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A B S T R A C T

RNA viruses are characterized by high mutation rates that give rise to populations of closely related genomes,
known as viral quasispecies. Underlying heterogeneity enables the quasispecies to adapt to changing conditions
and proliferate over the course of an infection. Determining genetic diversity of a virus (i.e., inferring haplotypes
and their proportions in the population) is essential for understanding its mutation patterns, and for effective
drug developments. Here, we present QSdpR, a method and software for the reconstruction of quasispecies from
short sequencing reads. The reconstruction is achieved by solving a correlation clustering problem on a read-
similarity graph and the results of the clustering are used to estimate frequencies of sub-species; the number of
sub-species is determined using pseudo F index. Extensive tests on both synthetic datasets and experimental HIV-
1 and Zika virus data demonstrate that QSdpR compares favorably to existing methods in terms of various
performance metrics.

1. Introduction

RNA polymerase, an enzyme responsible for viral genome replica-
tion, exhibits high error rates causing relatively frequent point muta-
tions in viral genomic sequences. As a result, RNA viruses typically exist
as collections of non-identical but closely related variants inside the
host cells. The diversity of viral populations, often referred to as viral
quasispecies [1], adversely affects antiviral drug therapies and renders
vaccine designs challenging [2], thus motivating their close studies. The
quasispecies spectrum reconstruction (QSR) problem involves both the
reconstruction of individual sequences in a population as well as the
estimation of their relative abundances. Presence of sequencing errors
in high-throughput sequencing (HTS) reads, limited read lengths, and
small genetic distances among viral sequences render QSR a hard
problem to solve, even when sequencing coverage is high. Although
conceptually similar to the single individual haplotyping problem, QSR
has major additional challenges – the number of individual haplotypes
is a priori unknown and the point mutations are in general poly-allelic
rather than bi-allelic [3] (additionally, short indel errors may be pre-
sent).

Existing approaches for solving the QSR problem include Bayesian
inference methods such as ShoRAH [4], the non-parametric Bayesian
approach based on a Dirichlet process mixture model in [5] named
PredictHaplo, a hidden Markov model based Quasirecomb [6], max-
clique enumeration technique on read alignment graphs named

HaploClique [3], reconstruction method based on multinomial dis-
tributions named QuRe [7], graph-coloring based heuristic VGA [8],
and the reference assisted de-novo assembly reconstruction method
named ViQuaS [9]. Generally, these methods can be categorized as
read-graph based [3,7,8,10], probabilistic inference based [4–6] and
de-novo assembly based techniques [9]. Quasispecies reconstruction
methods may employ high-fidelity sequencing protocols [8] and bar-
code-tagging of genomes [11] to facilitate grouping of reads in popu-
lations. Recently, an algorithm for single individual haplotyping which
approximately solves a semidefinite programming relaxation of the max
K-cut problem on a read similarity graph was proposed [12]. Building
upon that framework, we here present a method and software for viral
quasispecies reconstruction, QSdpR (Quasispecies assembly with
Semidefinite program Relaxation), that accurately and efficiently de-
tects the number of sequences in a viral population, reconstructs their
genomes, and determines their frequencies. QSdpR processes data re-
presented by a read-similarity graph where the nodes representing the
reads are connected by edges representing read overlaps. We test the
performance of QSdpR on synthetic datasets emulating varying fre-
quency, coverage and nucleotide diversities, as well as on a real data set
introduced in [13] comprising Illumina MiSeq reads from a mixture of 5
cloned HIV-1 strains present at non-uniform proportions. The perfor-
mance of QSdpR in terms of the minimum error correction (MEC) scores
[14], Reconstruction Proportions, Reconstruction Errors and Frequency
Deviation Errors is compared with several existing methods. The
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benchmarking results demonstrate that QSdpR compares favorably
with PredictHaplo, ShoRAH and ViQuaS. To demonstrate the applic-
ability of QSdpR to virus-infected patient sample data, we analyze Il-
lumina MiSeq reads obtained from rhesus macaques infected with Zika
virus stock H/PF/2013 and perform its full-length genome reconstruc-
tion. The code for QSdpR is available for download from https://
sourceforge.net/projects/qsdpr/. (Notation: Matrices are represented
by uppercase bold letters and vectors by lowercase bold letters. For a
matrix M, M(i) and Mi represent its ith row and ith column, respectively
(regarded as column vectors). Mij denotes the (i,j)th entry of the matrix
M and ui denotes the ith entry of the vector u. Each vector is a column
vector unless noted otherwise. x+ denotes max(x,0). For the set S, the
number of elements in S is denoted by |S|.)

