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ABSTRACT

RNA viruses replicate with high mutation rates, creating closely related viral populations. The
heterogeneous virus populations, referred to as viral quasispecies, rapidly adapt to environ-
mental changes thus adversely affecting efficiency of antiviral drugs and vaccines. Therefore,
studying the underlying genetic heterogeneity of viral populations plays a significant role in the
development of effective therapeutic treatments. Recent high-throughput sequencing technolo-
gies have provided invaluable opportunity for uncovering the structure of quasispecies popu-
lations. However, accurate reconstruction of viral quasispecies remains difficult due to limited
read lengths and presence of sequencing errors. The problem is particularly challenging
when the strains in a population are highly similar, that is, the sequences are charac-
terized by low mutual genetic distances, and further exacerbated if some of those strains
are relatively rare; this is the setting where state-of-the-art methods struggle.

In this article, we present a novel viral quasispecies reconstruction algorithm, aBayesQR,
that uses a maximum-likelihood framework to infer individual sequences in a mixture from
high-throughput sequencing data. The search for the most likely quasispecies is conducted
on long contigs that our method constructs from the set of short reads via agglomerative
hierarchical clustering; operating on contigs rather than short reads enables identification of
close strains in a population and provides computational tractability of the Bayesian
method. Results on both simulated and real HIV-1 data demonstrate that the proposed
algorithm generally outperforms state-of-the-art methods; aBayesQR particularly stands
out when reconstructing a set of closely related viral strains (e.g., quasispecies characterized
by low diversity).

Keywords: Bayesian inference, hierarchical clustering, low diversity, viral quasispecies.

1. INTRODUCTION

Anumber of potentially life-threatening infectious diseases are caused by RNA viruses, in-

cluding human immunodeficiency virus (HIV), hepatitis C virus, influenza, and Ebola. RNA viruses

have a relatively high mutation rate due to both their error-prone replication process and the lack of
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sophisticated repair mechanisms (Duarte et al., 1994). Consequently, they rapidly evolve and exist as a set of

nonidentical but closely related genetic variants, known as a viral quasispecies. Viral populations can readily

adapt to dynamic environments and develop resistance to antiviral drugs and vaccines, which makes the

design of effective and long-lasting treatments for RNA viral diseases exceedingly difficult (Lauring and

Andino, 2010). Determining the structure of viral populations helps the understanding of viral diseases and

provides guidance in the development of effective medical therapeutics. Quasispecies spectrum recon-

struction (QSR) aims to assemble individual haplotype sequences in a population and estimate their prev-

alence using sequencing reads generated from a sample containing a set of viral variants. High-throughput

next-generation sequencing (NGS) technologies have enabled affordable acquisition of data needed to

assemble quasispecies. However, relatively short length of the NGS reads and the presence of errors in

sequencing data render the QSR problem difficult. The QSR problem is particularly challenging when the

strains in a viral population are highly similar, that is, the sequences are characterized by low mutual genetic

distances, and further exacerbated if some of those strains are relatively rare (Posada-Cespedes et al., 2016).

Several software tools for solving the QSR problem by analyzing NGS data have been developed in

recent years. ShoRAH (Zagordi et al., 2011), the earliest publicly available such software, was developed

by combining a path cover-based approach and probabilistic clustering in Eriksson et al. (2008) and

Zagordi et al. (2010a), respectively, and applied to analysis of HIV data (Zagordi et al., 2010b). Read-graph

approach was the basis for ViSpA (Astrovskaya et al., 2011), developed as a variant of the network flow

method proposed in Westbrooks et al. (2008). Prosperi et al. (2011) proposed a combinatorial method for

QSR and the resulting software, QuRe, was provided by Prosperi and Salemi (2012).

An approach that resulted in the software package PredictHaplo (Prabhakaran et al., 2014) relied on a

Dirichlet process mixture model and was developed specifically targeting HIV population reconstruction;

QuasiRecomb (Töpfer et al., 2013) is based on a hidden Markov model that explicitly models recombi-

nation events. In Schirmer et al. (2012), a benchmarking study that compares the performance of several

publicly available quasispecies reconstruction softwares was presented. The study demonstrated that none

of the tested methods could reconstruct populations characterized by low pairwise distance between the

haplotype sequences. Following this study, other softwares, including HaploClique (Töpfer et al., 2014),

based on max-clique enumeration of a read alignment graph, and viral genome assembler (VGA) (Mangul

et al., 2014), a graph-coloring based heuristic method, were developed. Most recently, a reference-assisted

de novo assembly pipeline, ViQuaS, was proposed in Jayasundara et al. (2014). ViQuaS extends an existing

algorithm, QuRe (Prosperi et al., 2011), and outperforms various other techniques on a wide range of data set.

However, performance of these more recent methods deteriorates dramatically in the scenarios where the

genetic diversity of a population is low (Posada-Cespedes et al., 2016).

Both Posada-Cespedes et al. (2016) and Schirmer et al. (2012) have pointed out that the existing methods

for viral quasispecies reconstruction struggle in the scenarios where the populations are characterized by

low diversity. This, in part, is due to the presence of relatively long genetic regions that are common to

pairs of closely related viral sequences; clearly, this makes distinguishing different strains challenging. The

problem becomes even more difficult when the frequency of one (or more) of the close strains is low; in

such settings, small genetic distances may be confused for sequencing errors and hence remain undetected.

Such failures to detect may have serious consequences in antiviral treatment studies since undetected

strains cannot be properly targeted for drug and vaccine design. It has been shown that even the viral strains

existing at low frequencies can cause a drug treatment failure due to their resistance to the drug (Le et al.,

2009; Simen et al., 2009). Therefore, complete recovery of the composition of viral populations is of

critical importance for effective antiviral therapies.

