolve read assignment ambi-
guities. Finding the optimal solution to the MEC formulation
of the haplotype assembly problem is NP-hard [5], [6].

Since the problem is NP-hard, suboptimal heuristics are
often used to optimize for the MEC criterion. In [7], a
greedy algorithm was proposed and applied to the first com-
plete diploid individual genome obtained via high-throughput
sequencing. In [8], an algorithm (HapCUT) that solves a
max-cut reformulation of the problem was proposed and
shown that it significantly outperforms the method in [7].
Bayesian frameworks relying on MCMC and Gibbs sam-
pling schemes were proposed in [9] and [10], respectively.
Recently, a greedy cut approach was proposed in [11] and
applied to reads sequenced using fosmid libraries, while [12]
presented a graphical approach to haplotype phasing. More
recent heuristic haplotype assembly methods include a convex
optimization program for minimizing the MEC score in [13]
and a communication-theoretic interpretation of the problem
solved via belief propagation in [14].

In addition to heuristics, computationally intensive methods
for finding exact solutions to the haplotype assembly problem
have been proposed. In [15], the authors used a branch-and-
bound scheme to minimize the MEC objective over the space
of reads, imposing a bound obtained by a random bipartition of
reads. Unfortunately, exponential growth of the complexity of
this scheme renders it computationally too expensive even for
moderate haplotype lengths. In [16], the authors observed that,
on Huref data, a large fraction of reads have small effective
length which motivated their use of dynamic programming
ideas for computing the optimal MEC of a revised problem
that discards long reads. However, if long reads cannot be
ignored, [16] abandons the search for the optimal solution and
instead rephrases haplotype assembly as a MAXSAT problem
and solves it using WBO and Clone solvers. Recently, [17]
investigated the coverage (sample complexity) required for
reconstructing haplotypes optimally with no errors.

The objective of the current paper is to demonstrate that for
moderately long blocks, haplotype assembly problem can be
solved exactly with a practically feasible complexity. To this
end, motivated by the sphere decoding algorithm originally
proposed for closest lattice point search [18] and then adopted
in the field of data communications [19], [20], we propose
a depth-first branch-and-bound scheme which uses statistical
information about sequencing errors to impose an upper bound
on the objective function and facilitate computationally effi-

cient search for the optimal solution to the MEC formulation
of the haplotype assembly problem. We analyze the expected
complexity of the proposed algorithm and show that it is
practically feasible for moderate lengths of haplotype blocks
typically encountered in haplotyping project. Then we impose
additional lower bounds on the objective function that further
constrain the search space and allow even faster search for the
optimal solution. The lower bounds are efficiently computed
using our heuristic variable wordlength Viterbi scheme.

The paper is organized as follows. In Section II, the MEC
formulation of haplotype assembly is formally stated and the
new algorithm for haplotype assembly is presented, while
Section III discusses its expected complexity. Section IV
presents a hybrid algorithm that combines features of dynamic
programming and branch-and-bound to significantly improve
the speed of the basic algorithm in Section II. Experimental
results on 1000 Genomes Project dataset and simulations are
discussed in Section V, while Section VI concludes the paper.

II. HAPLOTYPE ASSEMBLY VIA BRANCH-AND-BOUND

The first step in haplotype assembly from high-throughput
sequencing data is aligning reads to a reference, followed
by the detection of polymorphic positions (“SNP calling”).
Homozygous positions where all bases in all reads are identical
are of no interest for the haplotype assembly problem and are
thus discarded. Moreover, if a read covers only a single SNP
position, it is not informative for the task at hand and the read
is discarded. The remaining reads are organized into an m×n
SNP fragment matrix R, where m is the number of the reads
and n denotes the haplotype length. The ith read is represented
by the ith row of R, ri. Diploid organisms, including humans,
are typically bi-allelic which means that there may be only
two possible nucleotides in any given heterozygous site of a
homologous chromosome pair. These variants are labeled as
−1 or 1 according to an arbitrarily chosen convention and thus
a haplotype pair is conveniently represented by a pair of strings
(h1,h2), each of length n, with components h1i , h

2
i ∈ {1,−1}.

For the ease of notation, we introduce h = h1 = −h2.
Assume that the ith read covers SNP positions j1, j2, . . . , jk.
Then the ith row of R, ri, will contain useful information
only in k positions (in particular, positions j1, j2, . . . , jk). We
adhere to the convention of filling all the remaining entries
of ri by 0’s, i.e., 0’s in ri indicate SNP positions on the
chromosome that are not covered by the ithread. The start
and the end of the ith read are the first and the last position
in ri that are not 0. Note that paired-end reads typically
contain substrings comprising all 0’s which correspond to gaps
connecting paired-end fragments; such substrings may also be
present in single reads if there is missing data. Reads with a
continuous string of +1 and −1 are gapless reads, otherwise
they are referred to as gapped reads. The length of a read
starting at position i and ending at position j is j− i+ 1 (i.e.,
it includes any possible gaps).

Remark: Note that, due to the coverage and read length
limitations, available data is often insufficient for the as-
sembly of an entire haplotype and instead enables assembly
of fragmented haplotype blocks. In such situations, the data
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is organized in a number of SNP fragment matrices, each
corresponding to one such haplotype block.

A. Problem definition

We define a measure of the distance d between two symbols
in the ternary alphabet {−1, 0, 1} as

d(x, y) =

{
1 if x 6= 0 and y 6= 0 and x 6= y,

0, otherwise.