2. Materials and methods

2.1. Materials

2.1.1. Synthetic data
In the first part of benchmarking tests, we synthesize datasets by

emulating high-throughput sequencing of haplotypes present at uni-
form and non-uniform proportions, and with a range of population
sizes. First, we consider a dataset S1 of 5 viral strains at uniform pro-
portions (20% each), generated by introducing SNVs in 1 out of 100
independent and uniformly random locations along a randomly gen-
erated reference sequence of length 10,000 bp. Paired-end reads of
length 2×350 bp and 1000±100 bp inserts are generated with
Grinder [15] at an effective sequencing coverage 150×, where the ef-
fective sequencing coverage is defined as the total number of reads from
all strains, times the fraction of reference covered by each read. Reads
have an error rate of 1% (typical of Illumina’s platforms [16]). A second
dataset, S2 is simulated that has reads at coverage 200× from a uni-
form mixture of 10 viral strains, where other parameters are same as
those used in S1. Two additional datasets, S3 and S4, are simulated that
contain 5 and 10 sequences with geometric (ratio 1/2) and (approxi-
mately) linearly spaced proportions, at 200× and 400× coverages,
respectively, while keeping other parameters unchanged. To further
test the performance of QSdpR, we simulated a dataset S5 mimicking
reads generated by sequencing an HIV-1 in vitro population [13] that
consists of 5 sequences of length 1000 bp (typical length of a gene in the
pol region of the HIV-1 genome) with a SNV rate of 0.09861. Paired-end
reads of length 237±1% bp and 250 bp long inserts are simulated at
an average coverage of 2000×; sequencing error rate is identical to
that for datasets S1–S4. Frequencies of the haplotypes are set according
to those in [13]. All datasets are summarized in Table S1 of Supple-
mentary file 1.

In the second part of the simulation studies, we synthesized datasets
to assess the performance of QSdpR for sequences with length varying
between 1000 bp and 2500 bp, in steps of 500 bp. To this end,
2×150 bp long paired-end reads with 200 bp inserts are simulated;
these reads sample a quasispecies population of 5 haplotypes present at
uniform proportions at an effective coverage of 100×, keeping other
parameters as before. For each value of the reference length, we syn-
thesized 10 datasets and reported performance metrics averaged over
10 runs. These datasets are referred to as L1–L4 (Table S2 of
Supplementary file 1). Pre-processing steps for all datasets are de-
scribed in Section S1.2 of Supplementary file 1.

2.1.2. HIV-1 virus mix data
For experimental data, we consider the HIV-1 Five Virus Mix ex-

perimental dataset from [13] and used the HTS reads generated by Il-
lumina’s MiSeq sequencing platform. The data set consists of reads from
an in vitro mixture of 5 known HIV-1 strains, namely, HIV-1 89.6, HXB2,

JR-CSF, NL4-3 and YU2. The paired-end reads are on average 237 bp
long (standard deviation of 26 bp), with an average coverage of 23,000
reads per base; they are aligned to the HXB2 genome and are obtained
from the Genbank accession number SRP029432. After performing
variant calling, 958 SNVs are identified along the reference genome;
among these, 690 SNVs are located within the various genic regions of
interest. Sequencing depth for this dataset is highly non-uniform, and
the data is poly-allelic at a number of SNV sites (see Supplementary file
1, Figs. S1–S2). QSdpR is applied to the multiple gene regions com-
prising the HIV-1 genome (see Supplementary file 1, Table S2) for
benchmarking of performance [13,17].

2.2. Methods

2.2.1. System model
Let Q = …q q q{ , , , }K1 2 denote the set of K sequences present in a

quasispecies. The qi’s are nucleotide strings of identical length that
differ from each other at a number of variant sites. In our model, we
assume that differences between the member sequences in a quasis-
pecies are due to substitutions or single nucleotide variants (SNVs)2.
However, performance of QSdpR in the presence of insertions/deletions
(besides substitutions) is also presented in the Results section. Let R=
{r1,r2,…,r|R|} denote the set of reads acquired by a HTS platform in a
shotgun sequencing experiment; relative ordering of the reads is de-
termined by mapping them to a reference genome. Note that the HTS
reads (e.g., from Illumina’s MiSeq or HiSeq platforms) are typically
much shorter than the sequences in the quasispecies. The homozygous
sites (i.e., the sites at which all sequences contain the same allele) are
not used by the proposed quasispecies reconstruction method and
therefore the corresponding bases are removed from the read data.
Following the variant calling step, the reads covering only one SNV are
discarded since they are not helpful for the subsequent phasing of the
strains. In particular, when multiple viral strains share the allele at a
variant site, it is not possible to unambiguously assign a single-SNV
read to a strain.3 Let there be ℓ variant sites that are retained after
performing the above pre-processing of sequencing data. Then, each qk