In this article, we propose a novel QSR algorithm, aBayesQR (combining agglomerative hierarchical clustering

and Bayesian inference), that overcomes limitations of the existing methods and reliably reconstructs quasispecies

characterized by low diversity. The algorithm performs reconstruction of a quasispecies from NGS data in two

stages. In the first stage, conflict-free short reads are hierarchically merged and assembled into longer sequences

(contigs), which we refer to as super-reads. In the second stage, likelihoods of the probable quasispecies are

computed using the assembled super-reads (rather than using the original set of short reads), and the most likely set

of viral strains is selected. Note that the super-reads synthesized in the first stage of aBayesQR allow us to

distinguish between closely related strains, which share long genetic regions, as well as reduce the search space and

enable computational tractability of the Bayesian inference conducted in the second stage.

The second stage of aBayesQR involves sequential pruning of the solution space; in particular, the likely

set of partial viral strains comprising n single-nucleotide variants (SNVs) is generated by extending
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previously inferred partial viral strains having n-1 SNVs. The number of sequences in a set (i.e., the size

of a viral population) is dynamically updated at each step by evaluating quality of the set of partially

reconstructed viral strains and ultimately precisely inferred at the end of the search process. The relative

frequencies of each strain are determined by counting the numbers of reads unambiguously associated

with each of the reconstructed strains. Our tests on both simulated and experimental data demonstrate

superior performance compared to state-of-the-art methods for quasispecies reconstruction. In particular,

it is shown that unlike the competing methods, aBayesQR is capable of detecting and reliably re-

constructing viral haplotypes having very small mutual genetic distances.

2. PROPOSED METHOD

Our algorithm for inferring spectrum of a viral population consists of the following two steps: (1) con-

structing super-reads by hierarchically clustering aligned paired-end reads and (2) inferring the most likely

quasispecies from the set of super-reads and estimating the frequencies of the strains in the quasispecies.

2.1. Super-read construction via agglomerative clustering

In the first stage of aBayesQR, paired-end reads uniquely mapped to a reference genome are grouped into

super-reads via agglomerative hierarchical clustering. This is facilitated by a weighted graph G = (V‚ E),

which is constructed and recursively updated as the clustering proceeds. In particular, each vertex of G is

associated with a cluster collecting read that originated from a single strain in a quasispecies; we denote the

set of reads in the ith cluster (i.e., the cluster associated with the ith vertex) as Vi = fvj
i‚ j = 1‚ . . . ‚ jVijg. Let

sri denote a consensus sequence (i.e., a super-read) constructed from the reads in Vi. The ith and jth vertex of

G are connected by an edge eij 2 E if all the reads in Vi and Vj (or, equivalently, sri and srj) are conflict free

and an overlap criterion, specified later in this subsection, is satisfied. The weight wij of the edge eij is a

measure of similarity between Vi and Vj at each step, the algorithm merges a pair of vertices connected by

the edge having the largest weight to form a new vertex and agglomerates the corresponding clusters.

The alleles at homozygous sites, common to all the components of a quasispecies, are not utilized in the

reconstruction procedure. Instead, we separate reads having originated from different strains by clustering

them using heterogeneous sites with reliable SNV information. An SNV information is considered reliable

if the relative abundance of the allele is above a predetermined threshold, as in Di Giallonardo et al. (2014);

alleles whose abundance is below the threshold are treated as sequencing errors and disregarded in the

process of clustering. For convenience, let us denote the set of preprocessed paired-end reads by

R = fri‚ i = 1‚ � � � ‚ jRjg. The agglomerative clustering is initialized with jRj clusters, one for each read; in

other words, we start with V1 = r1‚ . . . ‚ VjRj = rjRj, implying that jVj =
PjVj
i = 1

jVij = jRj, and proceed by sequen-

tially merging judiciously chosen pairs of vertices (i.e., agglomerating the corresponding clusters). Intuitively,

it is meaningful to reduce the number of vertices in the graph by merging those associated with conflict-free

consensus sequences that have a large overlap. To formalize this, let Li = fl1‚ � � � ‚ ljLijg denote an index set of the

SNV positions covered by sri, let Li\j = fl1‚ � � � ‚ ljLi\jjg be the index set of SNV positions covered by both sri and

srj, and let Li[j = fl1‚ . . . ‚ ljLi[jjg be the index set of SNV positions covered by either sri or srj. Then, the pairs of

vertices (i‚ j) that we consider as candidates for merging and thus connect by an edge are those satisfying either

jLi\jj � h � jLi[jj or jLi\jj = min (jLij‚ jLjj)‚

where the second condition promotes merger of short super-reads, and the choice of h is discussed below.

To quantify uncertainty inherent to a clustering solution due to existence of nonoverlapping positions

among the reads in each cluster, we define a position-specific confidence score as follows:

scorei[l] =
cri[l] - cr[l]

1 - cr[l]

where l denotes the position, cr[ � ] is the overall coverage rate, and cri[ � ] denotes cluster-specific coverage

rate for Vi (i.e., cri[l] is the fraction of reads in Vi = fvj
i‚ j = 1‚ � � � ‚ jVijg covering position l). On the one

hand, this score is penalized at a site where the fraction of cluster members (short reads) covering the site is
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low; the score is negative if the cluster-specific coverage rate is below the global coverage rate, which

implies uncertainty of the clustering decision. On the other hand, positive scores indicate high confidence in

the decision to group the reads into the same cluster. Note that the highest possible score of 1 at position l is

achieved when all the reads in a cluster cover the lth position. Using the confidence scores, we define the

weight wij assigned to an edge eij to quantify similarity between Vi and Vj as

wij =
1

jLi[jj
X
l2Li[j

scorei[j[l]:

Given the weights wij, we can now specify the clustering procedure. In each step, the pair of vertices

connected by the edge with maximum weight is merged; the newly constructed vertex inherits edges from

the merged vertices and the weights on those edges are re-evaluated. A new (longer) consensus sequence is

constructed by combining the two super-reads associated with the merged vertices; recall that there are no

conflicts between the super-reads being merged. If after such an update step no edges connect the new

vertex with the rest of the graph (because no inherited edges satisfy the connectivity condition), h is

decreased and the above process is repeated. We initially set h to 0.9 and gradually decrease it by 0:1 while

h > 0. The above procedure is repeated until no pairs of vertices satisfy the connectivity condition. By that

point, a set of long consensus sequences (the final super-reads) has been formed from the clusters of reads

associated with the nodes of the final graph. While the complexity of agglomerative clustering is, in

general, O(N3) where N denotes the input data size (Sasirekha and Baby, 2013), it has been shown that its

time complexity can be reduced to O(N2) with accuracy equal to that of the brute-force method by using the

partial maximum array technique ( Jung and Kim, 2001). We exploit this to efficiently construct super-

reads. The algorithm for super-read construction is formalized as Algorithm 1.

Algorithm 1: Agglomerative clustering for super-read construction

Input: Set of reads aligned to the reference genome

Output: Set of super-reads and the corresponding confidence scores

for h > 0 do

Build a weighted graph G = (V‚ E)

while E 6¼ ; do

Merge two clusters connected with the largest weight

Update G = (V‚ E) and weights using partial maximum array

end while

h = h - 0:1
end for

2.2. Maximum likely (MA) reconstruction of quasispecies from super-reads

Here we describe how to reconstruct the most likely set of strains in a viral quasispecies using super-

reads from Section 2.1 and their confidence scores. While in principle the method outlined in this section

could be applied directly to the short reads provided by a sequencing platform, such an approach would in

general not only be computationally prohibitive due to a very large number of short reads but also limit the

ability of the algorithm to distinguish strains with small mutual genetic distances due to having long

conserved regions. Relying on a relatively small number of long super-reads constructed from short reads

circumvents both of these problems and makes the reconstruction more accurate and practically feasible.

Note that sequencing errors may undesirably prevent clusters of reads from being merged with other

clusters due to a violation of conflict-free requirement; consequently, a set of short reads in a small cluster

is likely to have a disproportionate amount of sequencing errors. For this reason, we ignore clusters with

very small memberships (in particular, those containing fewer than 0:001 � jRj reads), which limits the

detection of strains to those constituting more than 0:1% of the quasispecies.

Let C = fCm‚ m = 1‚ . . . ‚ Mg denote the collection of clusters that remain after deleting clusters having only

few reads; moreover, for convenience let us relabel the reads in Cm as cj
m, that is, Cm = fcj

m‚ j = 1‚ . . . ‚ jCmjg
where cj

m 2 R. We organize the super-reads obtained by Algorithm 1 in Section 2.1 into rows of an M · N

matrix S = fsmn‚ m = 1‚ . . . ‚ M‚ n = 1‚ . . . ‚ Ng with entries smn 2 fA‚ C‚ G‚ T‚ - g where - denotes a site
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not covered by a super-read and N denotes the total number of SNV sites in the strains of a quasispecies.

A nucleotide in the (m‚ n) position of S is assigned confidence scorem[n] defined in Section 2.1; the scores

for the entire matrix are normalized so that they fall between 0 and 1 to use them in our Bayesian approach

to assembly. Let emn be the probability that smn was estimated erroneously due to either a sequencing error

in reads on the nth SNV position or the uncertainty induced by reads not covering the nth SNV position.

Note that negative scores indicate low confidence resulting from insufficient cluster-specific coverage rate,

while positive scores imply relatively confident information. To map scorem[n] 2 ( -1‚ 1] to the set [0‚ 1],

we set emn = 1 - escorem[n] for scorem[n] < ln(1 - �), where � denotes the error rate of a sequencing platform.

Otherwise, we set emn = �.
Let Q = fqk‚ k = 1‚ . . . ‚ Kg denote the set of K strains of a viral quasispecies. The goal in the second stage

of our method is to determine Q from the super-read matrix S using a probabilistic framework. An exhaustive

search over the entire solution space is computationally intractable even for small S; instead, we reconstruct

the set of K viral strains sequentially, extending partially estimated strains on SNV position at each step. Since

maintaining and extending all possible partial strains inevitably increase their number exponentially, unlikely

sets of candidate strains are pruned in each step. Each step consists of three basic parts: (a) extension of the

partially reconstructed strains, (b) selection of probable sets comprising K strains chosen among those

generated in step (a), and (c) evaluation of the quality of the selected sets of strains and an update of K. The

sequential Bayesian inference procedure in step t is illustrated in Supplementary Fig. S1 in Appendix A.