Denote the Hamming distance between read ri and haplotype
h as hd(ri,h) =

∑n
j=1 d(ri,j , hj), where ri,j and hj denote

the jth components of ri and h, respectively. Then the
minimum error criterion (MEC) formulation of the haplotype
assembly problem is concerned with minimizing Z over h,
where the objective function

Z =
m∑
i=1

min(hd(ri,h), hd(ri,−h)), (1)

and m denotes the total number of reads.

B. A branch-and-bound algorithm for haplotype assembly

To minimize Z in (1) over h, we construct and conduct
a depth-first search on a tree where the node at the kth

level of the tree corresponds to the partial (k bases long)
leading substring of h.1 The search tree is illustrated in Fig. 2.
Recall that conflicts between reads are induced by sequencing
errors and that in the MEC framework we inherently attempt
to resolve conflicts by assuming the fewest possible errors.
Denote the probability of an erroneous entry in R by p. Note
that v, the total number of entries in R which would need to
be altered so that each row in R is consistent with one of the
reconstructed haplotype sequences, has a binomial distribution
with cumulative mass function (cmf)

P(v ≤ k) =

k∑
j=0

(
µ

j

)
pj(1− p)(µ−j),

where µ denotes the total number of non-zero entries in matrix
R. This, in turn, can be used to impose a statistical upper
bound2 on the objective function (1). In particular, we use a
depth-first search on the aforementioned binary tree to find all
haploype candidates h satisfying

Z =
m∑
i=1

min(hd(ri,h), hd(ri,−h)) ≤ b, (2)

where the upper bound on the number of errors, b, is computed
from the binomial cmf as

b = inf{k|
k∑
j=0

(
µ

j

)
pj(1− p)(µ−j) > 1− ε}. (3)

1A related branch-and-bound algorithm for haplotype assembly was pro-
posed in [15] but the search there is conducted in the space of reads (of the
dimension m that is typically much greater than n), does not impose statistical
bounds on the objective akin to those we introduce in this section, and does
not consider expected complexity of finding the solution.

2Similar idea has been used to enable efficient search for the closest
point in a lattice in a probabilistic setting commonly encountered in data
communications [19], [20].

Fig. 2: An illustration of the tree searched by the branch-
and-bound algorithm. The “hollow” nodes correspond to
haplotype substrings that induce costs which violate an upper
bound on the objective and are hence pruned by the algorithm.

Parameter ε determines the confidence that we will find an n-
dimensional h which satisfies the constraint (2). For instance,
setting ε = 0.01 means that with probability 1 − ε = 0.99
we will find a solution to the constraint satisfaction problem
(2). Clearly, while traversing close to the root of the search
tree, the bound is very loose and induces little pruning. As
we proceed deeper into the search tree, the bound is more
frequently violated which results in discarding a large fraction
of the nodes. If no h satisfying (2) is found, we increase the
bound (i.e., reduce ε) and start the search anew.

Remark: Due to the form of the objective function (1), the
search algorithm needs to simultaneously test if both h and
−h are feasible haplotype sequences. For efficiency, in our
implementation the algorithm traverses the tree by concate-
nating a partially constructed haplotype pair at the (j − 1)st

level, {h1:j−1,−h1:j−1}, with either (−1, 1) or (1,−1). If,
for example, the algorithm traversed the first j = 3 levels of
the search tree through (−1, 1), (−1, 1) and (1,−1), then the
partially reconstructed potential haplotype pair being tested for
feasibility is {h1:3,−h1:3} = {[−1 − 1 1], [1, 1 ,−1]}.

C. Practical implementation issues

Note that every time a candidate hc satisfying (2) is found,
we can update the upper bound as b =

∑m
i=1 hd(ri,h

c) and
proceed searching. Moreover, note that if a read covers SNPs i
and k, i < j < k, then at the jth level of the search tree we can
incorporate partial contribution of the read to the cost function
(1) (i.e., we do not need to wait until the kth tree level to
include the MEC cost induced by the read, which allows faster
pruning and improves speed of the algorithm especially when
dealing with long reads). The proposed algorithm is formalized
as Algorithm 1.

III. ANALYSIS OF THE EXPECTED COMPLEXITY OF THE
ALGORITHM

The complexity of Algorithm 1, akin to that of motivating
sphere decoding, varies over random instances of the under-
lying optimization problem and is hence best viewed as a
random variable [19], [20]. We here characterize it by its mean
for a simplified model of the haplotype assembly problem. In
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Algorithm 1 Branch-and-bound algorithm for haplotype as-
sembly of diploid chromosomes

Input: R, UB(1...n) = 0, Z = b (upper bound)
Output: Z∗(optimal MEC), cnt (# of optimal solutions)
hap (optimal haplotypes)
Initialization: h11 = 1, h21 = −1 , UB(1...n) = Z, s(1...n) = 0,
obj(1...n) = 0, k = 2, cnt=0
Description:

1: sk = sk + 1
2: If sk = 1, set h1k = 1, h2k = −1; else set h1k = −1, h2k = 1
3: objk = objk−1; softobj = 0
4: For all reads ending at level k, compute total MEC from

these reads (= Zk); set objk = objk + Zk
5: For all reads starting before level k and ending after

level k, compute MEC from these partial reads (= Zk);
softobj = softobj + Zk

6: temp = objk + softobj
7: If temp > UBk, set objk = 0; Backtrack: while sk = 2,

set sk = 0, k = k − 1;
8: If temp = UBk and k = n, cnt = cnt + 1
9: If temp < UBk and k = n, cnt = 1

10: If temp <= UBk and k = n, set Z∗ = objk, set
hap1,2(1...n)(cnt) = h1,2(1...n), set UB(1...n) = Z∗; Backtrack:
while sk = 2, set sk = 0, k = k − 1;