can be thought of as a string of alleles of length ℓ, while each read ri is a
short, randomly located, not necessarily contiguous (due to inserts
between paired-end reads) and potentially erroneous sub-string of one
of the qk’s. The essential goal of viral quasispecies reconstruction is to
segment these reads into as many clusters as there are viral haplotypes
(namely, K) so that each cluster consists of reads that originated from a
specific sequence.

2.2.2. Quasispecies reconstruction as a correlation clustering problem
The previously mentioned clustering problem can be formalized by

introducing a weighted and undirected correlation graph G V E= ( , ),
where each vertex in the setV corresponds to a read ri ∈ R, and each
edge eij in the edge set E exists due to an overlap between ri and rj. The
weight or correlation associated with eij, denoted as ωij, is defined as

=
+

r r
s t
s t

0, if and do not share SNVs,

, otherwise,ij

i j

ij ij

ij ij (1)

where sij and tij denote the number of matches and mismatches at the
overlapping variant sites of ri and rj, respectively. Large wij implies that
ri and rj originate from the same haplotype while small wij implies the
opposite. Note that graphG is sparse since the reads are much shorter
than the genomic region of interest and hence each read overlaps with
relatively few other reads. The objective of clustering is to divide the

1 SNV rate is inferred by analyzing haplotypes in the ground truth data [13].

2 Throughout the manuscript, SNVs and “variant sites” are used interchangeably when
referring to substitution errors.
3 Note that in the experimental HIV-1 dataset that we analyzed, approximately 99.67%

reads cover more than one SNV and thus the fraction of discarded reads is very small.
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vertices Vv into K clusters such that the sum of the weights of edges
connecting vertices within clusters is maximized while the sum of the
weights of edges connecting vertices across clusters is minimized. Note
that sequencing errors in reads cause weights ωij to deviate from their
true values, thereby making the clustering problem non-trivial and
computationally challenging.

QSdpR solves a semidefinite relaxation of the max-K-cut formula-
tion of the described correlation clustering problem. Since the number
of components K in a quasispecies is a priori unknown, we rely on the
so-called pseudo F index to infer it (Section 2.2.3). For a given graph
with non-negative edge weights that indicate similarity (or dissim-
ilarity) between vertex pairs, the max K-cut problem partitions the
vertex set into K groups such that the sum total of the weights of edges
crossing each pair of the groups is maximized. Formally, the max K-cut
problem for a weighted graph is stated as

V V V V V V

V V V
V V

= … =

… <

r s r s

maximize ,

subject to , , , ,
r s K i j

ij

K r s

, , , 1 ,

1 2

K r s1 1

(2)

where V = …r K{ }, 1, ,r , represents a partition of the vertex set V .
This can be generalized to the setting of an incomplete undirected
graph with signed edge weights, which describes the clustering task
arising in the context of viral quasispecies reconstruction. Cluster
membership of a read i can be represented by a K-dimensional vector
with zeros at all entries except one entry, which corresponds to the
cluster where i belongs. Let Y ij be the correlation between the K-di-
mensional membership vectors corresponding to reads i and j. We de-
fine an |R|×|R| positive semidefinite matrix Y={Y ij} and using vector
matrix notation, we can write this problem in the form of a semidefinite
program (SDP) [12]

=

= …Y
K

i j R

W Y Y 1 Ymax , , subject to Diag( ) , 0,

and 1
1

, , 1, , | |,ij

Y

(3)

where W={ωij} is the |R|×|R| edge weight matrix of G , Diag(Y) de-
notes the diagonal vector of Y, 1 is the |R|-dimensional vector of all 1’s,
and ⟨A,B⟩ denotes the matrix dot product of A and B; note that R is
identical to the vertex setV .