2.2.1. Extending partially reconstructed strains. Let F1:t - 1 = ff i
1:t - 1‚ i = 1‚ � � � ‚ jF1:t - 1jg be the

collection of partially reconstructed strains covering the first t - 1 SNV sites and let Bt = fbj
t‚ j = 1‚ � � � ‚ jBtjg

be the lists of distinct bases in the tth column of S, where bi
t 2 fA‚ C‚ G‚ Tg and 2 � jBtj � 4. Then, all the

possible extensions of f i
1:t - 1 to the SNV site t can be enumerated as f[f i

1:t - 1‚ b1
t ]‚ � � � ‚ [f i

1:t - 1‚ b
jBt j
t ]g. Let

Si
1:t - 1 = fsic0

1:t - 1‚ c0 = 1‚ � � � ‚ jSi
1:t - 1jg be the collection of super-reads covering some of the first t SNV sites,

which are consistent with f i
1:t - 1 (ignoring ‘‘ - ’’ in s

ic0
1:t - 1) where fic0 g denotes indices of rows of S that are

placed in Si
1:t - 1, and let Si

t = fsic
t ‚ c = 1‚ � � � ‚ jSi

tjg denote the collection of nucleotides (sic
t 2 fA‚ C‚ G‚ Tg,

not ‘‘-’’) observed at the tth SNV site of the super-reads in Si
1:t - 1 where ficg denotes the indices of rows in

S that contribute to Si
t. Given Si

1:t - 1‚ Si
t and f i

1:t - 1, the probability of b
j
t being the true extension of f i

1:t - 1 is

given by the following:

P(Si
tjbj

t‚ Si
1:t - 1‚ f i

1:t - 1) =
YjSi

t j

c = 1

P(sic
t jbj

t)‚

P(sic
t jbj

t) = 1 - eict‚ if b
j
t = sic

t ‚
eic t

jBt j ‚ otherwise:

(

We extend f i
1:t - 1 to [f i

1:t - 1‚ b
j
t] 2 F1:t - 1‚ t by appending the b

j
t 2 Bt which satisfies

P(Si
t jb

j
t‚ Si

1:t - 1
‚ f i

1:t - 1
)

1

jSi
t
jP

Bt

P(Si
t jb

j
t‚ Si

1:t - 1
‚ f i

1:t - 1
)

1

jSi
t
j
� d0,

where the exponent ensures proper normalization and is needed since the number of super-reads, jSi
1:t - 1j, varies

for each ff i
1:t - 1‚ i = 1‚ � � � ‚ jF1:t - 1jg. For f i

1:t - 1, which has no matched super-reads, that is, jSi
1:i - 1j = 0, we keep

all of jBtj possible extensions of f i - 1
1:t . By collecting probable extensions for each f i

1:t - 1 2 F1:t - 1, we obtain the

set of partial strains stretching over the first t SNV sites, F1:t - 1‚ t. This procedure is formalized as function

ExtendFrag in Appendix A.

2.2.2. Inferring likely sets of K partial strains. Having generated the probable partial strain, F1:t - 1‚ t,

we denote the set of all its possible subsets of K strains (i.e., the quasispecies population candidates) as

Q1:t - 1‚ t = Qi
1:t - 1‚ t‚ i = 1‚ � � � ‚ jF1:t - 1‚ tj

K

� �� �
where Qi

1:t - 1‚ t = fqi
kn‚ k = 1‚ � � � ‚ K‚ n = 1‚ � � � ‚ tg and qi

kn2

F1:t - 1‚ t. The log-likelihoods of Qi
1:t - 1‚ t can be expressed as follows:

lnP(SjQi
1:t - 1‚ t) =

XM
m = 1

lnP(sm�jQi
1:t - 1‚ t)‚
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P(sm�jQi
1:t - 1‚ t) =

1

K

XK

k = 1

Yt

n = 1

P(smnjqi
kn)

 ! !
‚

where sm� denotes the mth row vector of the matrix of super-reads S and

P(smnjqi
kn) =

1 - emn‚ if qi
kn = smn‚

emn

jBnj ‚ if qi
kn 6¼ smn for smn 6¼ - :

�

Let Qmax
1:t = max

Qi
1:t - 1‚ t

2Q1:t - 1‚ t

P(SjQi
1:t - 1‚ t). Among the

jF1:t - 1‚ tj
K

� �
sets in Q1:t - 1‚ t, we keep only those that

satisfy P(SjQi
1:t - 1‚ t) > d1 � Qmax

1:t , while the others are discarded; let us denote the collection of candidate

sets that pass this test as Q1:t. For practical feasibility of the scheme, the collection of partially re-

constructed strains F1:t - 1‚ t is trimmed by excluding from it all the strains that are not part of at least one

of the sets in Q1:t; we denote the resulting collection of partial strains by F1:t 2 F1:t - 1‚ t and use it when

extending the strains onto the t + 1 SNV site. The described procedure is formalized as function

InferQuasi in Appendix A.

2.2.3. Determining the number of strains K in a quasispecies. In this step, we assess appro-

priateness of K used in the inference ofQ1:t and update it if necessary. To this end, we rely on the minimum

error correction (MEC) score, which has previously been broadly used as a criterion in the design of

methods for haplotype assembly (Lancia et al., 2001; Lippert et al., 2002). In the context of polyploid

haplotype assembly, the MEC score is defined as the smallest number of nucleotides that needs to be

changed in data (i.e., in observed reads) so that the corrected reads are consistent with having originated

from K haplotypes. Let HDt( � ‚ � ) denote the Hamming distance between two sequences counted over the

observed nucleotides in the first t SNV positions.* Then, the MEC score of the most likely set Qmax
1:t of K

viral strains evaluated on the first t SNVs is

MECt(K) =
XM

m = 1

min
k2f1‚ ���‚ Kg

XjCmj

j = 1

HDt(c
j
m‚ qmax

k� )‚

where qmax
k� is the kth row vector of Qmax

1:t . Let Nt be the total number of nucleotides observed in the first t

SNV positions of all the reads of the data set. Note that the smaller the MEC scores, the higher the accuracy

of a clustering. If MECt(K)=Nt < 2�, we use the same value K in the next step where the likely set of viral

strains stretching over the first t + 1 SNV positions is inferred. Otherwise, we increase K by 1, repeat the

estimation of Q1:t, and evaluate the improvement rate of MEC score as follows:

MECimpr(K) =
MECt(K) - MECt(K + 1)

MECt(K)
:

The reason for selecting K based on the MEC improvement rate (MECimpr) is that the MEC score

drops significantly once K matches the actual number of clusters; our scheme attempts to detect that

change to infer population size. If MECimpr(K) > g, where g denotes a prespecified threshold, the

number of species is updated as K) minfK + n‚ jF1:t - 1‚ tjg where n is the smallest integer number such

that MECimpr(K + n) < g. If MECimpr(K) < g, we update the number of species as K) maxfK - n‚ 2g
where n is the smallest integer such that MECimpr(K - n) � g. The choice of threshold g is discussed in

Appendix B. The updated value of K is used for the inference of Q1:t + 1. Note that the probable set of viral

strains, Q1:t, is stored for each K to avoid performing redundant MECimpr( � ) calculations.