11: If temp <= UBk and k < n, set k = k + 1
12: If k > 1, repeat steps 1− 11;
13: If k = 1 and cnt > 0 terminate algorithm, return

cnt, hap,Z∗;
14: If k = 1 and cnt = 0 increase Z and restart algorithm;

particular, the complexity of Algorithm 1 is proportional to
the number of nodes visited in the search tree in Fig. 2 and
hence the expected complexity is proportional to the expected
number of such nodes. The total number of nodes that survive
the pruning (2) is given by

N =
n∑
j=1

2j∑
k=1

I(Zkj ≤ b), (4)

where b is the upper bound, I(·) denotes an indicator function
that is equal to 1 when its argument is true, and Zkj is the
(partial) MEC score associated with the tree path ending in
the kth node at level j,

Zkj =
m∑
i=1

min(hd(ri,1:j ,h
k
1:j), hd(ri,1:j ,−hk1:j)),

ri,1:j is the vector comprising first j components of ri and hk1:j
records the collection of nodes along the partial tree search
path ending in the kth node at level j. The expected number
of survivor nodes is then given by the expectation of (4), i.e.,

E[N ] =

n∑
j=1

2j∑
k=1

P(Zkj ≤ b), (5)

and the expected ‘Complexity’ can therefore be expressed as

E[C] =
n∑
j=1

2j∑
k=1

P(Zkj ≤ b) · fp(j),

where fp(j) is the computational cost associated with process-
ing a jth level node and is equal to the number of non zero
entries in all rows up to and including the jth column. We
also define the ‘Complexity Exponent’ as γ, where γ is given
by C = nγ or γ = log(C)

log(n) .
In the general setting where inter-SNP distances are drawn

from a geometric distribution and insert lengths are modeled as
Gaussian random variables, finding a closed-form expression
for the expected complexity of the proposed algorithm appears
challenging. We therefore make simplifying assumptions and
study the setting where a haplotype block of length n is
sampled with m reads. A read covers no more than l SNPs
but these l positions need not be contiguous (i.e. the reads
can have gaps in them). We refer to l, the number of SNP
locations covered by a read, as the ‘effective read length’. In
the following analysis, we make the further assumption that
the two haplotype strands in a pair are equally likely sampled,
i.e., the probabilities of a read being associated with either
haplotype strand are equal. No assumption about the coverage
per haplotype position is made.

Without a loss of generality, for the following argument
we assume that the true haplotype pair is {ht,−ht} =
{(1, . . . 1), (−1, · · ·−1)}. At the jth level of the search tree in
Fig. 2, there are 2j nodes possibly visited by the algorithm. For
a given tree node at this level, the contributions of individual
reads to Zkj ,

zki,j = min(hd(ri,1:j ,h
k
1:j), hd(ri,1:j ,−hk1:j)),

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , 2j , are
independent and hence the probability mass function (PMF)
of Zkj , d(Zkj ), may in principle be obtained by convolving
the PMFs d(zki,j). Rather than combining the PMFs by means
of convolutions, however, we consider the moment generating
functions (MGFs) of the relevant random variables.

The MGF of Zkj can be obtained as the product of the
MGFs of zki,j . To find the MGF of zki,j , note that for a read
covering no more than l SNPs (i.e., ri has no more than l
components from {−1, 1}), it must hold that 0 ≤ zki,j ≤ b l2c.
The PMF of zki,j characterizes the probabilities of zki,j taking
values 0, 1, . . . b l2c, e.g., dki,j(0) = d(zki,j = 0), dki,j(1) =
d(zki,j = 1), etc. The corresponding MGF is given by

Mzki,j
(t) = dki,j(0) + dki,j(1)et + dkj (2)e2t . . . dki,j(b

l

2
c)eb l

2 ct,

where
b l
2 c∑
s=0

dki,j(s) = 1.

A. Computing d(zki,j)

Case j = 2: It is beneficial to first consider an illustrative
scenario j = 2 and gapless reads that cover the first two
SNPs in the haplotype. Recall our assumption that the true
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l sequence HD dki,j(0) dki,j(1) dki,j(2)

2 (-1,-1) 0 1− 2p(1− p) 2p(1− p)
(-1,1) 1 2p(1− p) 1− 2p(1− p)

3 (-1,-1,-1) 0 1− 3p(1− p) 3p(1− p)
(-1,-1,1),(-1,1,-1),(-1,1,1) 1 3p(1− p) 1− 3p(1− p)

4 (-1,-1,-1,-1) 0 (1− p)4 + p4 4p(1− p)(1− 2p+ 2p2) 6p2(1− p)2

(-1,-1,-1,1),(-1,-1,1,-1),(-1,1,-1,-1),(-1,1,1,1) 1 p(1− p)(1− 2p+ 2p2) (1− p)4 + p4 3p(1− p)(1− 2p+ 2p2)
(-1,-1,1,1),(-1,1,-1,1),(-1,1,1,-1) 2 2p2(1− p)2 4p(1− p)(1− 2p+ 2p2) (1− p)4 + p4 + 4p2(1− p)2

TABLE I: Coefficients of the PMF d(zki,j) for different effective read lengths l. For clarity, the complements of the partially
reconstructed haplotype segments are omitted.