Detection of rare variants in a viral quasispecies population requires
high read coverage, which in turn requires solving (3) for Y of high
dimension. While approaches to solve (3) optimally can be computa-
tionally prohibitive in these settings, efficient approximate methods
that exploit the structure of Y can be used. In particular, since Y can be
interpreted as an erroneous version of a similarity matrix with under-
lying data originating from K clusters, Y can be factorized using low-
dimensional rank-K matrices. This is notable since SDPs with low-rank
solutions can be solved efficiently [18]. Therefore, to find computa-
tionally feasible solutions to QSR problem, it is beneficial to express Y
as Y=V VT where V is an |R|×K matrix, and re-phrase the optimi-
zation (3) in terms of this low-dimensional matrix V (K ≪|R|) such that
[V(i)]TV(j)=Y ij. Using this decomposition of Y, we can write the La-
grangian relaxation of (3) as

+ +
K

V V V Vmin max [ ] [ ] 1
1

,
ij

ij
i T j

ij
i T j

V0
( ) ( ) ( ) ( )

(4)

where λ={λij} is an |R|×|R| matrix of Lagrange multipliers for the
inequality constraints in (3).

To solve (4), the objective function is alternately optimized with
respect to V and λ, one at a time. With λ fixed, V is updated using
gradient ascent [19] during which the ith row of V is found as

E
+V V( )i

j e ij ij
j( )

:
( )

ij
. With V fixed, λ is updated using sub-gra-

dient descent [19] where the sub-gradient of the objective in (4) with
respect to λ is given by ([V(i)] TV(j)+1/(K−1))+. At each iteration of
these alternating steps, V is augmented by adding a column vector
having entries drawn from the normal distribution N (0, 1) until V

becomes rank-deficient (i.e., until its rank becomes smaller than the
number of its columns). Augmenting V with columns potentially in-
creases value of the objective function in (4) which implies that the
described procedure leads us to a locally optimal solution while making
a parsimonious adjustment to the rank of the solution. However, the
optimal solution ×Vopt

R r| | opt has rank ropt typically greater than K;
therefore, to find a K-clustering of the vertices, a valid partition of |R|
reads into K clusters is obtained by

a. choosing K random vectors = …k Kz , 1, ,k
ropt such that

Nz (0, )k , and
b. assigning the ith read to the kth cluster by choosing k such that zk is

the closest to the ith row Vopt
i( ) of Vopt, i.e., =k V zarg max ( )

k K
opt
i T

k
1

( ) ,

∀i=1,2,…,|R|.

It has been shown in [20] that the output (in expectation) of the
above random projection heuristic is a constant factor approximation of
the optimal clustering objective.

For each cluster, a consensus sequence of length ℓ is created by
position-wise majority voting among the reads assigned to that cluster.
Next, we greedily explore if changing the cluster membership of reads
may further improve the value of the objective function; if it does, the
consensus sequences need to be re-evaluated. This greedy improvement
step is repeated until no further improvement of the objective is pos-
sible. Finally, the consensus sequences are extended to full-length
genomes by completing non-polymorphic (homozygous) sites with al-
leles excluded from the data in the pre-processing step; this result in K
sequences. Moreover, frequencies of the sequences are estimated by
computing relative fractions of the reads constituting corresponding
clusters.

2.2.3. Determining the number of components in a quasispecies
The number of haplotypes in a quasispecies is typically not known

before an experiment and thus needs to be inferred, i.e., a reconstruc-
tion procedure needs to determine the number of clusters K into which
the vertices ofG are to be partitioned. Finding the number of clusters is
a major challenge for most of the existing clustering methods, regard-
less of application. Note that a clustering mechanism that relies on
parsimonious cost objective functions (such as the minimum error
correction score, which we define and use in the next section) favors
larger number of clusters over smaller one (since the objective function
monotonically decreases with K). Therefore, such approaches may lead
to overestimating the number of clusters, i.e., they may generate a large
number of false positives. The model selection problem remains an
open and active research topic and is known to be difficult to solve,
especially for objects with partial observations as is the case with the
QSR problem. In this work, we determine the number of clusters by
comparing the quality of clustering solutions quantified using the
Caliński-Harabasz criterion [21], also known as the pseudo F index,
defined as

=F K K
R K

( ) inter cluster separation/( 1)
intra cluster separation/(| | )

.
(5)

In the context of quasispecies reconstruction, the terms in the nu-
merator and denominator of (5) are defined as follows. Let Ii ∈{1,…,K}
denote the index of the cluster containing read ri,∀i. Let nk denote the
number of reads in the kth cluster and ck denote the consensus of the
reads in the kth cluster; moreover, let c be the consensus of ck,k=1,
…,K. If D(⋅,⋅) denotes the generalized Hamming distance between two
strings over the alphabet {A,C,G,T} [12], then the inter-cluster se-
paration is measured by = n D c c( , )k

K
k k1 and the intra cluster separa-

tion is captured by = = D r c( , )k
K

i I k i k1 : i
. It has been observed that the

large values of the pseudo F index indicate closely knit clusters [21,22]
and, in practice, the value of K for which this index is maximized is a
good candidate for the choice of the number of underlying clusters.
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Therefore, the number of viral strains can be estimated by solving the
clustering problem over a pre-selected range of K and choosing the
value of K for which the pseudo F index has the highest value.