Once we obtain the most likely set of K viral sequences covering N SNVs, Qmax
1:N , the full-length K

quasispecies strains are reconstructed by inserting the consensus nucleotides observed in R into the non-

SNV sites. We estimate relative frequencies pk, 1 � k � K, of quasispecies strains based on the Hamming

distance between super-reads and the reconstructed sequences. In particular, for each super-read sri, we

determine the nearest assembled strain qj where j = arg min
k2f1‚ ���‚ Kg

HD(sri‚ qk), and the number of reads

*If either of the two sequences has a gap ‘‘-’’ in a position, that position is ignored in the computation of the
aforementioned Hamming distance.
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involved in constructing the super-read sri is counted toward pj. The entire scheme proposed in this

subsection is summarized as Algorithm 2.

Algorithm 2: Sequential Bayesian inference for quasispecies reconstruction

Input: Set of super-reads and the corresponding confidence scores

Output: Set of K strains of a viral quasispecies

Initial K)2, F1:1)B1

for t 2 f2‚ � � � ‚ Ng do

F1:t - 1‚ t = ExtendFrag(F1:t - 1‚ t‚ d0)

Q1:t = InferQuasi(F1:t - 1‚ t‚ K‚ d1)

K�)K, Q�1:t)Q1:t

if MECt(K)=Nt � 2� and K < jF1:t - 1‚ tj do

Q1:t = InferQuasi(F1:t - 1‚ t‚ K + 1‚ d1)

if MECimpr(K) < g do

while M ECimpr(K) < g and K > 2

Q�1:t)Q1:t, K�)K, K)K - 1

Q1:t = InferQuasi(F1:t - 1‚ t‚ K‚ d1)

end while

else do

while M ECimpr(K) � g and K < jF1:t - 1‚ tj
Q�1:t)Q1:t, K�)K

Q1:t = InferQuasi(F1:t - 1‚ t‚ K + 1‚ d1)

end while

end if

end if

K)K�, Q1:t)Q�1:t

Get F1:t by pruning F1:t - 1‚ t based on Q1:t

end for

Reconstruct full-length quasispecies Q from Qmax
1:N 2 Q1:t and R

Estimate frequencies of each strain qk 2 Q based on HD(sri‚ qk) and jCij

3. RESULTS AND DISCUSSION

3.1. Performance comparison on simulated data

To evaluate performance of the proposed method for quasispecies reconstruction, we use metrics Recall,

Precision, Predicted Proportion, and Reconstruction Rate. Recall is defined as the ratio of the number of

correctly reconstructed strains to the total number of true strains in the quasispecies, that is, Recall = TP
TP + FN

,

while Precision is defined as the fraction of correctly reconstructed strains among all the assembled

sequences, that is, Precision = TP
TP + FP

. Noting that Precision usually reports high scores when the number of

strains is underestimated while penalizing overestimation of the population size, we also report the ratio

of the number of reconstructed sequences to the true population size, Predicted Proportion. The closer

the Predicted Proportion to 1, the more accurate the number of reconstructed strains. Moreover, to assess

the degree of reconstruction accuracy, we define Reconstruction Rate = 1
K

PK
k = 1 1 - HD(qk‚ q̂k)

G

� �
‚ where G is

the length of a genome, K is the number of strains in a quasispecies, and qk and q̂k denote the kth true strain

and its nearest sequence among the K estimated ones, respectively. To assess the accuracy of estimated

frequencies, we use the Jensen–Shannon divergence ( JSD), which quantifies similarity between two dis-

tributions. Given a true distribution P and its approximation Q, the Kullback–Leibler (KL) divergence

D(PjjQ) =
Pn
i = 1

P(i)log P(i)
Q(i)

is undefined when Q(i) = 0. JSD, a symmetrized and smoothed version of the KL

divergence, circumvents this problem by defining similarity of P and Q as JSD(PjjQ) = 1
2
D(PjjM) + 1

2
D(QjjM)‚

where M is defined as M = 1
2
(P + Q):

We compare our algorithm with publicly available ShoRAH (Zagordi et al., 2011), PredictHaplo

(Prabhakaran et al., 2014), and ViQuaS ( Jayasundara et al., 2014). Since ViQuaS is an extension of the
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algorithm in Prosperi et al. (2011) and Prosperi and Salemi (2012), and was shown to have superior

performance compared to its predecessor, we omit the comparison with the software QuRe in Prosperi et al.

(2011) and Prosperi and Salemi (2012). It is worth pointing out that for the synthetic data sets we study,

ShoRAH could not reconstruct strains in the regions where the simulated sequencing coverage is relatively

low compared to the average, resulting in reconstruction of strains that are shorter than the true length G.

To facilitate a fair comparison with ShoRAH, we aligned its reconstructed strains to the reference genome

and completed missing sites with bases from the reference. ViQuaS, on the contrary, tends to reconstruct

many more strains than actually present; thus, we followed ViQuaS’s authors’ recommendation and re-

tained only those having frequencies greater than fmin when calculating Precision. Finally, not all of the

synthetic data sets could be processed with PredictHaplo, preventing us from reporting its performance in

some of the scenarios.