haplotype is {ht,−ht} = {[1 . . . 1], [−1 . . . − 1]}. The pairs
{h1:2,−h1:2} corresponding to the possible paths through
the nodes on the first two levels of the search tree are
{[−1 − 1], [1 1]} and {[1 − 1], [−1 1]}. The costs induced
by a read either containing no errors or having both positions
incorrect (which happens with the probability (1−p)2 +p2 =
1− 2p(1− p)) are zki,2 = 0 and zki,2 = 1 when traversing the
paths {[−1 − 1], [1 1]} and {[1 − 1], [−1 1]}, respectively.
Likewise, the costs induced by a read containing precisely
one error (which happens with the probability 2p(1 − p))
are zki,2 = 1 and zki,2 = 0 when traversing the paths
{[−1 − 1], [1 1]} and {[1 − 1], [−1 1]}, respectively. For
convenience, let us introduce p′ = 2p(1 − p). Therefore, the
PMF of the contribution to Zk2 by a read that covers the first
two SNPs in the haplotype is given by the mixture

d(zki,2) =
1

2
Bernoulli(p′) +

1

2
Bernoulli(1− p′), k = 1, 2.

General case: Since zki,j depends on a path through the
search tree, the coefficients in the PMF of zki,j will generally
vary for two different nodes k1 and k2 unless zk1i,j = zk2i,j .
Finding closed form expressions for d(zki,j) seems challenging
but numerical evaluation of the coefficients of the PMF is
possible for small l, j. We illustrate the PMF coefficients for
gapless reads of effective length l = 2, 3, 4 in Table I.

B. Computing d(Zkj )

Case j = 2: Continuing the illustrative example from
Section III.A, it is straightforward to see that if c reads cover
the first two SNP positions, then

d(Zk2 ) =
1

2
(B(c, p′) +B(c, 1− p′)),

where B(c, p′) denotes the binomial distribution with parame-
ters c and p′. Note that we here found the distribution directly,
and did not need to first evaluate the moment generating
function of Zk2 given by

MZk
2
(t) =

1

2
[((1− p′) + p′et)c + (p′ + (1− p′)et)c].

General case: Given the MGFs of zki,j , the MGF of Zkj can
be computed as

MZk
j
(t) =

m∏
i=1

[
dki,j(0) + dki,j(1)et + · · ·+ dki,j(b

l

2
c)eb l

2 ct
]
.

In principle, we may evaluate MZk
j
(t) numerically and use

it to find d(Zkj ) and, consequently, evaluate (5). This, how-
ever, quickly becomes computationally challenging since for

a haplotype of block length n one needs to evaluate the con-
tributions from the MGFs of 2n nodes. Numerical approach,
therefore, may be used to provide theoretical expressions for
the expected complexity of the proposed algorithm only for
small lengths of haplotype blocks. In the following subsec-
tions, we consider a set of simplifying assumptions on the
structure of the SNP fragment matrix that enable more efficient
computation of the expected complexity.

C. Efficient evaluation for a special structure of R

Let us rearrange the reads in such a way that their starting
positions are non-decreasing, i.e., if the first SNP position
covered by the ith read is ki, then k1 ≤ k2 ≤ · · · ≤ km.
Let us group reads into q blocks according to their starting
positions j1 < j2 < · · · < jq (note that q ≤ n − 1), and
let wi denotes the number of reads in the ith such block. It
is easy to see that if the end position of the reads in the ith

block (the ones starting at ji) is the first position of the reads
in the (i + 1)st block (i.e., ji+1) and the reads are gapless,
then {Zkji}, 1 ≤ ji ≤ q, are mutually independent. In this
scenario, we can efficiently evaluate the expected complexity
for arbitrary haplotype block lengths. For clarity, we first focus
on the simple scenario where all reads are of equal effective
length l = 2 and then generalize it to l > 2.

Case l = 2: For l = 2, it holds that ji = ji−1 + 1, j0 = 0.
Let us start by considering the scenario where the number of
reads in each aforementioned block is the same, i.e., w1 =
w2 = · · · = wq = w. Then the MGF of Zkj , 1 ≤ j ≤ n, is
given by

MZk
j
(t) =

1

2j
[(1− p′ + p′et)w + (p′ + (1− p′)et)w]j ,

where, as before, p′ = 2p(1−p) is introduced for convenience.
By expanding the expression within the brackets and collecting
terms having the same exponent ekt, the rth coefficients of the
PMF of Zkj is readily obtained as

1

2j

(
w

r

)
[(p′)r(1− p′)w−r + (p′)w−r(1− p′)r].

A straightforward use of the multinomial theorem leads to the
coefficients of d(Zkj ) in a closed form. Note that the support
of the PMF d(Zkj ) at the jth level is {0, 1 · · · jw}, and that
the coefficients evaluated at the (j− 1)st level can be used to
recursively compute the coefficients at the jth level. Therefore,
the required coefficient can be obtained with O(wj2) time
complexity (and, thus, coefficients for all n levels can be
obtained with O(wn2) time complexity).
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If wi’s are not all equal, the moment generating function of
Zkj is given by

MZk
j
(t) =

1

2j

j∏
i=1

[(1− p′ + p′ei)wi + (p′ + (1− p′)et)wi ],

where wi is the number of reads in the ith block. While
the closed form expressions for the coefficients of d(Zkj )
are not available, one can find them numerically using the
same recursive scheme as in the uniform coverage case. This
computation can be performed with O(

∑
0<i,j<n wiwj) time

complexity. The support of the distribution at the nth level is
{0, 1, · · · ,

∑n
i=0 wi}.

