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Abstract—Soft-constraint semi-supervised affinity propagation (SCSSAP) adds supervision to the affinity propagation (AP) clustering

algorithm without strictly enforcing instance-level constraints. Constraint violations lead to an adjustment of the AP similarity matrix at

every iteration of the proposed algorithm and to addition of a penalty to the objective function. This formulation is particularly

advantageous in the presence of noisy labels or noisy constraints since the penalty parameter of SCSSAP can be tuned to express our

confidence in instance-level constraints. When the constraints are noiseless, SCSSAP outperforms unsupervised AP and performs at

least as well as the previously proposed semi-supervised AP and constrained expectation maximization. In the presence of label and

constraint noise, SCSSAP results in a more accurate clustering than either of the aforementioned established algorithms. Finally, we

present an extension of SCSSAP which incorporates metric learning in the optimization objective and can further improve the

performance of clustering.

Index Terms—Clustering algorithms, graph algorithms, affinity propagation, semi-supervised learning, noisy pairwise constraints

Ç

1 INTRODUCTION

AFFINITY propagation (AP) is a frequently encountered
clustering technique that uses similarities between

data points to select the best representatives (exemplars)
among them and assign each data point to its most suit-
able exemplar [1]. The algorithm automatically detects
the number of exemplars (and, hence, the number of clus-
ters), does not require that the similarities between data
points are metric, and can take advantage of sparse simi-
larities. AP is efficiently implemented as a message-pass-
ing scheme on a graph representing the data. More
specifically, the AP message updates are obtained by
applying the max-sum algorithm in a factor graph [2]. By
adding nodes or modifying the factor node definitions,
AP can be expanded to enforce an upper limit on the
number of data points in a cluster [2], allow for uncertain
or varying similarities [3], perform hierarchical clustering
[4], enable finding subclasses within a category by allow-
ing assignment of each exemplar to a super-exemplar [5],
and more. To introduce semi-supervision in the AP clus-
tering, Givoni and Frey [6] include additional variable
nodes in the factor graph (so-called meta-points (MTPs))
and appropriately revise the similarity function.

In semi-supervised clustering, a subset of data labels or
pairs of similar and dissimilar points are known. Knowl-
edge of instance-level constraints—i.e., sets of pairs of data
points that are similar (must-link (ML)) or dissimilar (can-
not-link (CL))—is especially valuable in settings where data
labels are expensive, such as those obtained by performing

expensive or invasive medical procedures, or slow to
obtain, such as in the case of enormous datasets. Note that
partial labels can always be converted to instance-level con-
straints, whereas the reverse is not true. The inclusion of
instance-level constraints in the formulation of the cluster-
ing problems results in higher accuracy of k-means [7],
expectation-maximization (EM) [8], and AP [6] algorithms.
Supervision can also be added to a clustering algorithm by
modifying the similarity measure before or during the clus-
tering [9], [10], [11], [12].

Algorithms that strictly enforce instance-level constraints
assume that the provided labels or pairs of similar and dis-
similar instances are correct. However, noisy labels or
instance-level constraints can arise in a variety of situations
including those that involve a certain level of subjectivity,
scenarios where the information used for labeling is incom-
plete or inadequate, or when data entry errors exist [13]. In
the medical domain, for instance, noisy labels can arise
from subjectivity in situations where finding labels entails a
qualitative ranking, such as in the case of determining dis-
ease severity or a disability outcome score. Furthermore,
noisy labels may arise from incomplete information when
established using a diagnosis where not all of the informa-
tive tests have been performed [13]. Web data, such as user-
provided or search-based image and video tags, is also often
plagued by noisy labels [14], [15]. The effect of noisy labels
can be attenuated by using filtering techniques, optimiza-
tion over both predicted soft labels and given hard labels,
label normalization or tuning, noise modeling and feature
extraction [13], [15], [16], [17], [18]. However, these methods
assume that the labels for at least some of the data are
known and do not consider the scenario where unlabeled
data is related only by instance-level constraints.