We generated synthetic data sets by emulating high-throughput sequencing of a viral population con-

sisting of a number of closely related viral genomes having length of 1300 bp; this particular length was

chosen to coincide with the longest region of the HIV pol gene. Quasispecies sequences are generated by

introducing independent mutations at uniformly random locations along the length of a randomly generated

reference genome so as to obtain a predefined level of diversity (div%), that is, a predefined average

Hamming distance between quasispecies strains. Simulating Illumina’s MiSeq data, 2 · 250 bp-long paired-

end reads are sampled uniformly from each viral strain with a mean coverage of cov · per strain. Inserts of

the paired-end reads are on average 150 bp long with standard deviation of 30. In our benchmarking tests,

we focus on exploring the effects of diversity (div%) on the accuracy of the quasispecies reconstruction.

Two sets of viral populations are considered: (1) a mix of 5 viral strains with abundance levels 50%,

30%, 15%, 4%, and 1%; and (2) a mix of 10 strains with abundance levels 36%, 24%, 16%, 8%, 5.5%, 4%,

3%, 2%, 1%, and 0:5%. Note that the abundances are chosen to approximately follow geometric distri-

bution and that the populations include low-abundant strains. For each combination of the parameters, 100

data sets were generated and the reported results were obtained by averaging over those data instances. For

PredictHaplo, which did not produce results in each instance, the averaged results are reported if more than

50 instances were successfully processed.

In all of the following experiments, potential SNVs are called if their abundance is higher than 1%,

which is set relatively high to avoid false positives (FPs); FPs prevent reads to be merged with existing

clusters in Section 2.1. We execute the function ExtendFrag with parameter d0 = 0:1. Parameter d1 in

function InferQuasi is initially set to 0.001, but adaptively increases if the number of combinations of

partially reconstructed strains exceeds 10,000; this is done to limit the number of likelihood calculations

performed in each run of InferQuasi. The recommended value of g, a threshold used to determine pop-

ulation size K based on MECimpr(�), is discussed in Appendix B.

We compare performances of aBayesQR, ShoRAH, ViQuaS, and PredictHaplo when applied to the

reconstruction of a quasispecies spectrum with diversity levels varying between 1% and 5% (i.e.,

div 2 f1%‚ 2%‚ 3%‚ 4%‚ 5%g). To test the ability of different methods to reconstruct quasispecies with low

diversity, we assume low-sequencing error rate of err = 0:1% [median mismatch error rates for 454 Life

Sciences and Illumina platforms are 0.1% and 0.12%, respectively (Archer et al., 2012)]. Coverage per

strain cov · is set to 500 · , implying total coverage of 2500 · and 5000 · for the 5-strain and 10-strain

population, respectively; strains having frequencies 0.23% or higher in the 5-strain case and those with

frequencies 0.46% or higher in the 10-strain case are covered with probability 0.99 (Eriksson et al., 2008).

Table 1 demonstrates that the proposed aBayesQR algorithm outperforms existing schemes. In terms of

Recall and Precision, aBayesQR exhibits exceptionally good performance compared to competing methods

when reconstructing quasispecies strains with diversity div < 4%. The performance of ViQuaS deteriorates

at low diversities in terms of most of the criteria (i.e., Recall, Precision, Predicted Proportion, and JSD).

PredictHaplo could not perform reconstruction in most of the low diversity instances, yet it overall achieves

the highest Precision because it typically underestimates the number of strains as shown by Predicted

Proportion (e.g., estimating only 2–3 out of 10 strains), which is in agreement with the results reported by a

previous study (Schirmer et al., 2012).

Among all methods, ShoRAH has the lowest performance in terms of Recall and Precision. As indicated

by Predicted Proportion, aBayesQR is the most accurate method in terms of estimating the population size

although it often misses a strain with the lowest frequency when applied to reconstruction of a quasispecies

consisting of 10 strains. ViQuaS and ShoRAH typically overestimate the number of strains especially at

low diversity levels. aBayesQR is the best method in terms of Reconstruction Rate at all levels of diversity.
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In terms of frequency estimation, aBayesQR overall outperforms all the other methods, whereas Pre-

dictHaplo shows the highest JSD due to its drawback of underestimating the number of strains. Note that

both ViQuaS and ShoRAH exhibit significantly increased (i.e., deteriorated) JSD at low diversity levels.

This fact, along with the low Recall and Precision scores they have in low diversity settings, indicates that

state-of-the-art methods experience major difficulties when attempting to reconstruct viral quasispecies in

those settings, as also observed in Eriksson et al. (2008), Schirmer et al. (2012), and Jayasundara et al.

(2014).

We further study the effects that sequencing error rate (err%) and coverage per strain (cov · ) have on the

performance of the algorithms. Those results are reported in Supplementary Tables S2 and S3 in Appendix

C, demonstrating superiority of aBayesQR compared to the competing methods. The runtimes of the tested

algorithms are shown in Supplementary Table S4 in Appendix C.