General case: We extend the previous analysis to the case
where the reads are of arbitrary length but other assumptions
leading to the independence of {Zkji} are satisfied. In this
scenario, it is sufficient to characterize the expected number
of points visited at level ji = l−1 and levels j that are integer
multiples of l − 1 (there is no pruning at levels that are not
integer multiples of l−1). Unlike the l = 2 case, here the MGF
for a block containing w1 reads is given by MZk

j(l−1)
(t) =,

1

2l−1
[
2l−1∑
k=1

(dki,j(0) + dki,j(1)et + · · ·+ dki,j(b
l

2
c)eb l

2 ct)w1 ],

j = 1, 2 . . . n
l−1 . The MGF (evaluated at levels j(l − 1), j =

1, 2, . . . , n
l−1 ) is given by

n
l−1∏
j=1

1

2j(l−1)
[
2j(l−1)∑
k=1

(dki,j(0)+dki,j(1)et+· · ·+dki,j(b
l

2
c)eb l

2 ct)wj ].

Note from Table I that the weights of d(zki,j) (and, therefore,
the coefficients in the corresponding MGFs) depend on the tree
path that the algorithm traverses. However, if two nodes k1 and
k2 are reached by traversing paths characterized by the same
minimum distance from the pair of true haplotype sequences,
then the corresponding MGFs of zk1i,j and zk2i,j are equal. There-
fore, for an efficient enumeration of the space of different tree
paths of a specified length, one needs to examine those paths
and categorize them according to their minimum Hamming
distance from the pair of true haplotype sequences. The entries
in Table I suggest how this enumeration may be done for
partial tree search paths of length l ∈ {2, 3, 4}. For instance,
for partial tree search paths of length l = 3, there are 6 out of 8
possible path sequences at the same same minimum Hamming
distance from the true haplotype sequence; the remaining 2
paths coincide with the corresponding segments of one of the
true haplotype sequences and thus their associated minimum
Hamming distance is zero. Moreover, among the partial tree
paths of length l = 4, there are 8 that are characterized by
the same minimum Hamming distance (leading to identical
MGFs of the contribution to the MEC cost by the reads of
length l = 4), another 6 induce a different MGF, while the
remaining 2 have a third MGF in common. Therefore, if the
ith block consists of wi reads of length li = 4, then the ith

factor in the product which needs to be computed to obtain

Fig. 3: A comparison of the theoretical and empirical average
number of nodes across different levels of the search tree.

the MGF of Zkji is given by

1

23
[(a0(0) + a0(1)et + a0(2)e2t)wi

+ 4(a1(0) + a1(1)et + a1(2)e2t)wi

+ 3(a2(0) + a2(1)et + a2(2)e2t)wi ],

where {ar(0), ar(1), ar(2)} denotes the set of coefficients
{dki,j(0), dki,j(1), dki,j(2)} in Table I for partial tree paths of
length l = 4 being at the minimum Hamming distance HD = r
from the pair of true haplotype sequences, r ∈ {0, 1, 2}.

In Fig. 3 we compare the theoretical and empirically evalu-
ated expected number of nodes visited at different levels of the
search tree for the parameters of the problem p = 0.01 (the
error rate in the fragment matrix R) which is the error rates in
Illumina platforms), coverage c = 10, haplotype block length
n = 75 and effective read length l = 2. In Fig. 4, we keep
all the parameters the same as before but let the length of the
haplotype block increase and show the expected complexity
exponent as a function of n. Theoretical and experimental
average complexities are displayed in Fig. 5 as a function of
coverage, while Fig. 6 compares them for different error rates.

IV. SPEEDING UP HAPLOTYPE ASSEMBLY USING LOWER
BOUNDS ON THE MEC SCORE

In this section, we describe a method for reducing the
complexity of Algorithm 1 from Section II by performing
additional pruning of the search tree in Fig. 2. In addition
to the nodes pruned due to violating an upper bound in (2),
additional nodes are eliminated from the search if the value of
the objective they induce violates a lower bound on the MEC
score. Such a lower bound needs to be computed efficiently so
that the benefits of reducing the number of visited tree nodes
outweigh the cost incurred by the evaluation of the bound.
Here we describe the Viterbi algorithm that utilizes special
structure of the SNP fragment matrix to efficiently compute
lower bounds on the MEC score. To this end, we first discuss
relevant properties of the objective function.
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A. Properties of the objective function Z

Consider a data matrix R. Let R′ be another read matrix
obtained by performing any combination of the following
operations:
(a) removing a read (i.e., a row) from the data set;
(b) truncating a read to a fixed length;
(c) deleting any non-zero entry of R; and
(d) cutting up a paired end/long read into smaller fragments.

If h∗ optimizes the MEC objective on the read matrix R′

(denoted by Z(h∗, R′) and hopt optimizes Z on the read matrix
R, then Z(h∗, R′) is a lower bound on Z(hopt, R). We will
utilize this property of Z throughput the section.

B. Heuristic haplotype assembly with dynamic programming

Here we describe an efficient dynamic programming tech-
nique that operates on a reduced data set R

′
to find the desired

lower bound. Note that a dynamic programming solution to
the haplotype assembly problem was proposed in [16]. That
approach essentially employs the Viterbi algorithm to conduct
a breadth-first search on a trellis with 2kmax−1 states, where
kmax denotes the largest effective read length in the data set (in
the case of paired-end reads, kmax includes the number of SNP
positions covered by the insert). The trellis states correspond
to all possible kmax-long substrings of the haplotype pairs. To
ensure computational tractability of the solution, reads that are
longer than a pre-selected kmax are discarded. Given a set of
reads, the Viterbi algorithm recursively tracks the most likely
sequence of states and finds the optimal path (and hence the
haplotype) by backtracking through the trellis.

Let the starting position of a read be defined as the location
of the first SNP within a haplotype that is covered by that read.
Assume that the SNP fragment matrix R is generated using
reads that are sorted according to their starting positions. The
MEC scores of the states in the jth trellis stage are computed
using the reads having starting position j or smaller. Let Zi
denote the subset of reads with starting position i, 1 ≤ i ≤ n,

Fig. 4: A comparison of the theoretical and empirical average
complexity exponents for different lengths of haplotype blocks.