Note that in the classical correlation clustering framework [23], the
choice of K is made within the actual clustering procedure. QSdpR
decides on K in a different manner but we still refer to it as correlation
clustering to emphasize the fact that the clustering is being performed
on a read-to-read “correlation” graph.

3. Results and discussions

3.1. Results

3.1.1. Simulated data
We test QSdpR on the data sets S1–S5 and characterize its perfor-

mance in terms of the performance metrics discussed in Section S1.1 of
Supplementary file 1. The mismatch errors (i.e., the MEC scores) are
shown in Fig. 1, while Predicted Proportion, Reconstruction Error and
Frequency Deviation values are reported in Table 1. For a meaningful
and fair MEC comparison in Fig. 1, we excluded the cases where the
reconstruction is partial. Among the considered schemes, our method
achieves the lowest MEC scores for all of the data sets considered here,
followed by PredictHaplo (PredictHaplo failed to run successfully on S2
even though the sequencing coverage is as high as 200×), while Vi-
QuaS and ShoRAH have much higher mismatch errors on all the da-
tasets. The reason QSdpR performs so well in terms of MEC is due to the
fact that correlation clustering seeks to form clusters collecting reads
similar to each other in terms of the Hamming distance; therefore, an
optimal correlation clustering solution naturally minimizes the overall
MEC which can be interpreted as the total sum of the Hamming

distances between the reads in clusters and the corresponding re-
constructed strains. It is worthwhile pointing out that since the ground
truth for a quasispecies is generally unavailable (discovering it is the
entire purpose of QSR), performance metrics such as reconstruction
error and frequency mismatch are in general not possible to compute in
practice so one needs to use proxy measures such as the MEC score.

From Table 1, it can be seen that QSdpR infers the number of un-
derlying sequences correctly for 3 out of 5 data sets, namely for S1, S2
and S5, as indicated by the Predicted Proportion values. For datasets S3
and S4, it overestimates the number of sequences by 1. On the other
hand, PredictHaplo underestimates the number of sequences by 1 for
sets S3 and S5, and infers it correctly for S1 and S4. ViQuaS and
ShoRAH always overestimate this number except for set S5 where Vi-
QuaS reconstructs only one strain. In terms of Reconstruction Error, our
method is able to recover all of the 5 sequences without a single mis-
match for S1 and S5; for S3, it matches the performance of Pre-
dictHaplo, which does not provide error-free reconstruction in any of
the data sets on which it could successfully run. However, for set S4,
PredictHaplo achieves the lowest error (it has 26 nucleotide mis-
matches fewer than our method). ShoRAH achieves better reconstruc-
tion than our method on S4. While our correlation clustering technique
provides the most accurate spectra reconstruction for S1 and S5, it is
less accurate than PredictHaplo on sets S3 and S4. This is due to
overestimating the number of sequences for these 2 sets which leads to
misclassification of some reads, thus causing discrepancy between the
inferred frequencies and the correct ones. This effect is much more
pronounced in ViQuaS and ShoRAH primarily because they sig-
nificantly overestimate the number of sequences.

To demonstrate efficacy of the proposed approach for estimation of
the number of viral haplotypes, we report normalized pseudo F indices
F(K) in Fig. 2 for the synthetic data sets S1, S3 and S5 and for all 13
genes of the HIV-1 dataset. Recall that the true number of haplotypes in
each of these datasets is 5. It is evident from Fig. 2 that the correct value
of K maximizes normalized pseudo F statistics for S1 and S5 though not
for S3 (where the metric is maximized for K=6), and for all HIV-1
genes except PR and nef genes where the metric is maximum at K=7
and K=4, respectively. Results for runtime evaluation of QSdpR are
discussed in Section S1.4 of Supplementary file 1. Performance of
QSdpR on a broader spectrum of quasispecies can be found in Section
S1.5 of the same.