3.2. Performance comparison on real HIV data

To further test the performance of our proposed method, we use it for the analysis of the HIV 5-virus-mix

data set published in Di Giallonardo et al. (2014). Specifically, we apply our algorithm to reconstruct an in

vitro generated quasispecies population consisting of five known HIV-1 strains: HIV-1HXB2, HIV-189:6,

HIV-1JR - CSF , HIV-1NL4 - 3, and HIV-1YU2. Compared to the simulated data set, relative frequencies of the

five HIV-1 strains are more evenly distributed (about 10% - 30%) and the pairwise distances between

strains are higher (2:61% - 8:45%) (Di Giallonardo et al., 2014). We use the 2 · 250 bp-long paired-end

Table 1. Performance Comparison of Different Methods for Varied Diversities (div) on Simulated Data

div(%)

5 strains 10 strains

1 2 3 4 5 1 2 3 4 5

Recall

aBayesQR 0.7080 0.7120 0.6840 0.6560 0.6320 0.5810 0.6380 0.6080 0.5860 0.5550

ShoRAH 0.1920 0.1600 0.1300 0.1060 0.0780 0.0150 0.0380 0.0740 0.0640 0.0930

ViQuaS 0.3700 0.5240 0.6040 0.6360 0.5960 0.0980 0.1700 0.3730 0.4720 0.5050

PredictHaplo — — — 0.6918 0.6808 — — 0.1021 0.1550 0.2010

Precision

aBayesQR 0.7113 0.7130 0.6826 0.6447 0.6319 0.6210 0.6881 0.6610 0.6373 0.6140

ShoRAH 0.1062 0.1418 0.1240 0.1078 0.0790 0.0050 0.0170 0.0498 0.0506 0.0824

ViQuaS 0.1960 0.3206 0.4559 0.4982 0.5298 0.0485 0.1079 0.2973 0.4690 0.5596

PredictHaplo — — — 0.9373 0.8822 — — 0.4509 0.6000 0.6833

PredProp

aBayesQR 1.0180 1.0120 1.0120 1.0360 1.0140 0.9680 0.9440 0.9240 0.9240 0.9100

ShoRAH 1.9660 1.2200 1.0780 1.0000 1.0180 3.2000 2.9100 1.6710 1.3520 1.1860

ViQuaS 2.1100 1.7220 1.4080 1.3340 1.2180 2.0860 1.8580 1.5450 1.2320 1.0730

PredictHaplo — — — 0.7388 0.7737 — — 0.1947 0.2430 0.2890

ReconRate

aBayesQR 0.9990 0.9982 0.9971 0.9961 0.9953 0.9975 0.9967 0.9952 0.9942 0.9924

ShoRAH 0.9948 0.9903 0.9891 0.9851 0.9827 0.9941 0.9900 0.9899 0.9897 0.9911

ViQuaS 0.9963 0.9949 0.9917 0.9936 0.9897 0.9944 0.9910 0.9899 0.9881 0.9858

PredictHaplo — — — 0.9906 0.9896 — — 0.9850 0.9797 0.9747

JSD

aBayesQR 0.0022 0.0008 0.0008 0.0014 0.0008 0.0043 0.0026 0.0023 0.0023 0.0025

ShoRAH 0.0762 0.0174 0.0047 0.0009 0.0012 0.1390 0.1110 0.0422 0.0238 0.0109

ViQuaS 0.0651 0.0255 0.0222 0.0097 0.0180 0.0993 0.0747 0.0495 0.0469 0.0454

PredictHaplo — — — 0.1020 0.1036 — — 0.1971 0.1636 0.1312

Performance comparison of aBayesQR, ShoRAH, ViQuaS, and PredictHaplo in terms of Recall, Precision, Predicted Proportion

(PredProp), Reconstruction Rate (ReconRate) and JSD on the simulated data with err = 0:1% and cov = 500 · versus div for a mixture

of 5 and 10 viral strains. Averaged PredictHaplo results are reported if they provide answers for more than 50% of data sets. Boldface

values indicate the best performance for each div(%).

JSD, Jensen–Shannon divergence.
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reads provided by Illumina’s MiSeq Benchtop Sequencer. The reads are aligned to the HIV-1HXB2 reference

genome; the reads shorter than 150nt and those having bases with quality scores less than a Phred threshold

of 60 are discarded. We compare the performance of our method applied to gene-wise quasispecies

reconstruction of the above described HIV data with that of the competing techniques. Since the current

version of ViQuaS software does not support specifying genomic regions, we could not use it in this

experiment. When running aBayesQR, we set the parameter g to 0.09 (the setting recommended in Ap-

pendix B). Other parameters are set to the same values as the ones used in Section 3.1.

We evaluate and report the Predicted Proportion (i.e., the fraction of correctly estimated strains as

defined in Section 3.1) and Reconstruction Rate in Table 2. On this real HIV-1 data set that (as pointed

above) has different properties than the simulated data set in Section 3.1, aBayesQR is the most accurate

among the considered methods in terms of Predicted Proportion. PredictHaplo underestimates the popu-

lation size and reconstructs three or four strains in the 8 considered genes, and ShoRAH greatly overes-

timates the population size for all 13 genes of the HIV-1 data set (e.g., it reconstructs 119 strains in gp120),

which is consistent with our simulation results as well as with the results in Schirmer et al. (2012).

aBayesQR and PredictHaplo are tied for the number of genes where all the strains are perfectly re-

constructed (five each); for the remaining genes, PredictHaplo provides a larger number of perfectly

reconstructed strains. However, it is worth pointing out that PredictHaplo, designed for identification of

HIV haplotypes, missed at least one strain in each of the remaining eight genes, while aBayesQR re-

constructed most of the strains on all but two genes, gp120 and gp41. ShoRAH did not perfectly reconstruct

any of the 13 genes, which is consistent with the simulation results. Moreover, overestimating the number

of strains negatively affects the accuracy of ShoRAH’s frequency estimation; for instance, the sum of

frequencies corresponding to the most abundant five strains does not exceed 50% in 9 of 13 genes (71% is

the largest such sum, on vpu) (see Supplementary Table S5 in Appendix C).