Fig. 5: A comparison of the theoretical and empirical average
complexity exponents for different sequencing coverages.

and let zk(i) denote the MEC score associated with the state k
at stage i that is induced by the reads in Zi. Finally, let Zk(i)
denote the MEC objective of the most likely state sequence
which ends at Ti = tk, i.e.,

Zk(i) = min
T1,...,Ti−1

Z(r1, . . . , ri, T1, . . . , Ti−1, Ti = k).

Then we can recursively compute Zk(i) as

Zl(i+ 1) = min(Zd l
2 e

(i), Z2kmax−1−d l
2 e

(i)) + zl(i+ 1), (6)

where the recursion is initialized by setting Z0(0) = 1,
Zk(0) = 0 for all k > 0. This recursion is at the core of
the dynamic programming solution to the haplotype assembly
problem, which finally backtracks through the optimal trellis
path to determine the most likely sequence of states.

Fig. 6: A comparison of the theoretical and empirical average
complexity exponents for different error rates.
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The above described heuristic procedure does not fully
exploit structure of the problem. Since real data sets contain
a large fraction of reads having effective length significantly
smaller than kmax, we propose a variable word length Viterbi
algorithm alternative. In particular, assume that the longest
read used in the computations of state transition costs at the
ith stage of the trellis has length ki. Then the number of
distinct state transition costs to be computed at stage i is
exponential in ki while the number of states is exponential in
kmax. The variable wordlength Viterbi algorithm exploits this
to reduce the complexity of the conventional Viterbi algorithm
from O(

∑n
i=1mikmax2kmax−1) to O(

∑n
i=1miki2

ki−1).

C. Using lower bounds on the objective function to speed up
branch-and-bound haplotype assembly

Since the upper bound (3) is evaluated based on the con-
tributions of all SNP sites to the objective function Z, it
may be very loose at the early stages of the search and thus
induce little pruning of the nodes that are close to the root of
the search tree. Relying on ideas from [21], to improve the
efficiency of the search we further restrict the search space
without compromising the accuracy (i.e., finding the optimal
solution remains our goal). The main idea is to compute a
lower bound on the value of the objective function induced by
the part of the tree that is yet to be traversed. To formalize this,
assume that we are visiting the kth node at the jth level of
the search tree. The objective function (1) of our optimization
can be written as Z = Zkj + Z̄kj , where Zkj denotes the MEC
score associated with the tree path ending in the kth node at
level j, while Z̄kj denotes the MEC score yet to be induced
by traversing the remainder of the tree and accounting for the
reads not included in the computation of Zkj . Thus we can
restate (2) as

Zkj ≤ b− Z̄kj . (7)

Now, if we could efficiently compute a lower bound on Z̄kj ,
we could impose a bound at the jth level of the tree that is
more strict than (2) and potentially significantly reduce the
number of nodes that survive the pruning while still finding
the exact solution to the problem. Clearly, the benefit of
computing a lower bound on Z̄kj must outweigh the additional
complexity. We compute the lower bounds using the Viterbi
algorithm from Section IV.B applied to a modified data matrix
R
′

generated using only the reads shorter than kmax. A large
kmax leads to a tight lower bound but at the cost of significant
additional complexity. On the other hand, a small kmax keeps
the complexity of finding the lower bound feasible, but the
resulting bound may not enable significant node pruning.

Recall that the starting position sj of the jth read is defined
as the location of the first SNP within a haplotype that is
covered by that read. Additionally, we define the ending
position ej of the jth read as the location of the last SNP
within a haplotype covered by that read. To facilitate efficient
evaluation of the lower bound at the ith level of the search
tree, consider a partition of the reads into the following sets:
Ai: Set of reads {j} such that ej < i.
Bi: Set of reads {j} such that ej = i.

Ci: Set of reads {j} such that sj < i and ej > i.
Di: Set of reads {j} such that sj ≥ i and ej−sj+1 ≤ kmax.
Ei: Set of reads {j} such that sj ≥ i and ej−sj+1 > kmax.

Inequality (2) can then be re-written as

Z = Z{Ai,Bi} + Z{Ci,Di,Ei} ≤ b, (8)

where Z{Ai,Bi} and Z{Ci,Di,Ei} denote contributions of the
reads in sets Ai ∪ Bi and Ci ∪ Di ∪ Ei to Z, respectively.
Following (7), we can write

Z{Ai,Bi} ≤ b− Z̄{Ci,Di,Ei}, (9)

where Z̄{Ci,Di,Ei} denotes a lower bound on Z{Ci,Di,Ei}.
Provided the lower bound is nontrivial (i.e., Z̄{Ci,Di,Ei} > 0),
replacing (2) by (9) is beneficial since it would lead to elim-
inating more points from the search tree. Note that imposing
(9) will not prune out the optimal solution since we have
replaced Z{Ci,Di,Ei} by its lower bound. Clearly, the tighter
(i.e., the larger) the lower bound, the more nodes will be
pruned from the tree. Of course, finding the tightest possible
Z̄{Ci,Di,Ei} is infeasible since it corresponds to minimizing the
MEC criterion (which is the original computationally intensive
problem we started with). This motivates the use of the Viterbi
algorithm on a reduced set of reads R′.