To assess robustness of QSdpR to indel mutations, we consider the
scenario where sequences in quasispecies harbor insertions and dele-
tions, along with SNVs. A quasispecies dataset containing 5 sequences is
simulated with parameters identical to those in datasets S1, S3; ad-
ditionally, indels at 0.1% are planted at random positions of 4 among
the 5 sequences. These indels have lengths between 1 and 3 bp. Paired-
end reads are generated at 100× coverage. QSdpR was able to cor-
rectly identify size of the population in this dataset (i.e., Predicted
Proportion=1), whereas ViQuaS and ShoRAH reported 3 and 4.2 re-
spectively. PredictHaplo failed to execute on this dataset (citing in-
sufficient coverage). In terms of Reconstruction Error, QSdpR (0.5263)
performed better than ViQuaS (0.5383) and ShoRAH (5.5588).
Frequency Deviation reported by QSdpR is 0.046, slightly better than

Fig. 1. MEC score comparison of QSdpR, PredictHaplo, ViQuaS and ShoRAH on the
simulated datasets S1–S5. PredictHaplo could not run on S2. ShoRAH returned haplotypes
with 72%, 44.6% and 93.6% of the reference genome lengths on sets S1, S2 and S5,
respectively.

Table 1
Performance evaluation of QSdpR on the simulated datasets S1–S5. QS, PH, VQ and SH denote QSdpR, PredictHaplo, ViQuaS and ShoRAH, respectively. Boldface value in each row
indicates the best performance for the given metric. PredictHaplo could not run on S2. ViQuaS reconstructed only one sequence for S5, hence is excluded from the comparison.

Predicted proportion Reconstruction error (×10-3) Frequency deviation (×10-2)

Dataset QS PH VQ SH QS PH VQ SH QS PH VQ SH

S1 1 1 6.2 13 0 9.2 5.7 6.7 0.06 0.78 1.68 7.2
S2 1 – 8.5 13 0.4 – 9.9 4.7 0.06 – 1.28 3.62
S3 1.2 0.8 6 9.6 4 4 6.5 6.6 0.09 0.03 8.2 5.21
S4 1.09 1 4.3 16.7 7.3 4.7 10.2 5 1.33 0.88 2.78 3.43
S5 1 0.8 – 56.4 0 0.25 – 6.6 0.01 3.07 – 8.96
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those reported by ViQuaS (0.048) and ShoRAH (0.0587). On the other
hand, for characterizing QSdpR performance on reads with a more
realistic error profile containing short indels, 3 additional datasets
F1–F3 are simulated, each with 5 strains of 1000 bp at uniform pro-
portions and respective diversities of 1%, 4% and 7%. 2×250 bp reads
with 700± 20 bp inserts containing indels at 0.015% rate are simu-
lated to contain no more than 5 indels per pair, at 1000× coverage,
using the Illumina MiSeqv3 read error profile of [24]. QSdpR accurately
estimated K for F1 and F2, and estimated 4 species for F3; it produced
error-free reconstructions for all 5 species in F1 and one species each for
F2 and F3. PredictHaplo, on the other hand, failed to execute on F1 but
predicted 5 species for F2, F3, with 2 and 4 error-free reconstructions
respectively. These results suggest that QSdpR may perform reasonably
well in the presence of indels in either member strains or reads. Results
on the HIV-1 data, as discussed below, also support this observation
since that mixture contains insertions and deletions along most of the
genes.

3.1.2. HIV-1 virus mix data
Next, we report the results of comparing performance of QSdpR

with existing algorithms in a application to HIV-1 Five Virus Mix data
set. Gene-wise quasispecies reconstruction is performed on the major
genic regions of the single strand HIV-1 RNA genome and performance
metrics are computed for each of those regions. In order to determine
the value of K to be used in the reconstruction, we analyze the 4036 bp
long segment of the HIV-1 genome encompassing the gag-pol region. For
cross-verification, we repeat the procedure of finding K with the 13
individual genes; in 11 cases, we obtain the correct number of clusters
(see Fig. 2). Performance of QSdpR is here compared with that of
PredictHaplo and ShoRAH. ViQuaS could not be used in this setting
since the current version of that software does not support re-
construction over specific regions; upon trying to run it for genome-
wide reconstruction, the program did not complete in 36 h on an 8-core
machine. Other recent approaches such as HaploClique [3] and VGA [8]
unfortunately experience code execution issues on this dataset.