To complement the gene-wise quasispecies reconstruction study with that of a global reconstruction, we

consider the HIV-1 gap-pol region spanning 4307 bp. To efficiently process 355,241 paired-end reads that

remain after applying a quality filter, we organize the region into a sequence of windows of length 400 bp

Table 2. Performance Comparisons on a Real HIV-1 5-Virus-Mix Data Set

p17 p24 p2–p6 PR RT RNase int vif vpr vpu gp120 gp41 nef

aBayesQR

PredProp 1 1 1 1 1 1 1 1 12 1 0.8 0.8 1.2

RRHXB2 100 99.4 100 100 98.5 100 99.9 100 100 99.6 98 0 95.8

RR89:6 100 98.7 100 100 98.6 100 100 100 100 92 96.5 98.9 95.5

RRJR - CSF 100 99.6 100 100 99 100 100 100 100 98.8 97.7 99.1 98.2

RRNL4 - 3 100 100 100 100 98.9 100 100 99.8 100 100 96.3 98.8 100

RRYU2 100 99.7 100 100 99.2 100 99.5 99.7 100 100 0 98.6 99.2

ShoRAH

PredProp 13 16.4 13.8 8.8 21.8 11.8 13.6 12.8 7.8 4 23.8 19.8 17.4

RRHXB2 100 96.7 100 100 98.2 100 97.5 100 100 100 97.7 98.4 98.2

RR89:6 100 99.7 100 100 98.6 100 98.9 99.8 100 93.6 96.1 98.6 98.9

RRJR - CSF 100 100 100 100 99.8 96.4 99 100 100 98 96.9 96.3 94.7

RRNL4 - 3 100 99.1 97.3 100 98.9 99.2 99.3 99.3 100 100 96.1 98.5 98.6

RRYU2 94.2 99 100 98.3 98 94.5 98.6 95 93.2 90.8 97 95.4 97.9

PredictHaplo

PredProp 1 0.6 1 1 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8

RRHXB2 100 0 100 100 100 98.9 100 100 100 93.17 0 0 0

RR89:6 100 100 100 100 100 100 99.8 100 100 0 97.8 100 98.87

RRJR - CSF 100 100 100 100 100 100 100 100 100 100 99.7 100 100

RRNL4 - 3 100 99.1 100 100 100 100 100 100 100 100 100 100 100

RRYU2 100 0 100 100 100 0 0 0 100 100 98.6 100 100

Predicted Proportion (PredProp) and reconstruction rate (RR) for aBayesQR, ShoRAH, and PredictHaplo applied to reconstruction

of HIV-1HXB2 , HIV-189:6 , HIV-1JR - CSF , HIV-1NL4 - 3 , and HIV-1YU2 for all 13 genes of the HIV-1 data set. (Note: RR expressed in

percentages.) Boldface values indicate the genes where all the strains are perfectly reconstructed. The inferred frequencies are shown

in Supplementary Table S5 in Appendix C.
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where the consecutive windows overlap by 150 bp and run aBayesQR on those windows. The entire region

is assembled by connecting strains in the consecutive windows while testing consistency in the overlapping

intervals. The number of strains retrieved in the global reconstruction is decided by majority voting of the

number of strains obtained in each window. The frequencies are estimated by counting reads nearest (in

terms of Hamming distance) to each of the reconstructed strains. Following this procedure, both aBayesQR

and PredictHaplo could reconstruct all five HIV-1 strains in the gap-pol region correctly, that is, they both

achieved Reconstruction Rate of 100 for all five strains and Predicted Proportion of 1. The frequencies

estimated by aBayesQR are 15.21%, 19.34%, 25.56%, 27.61%, and 12.27%, while those estimated by

PredictHaplo are 13.21%, 13.56%, 25.67%, 19.69%, and 27.86%. ShoRAH highly overestimated the

number of strains and reported Predicted Proportion of 41.8; its five most abundant strains estimated are

reported to have frequencies 8.51%, 5.04%, 3.41%, 3.24%, and 3.09%.

4. CONCLUSIONS

In this article, we presented a novel maximum-likelihood-based approximate algorithm for reconstructing viral

quasispecies from high-throughput sequencing data. aBayesQR assembles paired-end short reads into longer

fragments based on similarity of the read overlaps and the uncertainty level of nonoverlapping regions. The

probable sets of partially reconstructed strains are inductively searched and a subset of those strains is extended to

efficiently deduce the most likely set of strains in a quasispecies. Detection of the population size is embedded into

the algorithm and is empirically shown to be very accurate; the number of strains is dynamically adjusted based on

the reliability of the partially assembled quasispecies in each extension step. Performance of the developed method

is tested on both synthetic data sets and a real HIV-1 data set. In both settings, the new algorithm outperforms

existing techniques in terms of accuracy of the quasispecies size estimation, perfect reconstruction of strains,

proportion of correct bases in each reconstructed strain, and the estimation of their abundance.

A particularly high accuracy is observed in estimating the population size (i.e., the number of strains) and

the relative abundance. Tests on synthetic data sets demonstrate that aBayesQR is capable of reconstructing

quasispecies at low diversity, showing superior performance in those settings compared to state-of-the-art

algorithms. Furthermore, the study on a real HIV-1 data set demonstrates that our proposed algorithm

outperforms or has performance comparable to that of the existing methods in the general setting of viral

quasispecies reconstruction.

aBayesQR can be extended and applied to the problem of estimating the population size and the degree

of variation among the constituent species in related fields such as immunogenetics. On a related note,

bacterial populations are characterized by having relatively lower mutation rates than viral and thus

typically have fewer segregating sites on the sequences in a population. The ability of our method to

perform highly accurate reconstructions in such settings should be further investigated.

A software aBayesQR is available at https://github.com/SoyeonA/aBayesQR. An appendix can be found in

a bioRxiv version of this article, which is available at http://biorxiv.org/content/early/2017/02/06/103630.
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