As argued in Section IV.A, certain transformations of the
SNP-fragment matrix R reduce the MEC score. In particular,
if a read from the sets Ci, Di or Ei is discarded, truncated
or cut into multiple pieces, the MEC score corresponding
to the new matrix R′ is a lower bound on the MEC score
corresponding to the original SNP-fragment matrix R. The
reads belonging to the set Di are shorter than kmax and thus
need not be altered. Any paired-end/mated-pair read in Ei with
inserts longer than kmax

2 is first randomly cut into 2 fragments;
the resulting fragments, along with all the other reads in Ei, are
cut into smaller fragments of length ≤ kmax. This procedure
leads to a set of reads that are no longer than kmax.

Having transformed R to R′, we can now employ the
variable wordlength Viterbi scheme from Section IV.B to
compute a lower bound that is common for all the tree points
at a given level of the search tree. Clearly, the larger kmax
we can computationally afford, the larger the fraction of non-
modified reads and the tighter the resulting lower bound.

Remark: There are n different levels of the search tree at
which the Viterbi algorithm could be performed. However, it
may be sufficient to run the Viterbi algorithm for only a few
levels in order to determine all the lower bounds. To see this,
consider two levels i and j, j < i. Note that card(Dj) ≥
card(Di) and card(Ej) ≥ card(Ei), where card(·) denotes
the cardinality of its argument. Therefore, the lower bound is
a decreasing function of the search tree levels. The minimum
number of levels for which one needs to compute the lower
bound is determined using the following procedure:

• compute the lower bounds for levels k = 1, k = n and
k = dn2 e.

• split the tree levels into two partitions, 1 ≤ j ≤ dn2 e and
dn2 e ≤ j ≤ n, choose one of them at random and place
the other one into a stack.
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• if the bounds associated with the smallest and the largest
levels of the selected partition are equal, the bounds for
all the other levels in the partition are the same.

• if the bounds associated with the smallest and the largest
levels of the partition are different, find the bound asso-
ciated with the mid-level of the partition.

• repeat the above steps until all the partitions in the stack
are exhausted.

The branch-and-bound algorithm for haplotype assembly
with improved speed facilitated using lower bounds described
in this section is formalized as Algorithm 2.

Algorithm 2 Branch-and-bound for haplotype assembly with
improved speed facilitated by pruning using lower bounds

Input: R, UB(1...n) = 0, LB(1...n) = 0, Z = b (upper bound)
Output: Z∗(optimal MEC), cnt (# of optimal solutions)
hap (optimal haplotypes)
Initialization: h11 = 1, h21 = −1 , UB(1...n) = Z − LB(1...n),
s(1...n) = 0, obj(1...n) = 0, k = 2, cnt=0
Description:

1: sk = sk + 1
2: If sk = 1, set h1k = 1, h2k = −1; else set h1k = −1, h2k = 1
3: objk = objk−1; softobj = 0
4: For all reads ending at level k, compute total MEC from

these reads (= Zk); set objk = objk + Zk
5: For all reads starting before level k and ending after

level k, compute MEC from these partial reads (= Zk);
softobj = softobj + Zk

6: temp = objk + softobj
7: If temp > UBk, set objk = 0; Backtrack: while sk = 2,

set sk = 0, k = k − 1;
8: If temp = UBk and k = n, cnt = cnt + 1
9: If temp < UBk and k = n, cnt = 1

10: If temp <= UBk and k = n, set Z∗ = objk, set
hap1,2(1...n)(cnt) = h1,2(1...n), set UB(1...n) = Z∗ − LB(1...n);
Backtrack: while sk = 2, set sk = 0, k = k − 1;

11: If temp <= UBk and k < n, set k = k + 1
12: If k > 1, repeat steps 1− 11;
13: If k = 1 and cnt > 0 terminate algorithm, return

cnt, hap,Z∗;
14: If k = 1 and cnt = 0 increase Z and restart algorithm;

V. RESULTS AND DICUSSION

In this section, performance of the proposed algorithms is
tested on both simulated and experimental data.

A. Performance on real datasets

We first test the performance of branch-and-bound haplo-
type assembly on the 1000 Genomes Project data (individual
NA12878). Table II compares the accuracy (in terms of the
MEC) and runtimes of our proposed method (specifically,
Algorithm 1 which turns out to be a more efficient choice)
with those of HapCut and SDhaP. For SDhaP, the first shown
MEC score is obtained when the algorithm assumes fully
heterozygous haplotypes while the second one is obtained

after detecting and eliminating homozygous SNP sites; both
B&B and HapCut assume heterozygous haplotypes although
a modification that deals with homozygous sites similar to
that of SDhaP can readily be added. Note that while our
method finds the optimal solution, for this particular data set
the improvement in the MEC score over heuristics is small;
however, even such small improvements in the MEC score
may correspond to significant improvements in switch error
rate – an important performance metric discussed in details in
the next subsection.

chr# MEC Runtime (seconds)
B&B HapCUT SDhaP B&B HapCUT SDhaP

1 2306 2317 2406(1926) 41 6 21
2 2872 2887 3002(2411) 49 8 25
3 2361 2367 2495(2005) 41 7 22
4 2605 2618 2764(2229) 44 9 25
5 2167 2179 2329(1873) 39 7 21
6 3559 3576 3716(2883) 69 12 30
7 2070 2077 2201(1721) 35 6 19
8 1838 1855 1952(1592) 35 5 19
9 1479 1489 1572(1218) 27 5 17

10 1823 1828 1945(1493) 32 5 18
11 1577 1583 1688(1320) 29 5 20
12 1589 1591 1686(1335) 28 4 15
13 1405 1414 1515(1219) 24 3 14
14 987 992 1057(832) 20 3 11
15 1061 1062 1133(886) 18 3 11
16 1263 1271 1363(1038) 22 3 13
17 1228 1236 1266(1011) 25 3 10
18 941 942 1000(796) 19 3 10
19 765 767 820(594) 12 2 8
20 794 797 831(659) 15 2 10
21 528 533 558(449) 11 1 7
22 436 438 453(354) 10 1 6

TABLE II: MEC scores of branch-and-bound (Alg. 1 and
Alg. 2), HapCUT and SDhaP for 1000 Genomes Project data.