Fig. 3 shows the MEC score comparison of QSdpR with PredictHaplo
and ShoRAH. QSdpR achieves better MEC scores than both

PredictHaplo and ShoRAH for all 13 genes of HIV-1 except for p17 gene
where the MEC score of QSdpR is slightly outperformed by Pre-
dictHaplo.

QSdpR performance is further characterized using Predicted
Proportion, Reconstruction Proportion, Reconstruction Error and
Frequency Deviation metrics, all summarized in Table 2. As we can see
from this table, Predicted Proportion of our method is better than that
of the 3 competing methods for the 13 genes. Reconstruction Propor-
tion of QSdpR is better than that of PredictHaplo on 5 genes and
comparable to it on 3 genes. Compared to ShoRAH, QSdpR performs
better on 9 out of 13 genes. In particular, QSdpR is able to recover the 5
true haplotypes for 3 out of 4 genes in the pol region comprising of PR,
RT, RNase and int genes. It is interesting to note that QSdpR maintains
high Reconstruction Proportion even for genes having low nucleotide
diversities (see Table S2). In terms of Reconstruction Error, QSdpR
outperforms PredictHaplo on 5 genes and is comparable in 1 gene,
while for the remaining ones, PredictHaplo has better performance. As
for ShoRAH, QSdpR has better performance on 9 genes and a com-
parable performance on 1 gene. Finally, in terms of Frequency Devia-
tion, QSdpR has comparable or better performance than PredictHaplo
on 8 genes and better performance than ShoRAH on 11 genes. The

Fig. 2. Normalized pseudo F statistics as a function of the
parameter K for simulated data sets S1, S3, S5 and 13 HIV-1
genes p17 through nef. The true number of species for each
dataset is 5. Value of K is correctly inferred for synthetic
sets S1 and S5 and for all HIV-1 genes except PR and nef.

Fig. 3. The MEC score comparison of QSdpR, PredictHaplo and ShoRAH on the HIV-1
Five Virus Mix dataset.
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genes where competing methods achieve slightly better performance
than QSdpR are those in the gapped portion of the genome.

3.1.3. Zika virus data
In addition to benchmarking QSdpR on datasets with known ground

truth, we here demonstrate its feasibility in applications to patient
sample datasets. In particular, we employ QSdpR for full genome re-
construction of an Asian-lineage Zika virus (ZIKV) sequenced at
∼30,000× coverage using Illumina’s MiSeq platform that generates
2×300 bp reads. The dataset was originally published in [25], where
ZIKV strain H/PF/2013 (Genbank KJ776791) isolated from a human
patient by European Virus Archive, Marseille, France, was used to infect
a group of eight rhesus macaques for studying pathogenesis over the
course of several days. We here focus on deep-sequenced samples ob-
tained from one of the infected animals (animal 393422) on the 4th day
of infection (accession SRR3332513) and apply the proposed method
for the full genome assembly. The reference used to align the reads was
the Asian-lineage ZIKV reference genome (Genbank KU681081.3) of
length 10,807 bp [26]. QSdpR reconstructed 4 full length sequences;
two of those were dominant with relative proportions 43% and 39.5%,
diverging by 0.23% and 0.09% from the H/PF/2013 ZIKV strain that
was used to infect the test animals. These results do not drastically
differ from the findings of [27] that reported 2 major sequences at
frequencies 61.3% and 38.7%. As for the competing methods, Pre-
dictHaplo reported only one strain of length that is 96% of the reference
genome length and diverges from the H/PF/2013 ZIKV strain by 0.01%.
ViQuaS did not complete reconstruction in 48 h while ShoRAH ran out
of memory in multiple trials.

3.2. Discussion

QSdpR distinguishes a read from another on the basis of the SNVs on
the reads. For extremely low divergence populations, sequencing errors
can be mistakenly called as SNVs, which leads to an overestimation of
the number of species. Therefore, the performance of QSdpR is closely
tied to the quality of the variant caller used; furthermore, the proces-
sing time in QSdpR pipeline is also affected by the caller’s efficiency.
The QSdpR reconstruction error depends on reference indirectly since
the homozygous sites are populated from this reference. Reads much
shorter than average length of conserved regions in the species often
convey no SNV linkage to facilitate proper clustering; therefore QSdpR
is not guaranteed to perform well in spite of high coverage if the pro-
portion of informative reads is low. QSdpR incurs complexity mainly
due to repetitive clustering tasks of computing pseudo F indices.
Although SNV calling and the computation of the read correlation
graph is performed once, the max K-cut algorithm needs to be run for
each value of K, which may be a bottleneck for quasispecies with large
number of members.