B. Performance of the algorithm on simulated data

To thoroughly test the proposed algorithms under different
performance criteria, we generate multiple synthetic datasets
emulating various experimental settings. To simulate a se-
quencing process, we randomly generate reads with starting
positions randomly selected across the genome. We simulate
different coverages, different sequencing error rates and dif-
ferent block lengths.

Fig. 7 shows the expected complexity exponent as a function
of block length for our proposed algorithms at 3 different
coverages - 10, 20 and 30 – for the data error rate of 0.01. As
can be seen from the figure, lower bounding prevents expo-
nential complexity growth otherwise evident in the branch-
and-bound scheme that uses no lower bounding speed-up.
For shorter blocks, the higher complexity of the scheme that
relies on lower bounding technique is due to the additional
O(2kmaxn2) operations needed to compute the lower bounds.
Fig. 8 shows the expected complexity for 3 different error
rates at a fixed coverage c = 10. For the error rate of 0.01, the
expected complexity of Algorithm 1 deteriorates rapidly while
that of Algorithm 2 changes little over the considered range of
parameters. For the low data error rates of 0.001 and 0.003,
benefits of additional pruning do not overcome the additional
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Fig. 7: The expected complexity exponent for the branch-and-
bound with (Alg. 2) and without (Alg. 1) lower bounding as a
function of block lengths for coverages 10, 20 and 30.

cost of computing the lower bounds and thus Algorithm 1 is
the preferred choice in this scenario.

Fig. 9 further explores the expected complexity exponent
of Algorithm 2, showing it as a function of the block length
for the data error rate 0.003 and 3 different coverages (10,
20 and 30). As seen from the figure, even for the block
lengths of 500 the expected complexity is sub-cubic. Fig. 10
shows the impact of data error rate on the expected complexity
exponent. As can be seen, for error rates 0.003 and 0.01, and
blocks of length smaller than 500, the expected complexity
exponent is low. However, for the higher error rate of 0.03, the
expected complexity exponent starts growing exponentially as
the block length exceeds 250. Therefore, haplotype assembly
of moderately long block at error rates typically encountered
in state-of-the-art sequencing platforms can be solved with

Fig. 8: The expected complexity exponents for Algorithm 1
and Algorithm 2 as a function of block lengths for error rates
of 0.001, 0.003 and 0.01. The complexity of Algorithm 2 is
dominated by the Viterbi algorithm used for finding lower
bounds and thus the three dashed plots seemingly coincide
(since the complexity of the Viterbi algorithm does not depend
on the data error rates).

Fig. 9: The expected complexity exponent for Algorithm 2
as a function of block lengths for coverages 10, 20 and 30.
Block lengths of up to 500 can be assembled with sub-cubic
complexity.

sub-cubic complexity.
A crucial accuracy metric of haplotype assembly is the

switch error rate (SWER), defined as the number of switches
(recombination events in the inferred phased haplotypes) that
are required to obtain the true haplotype phase. This compar-
ison is typically expressed as a rate: the number of switches
required divided by the number of opportunities for switch
error, which is the number of heterozygote markers in the
individual’s genotype minus 1 (the first heterozygote marker
can be assigned an arbitrary phase). Such a comparison may be
obtained here since the ground truth is known for the simulated
datasets. Fig. 11 shows the SWER of Algorithm 2 for different
error rates as a function of block length for a fixed coverage
(c = 10). As expected, the SWER increases with the data error
rates. There is a small increase in the SWER as the block get
longer. For a comparison, we also show the SWER obtained
by phasing using HapCUT. The suboptimal solutions obtained

Fig. 10: The expected complexity exponent for Algorithm 2 as
a function of block lengths for error rates of 0.003, 0.01 and
0.03. For error rates of 0.03 and block lengths larger than
200, the complexity starts growing exponentially.
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Fig. 11: The switch error rates of Algorithm 2 and HapCUT
as a function of block lengths for error rates of 0.003, 0.01
and 0.03.

via HapCUT lead to worse SWER than that of branch-and-
bound solutions. Fig. 12 shows the SWER as a function of
coverage (10, 15 and 20) for a fixed error rate (0.01). Here
the impact of coverage is more noticeable – there is almost
an order of improvement as the coverage is increased from 10
to 15 and from 15 to 20. The SWERs of HapCUT are also
shown, demonstrating improvement of our proposed technique
over the existing method.

Fig. 12: The switch error rates of Algorithm 2 and HapCUT
as a function of block lengths for coverages 10, 15 and 20.

VI. CONCLUSION

We proposed a novel depth-first branch-and-bound algo-
rithm for finding optimal solution to the single individual
haplotyping problem, and developed its fast variant. The
proposed algorithms exploit structure inherent to the haplotype
assembly problem and statistical information about sequenc-
ing errors to facilitate computationally efficient search for
the solution to the minimum error correction formulation of
haplotype assembly. We characterized expected complexity of
the proposed method and demonstrated its practical feasibility

on both simulated and real data. In scenarios typically encoun-
tered when processing high-throughput sequencing data, the
proposed method finds the optimal solution to the haplotype
assembly problem with low expected complexity. As part of
the future work, it is of interest to analytically characterize
the probability of error of the algorithm (e.g., by taking
an approach similar to the one in [22]), and to extend the
presented ideas to the assembly of polyploid haplotypes.
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