Insertions and deletions (indels) are the other prevalent forms of
mutations that cause viral sequences to differ from each other. While
QSdpR does not directly incorporate indels into the clustering for-
mulation, none of the existing QSR methods (except [3], which is no
longer functional nor executable and thus not possible to compare
with), considers indel mutations explicitly either, to the best of our
knowledge, one of the reasons being that indels are known to be at least
4 times less likely than the point mutations among the viral populations
[28]4. Furthermore, our focus in this work is on datasets sequenced on
Illumina platforms, which are more immune to indel errors compared
to PacBio and 454 Roche technologies [29].

4. Conclusions

Inference of RNA viruses in heterogeneous populations and esti-
mation of their relative proportion within the quasispecies has been an
active area of research in recent years. In this paper, we proposed
QSdpR, a framework for viral quasispecies reconstruction based on a
correlation clustering formulation of the problem. The convex relaxa-
tion of this formulation is efficiently solved by exploiting the under-
lying sparse structure of the solution. We tested the method on syn-
thetic data with uniform and non-uniform quasispecies spectra and
varying diversity and mutation rate conditions. Moreover, the method
was also tested on an experimental HIV-1 dataset having 5 known se-
quences. Finally, efficacy of QSdpR was demonstrated in an application
to analyzing a real Zika virus dataset. It was shown that QSdpR com-
pares favorably with the existing methods in most of the settings con-
sidered here, providing accurate estimation of the viral quasispecies
spectrum. As a part of future work, it is of interest to devise an assembly
framework that incorporates entire reads rather than only SNV in-
formation and potentially alleviates the dependency of the method on a
reference genome.
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Availability of data and material

HIV-1 Five Virus Mix dataset can be obtained at https://github.com/
cbg-ethz/5-virus-mix. Zika virus data can be obtained from https://
www.ncbi.nlm.nih.gov/ using accession numbers given in the manu-
script. All simulated datasets are available as part of the QSdpR

Table 2
A comparison of Predicted Proportion, Reconstruction Proportion, Reconstruction Error and Frequency Deviation on the HIV-1 Five Virus Mix data. QS, PH and SH refer to our QSdpR,
PredictHaplo and ShoRAH, respectively. Reconstruction Error is to be multiplied with 10-3 and Frequency Deviation error is to be multiplied with 10-2 to get the actual numeric value.
Boldface value in each column indicates the best performance for the given metric in that column.

Metric Gene p17 p24 p2p6 PR RT RNase int vif vpr vpu gp120 gp41 nef

Predict. prop. QS 1 1 1 1 1 1 1 1 1 1 1 1 1
PH 1 0.6 0.8 0.8 0.6 0.8 0.6 0.6 0.8 1 0.8 0.8 0.8
SH 14.2 14.4 13.4 5.6 24.6 12.6 14.4 12.6 4.8 4.6 18.2 20.8 16.4

Recons. prop. QS 0.4 0.6 0.6 1 0.2 1 1 0.8 0.2 0 0 0.4 0.4
PH 1 0.4 0.8 0.6 0.2 0.6 0.4 0.4 0.8 0.6 0 0.8 0.4
SH 0.8 0.2 0.4 0.8 0 0.8 0 0.2 0.8 0.4 0 0 0

Recons. error QS 10.1 2.9 3.9 0 7.3 0 0 0.35 3.4 69.4 73.6 15.8 26.5
PH 0 2.9 0 0.84 9.3 2.9 1.9 2.9 0 34.7 28.6 0 5.2
SH 10.1 7.2 8.2 6.7 12.6 2.2 8.3 19 0 41.1 48.6 33.9 34.5

Freq. dev. QS 4.3 4.9 4.6 3.6 3.9 2.3 1.7 2.05 2.48 3.6 5.7 4.3 1.6
PH 4.3 3.6 6.8 5.8 7.3 3.4 3.6 4.8 3.2 2 4.6 2.7 2.3
SH 5.42 5.89 5.67 5.38 7.05 4.41 6.13 6.01 2.19 3.33 6.39 7.11 6.19

4 In fact, the authors of [28] experimented with HIV-1 viruses and found that the
average fraction of indels among all mutations combined is 0:07 to 0:35, and even lower
for other viruses they studied.
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software package.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2017.12.007.
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