Previous work on semi-supervised clustering with affin-
ity propagation includes algorithms that strictly enforce
instance-level constraints by insisting that data points with
must-link constraints belong to the same cluster [6], [19].
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Some of the AP hard constraints have been removed in [19],
[20], by means of bypassing the AP requirement that a point
acting as an exemplar (cluster center) for others also acts as
its own exemplar. However, the algorithms in [19], [20] are
not designed to be used in the presence of noisy constraints
and, in fact, still strictly enforce instance-level constraints.
In the current paper, we describe a novel semi-supervised
AP clustering algorithm where a confidence is assigned to
the set of instance-level constraints; the constraints then
need not be strictly enforced during the clustering. The
paper is organized as follows. The affinity propagation algo-
rithm with extensions including softening constraints or
added supervision are presented in Section 2. The new algo-
rithm, soft-constraint semi-supervised affinity propagation
(SCSSAP), is derived in Section 3. The clustering datasets,
evaluation metrics and results are described in Section 4.
An extension of SCSSAP that employs metric learning is
presented in Section 5. Section 6 concludes the work.

2 PRIOR WORK: AFFINITY PROPAGATION AND

EXTENSIONS

In affinity propagation [1], exemplars (i.e., representatives
of the clusters) are selected after iterative exchange of mes-
sages between the nodes of a graph that represents data
points (instances) being clustered. The chosen exemplars
are data instances themselves, and each instance is assigned
to one of the exemplars. Hence, in the graphical representa-
tion, clusters correspond to subgraphs that are spanned by
edges connecting instances and their exemplars. The nodes
of the graph are related by a pre-defined similarity measure
such as the negative euclidean distance or the Pearson cor-
relation coefficient. The similarities between the nodes, con-
veniently organized in a matrix, do not need to satisfy
symmetry or the triangle inequality. The diagonal compo-
nents of the similarity matrix, referred to as preferences, are
typically set to the median value of the similarity between
instances. In AP, the number of clusters need not be pre-
specified but increasing (decreasing) the preferences will
result in a higher (lower) number of clusters. Once the simi-
larity matrix has been defined, two messages are exchanged
between the nodes of the graph: responsibility and avail-
ability. The responsibility rij indicates how well-suited
node j is to be the exemplar for node i, while the availability
aij reflects how appropriate it would be for node i to choose
node j as its exemplar. These messages, derived from a
max-sum algorithm in a factor graph [2], aim to maximize
the sum of similarities between nodes and their exemplars.
In a factor graph, binary variable nodes indicate whether
one node is an exemplar of another. The factor nodes
enforce two sets of clustering constraints: (a) each node
must have exactly one exemplar (single membership), and
(b) if a node serves as an exemplar to another node then it
must serve as an exemplar to itself (self-selection).

In order to avoid oscillating solutions, a damping
parameter m is often incorporated in the message updates
such that the new message is m times the old message
plus 1� m times the prescribed message update. Affinity
propagation has several advantages over other clustering
algorithms since it does not require a pre-specified num-
ber of clusters, can be formulated to take advantage of

sparsity in the similarities, and does not require multiple
initializations with varying initial cluster centers to find
the clustering solution.

2.1 AP Extensions

The previously mentioned self-selection constraint may be
relaxed by either introducing a penalty to the objective if
the constraint is violated [20] or preventing each instance
from choosing itself as an exemplar [19]. The soft-constraint
AP can be extended to semi-supervised clustering [19]
when a subset of data labels is available. Each labeled
instance is assigned to a macro-node for its class while the
similarity between an unlabeled instance and a macro-node
is defined as the maximum similarity between the unla-
beled instance and all instances assigned to the macro-node.

A natural extension of the semi-supervised AP algorithm
from labeled data to instance-level constraints is obtained
by introducing meta-points. The semi-supervised AP for-
mulation in [6] enforces additional cannot-link constraints
using factor nodes between meta-points that drive the objec-
tive to negative infinity when the cannot-link constraints are
violated. More specifically, one meta-point is introduced for
each must-link group and for each instance in a cannot-link
constraint that is not also in a must-link group. The similar-
ity of the ith instance and the mth meta-point MTPm is
given by

sði;MTPmÞ ¼
0 if i 2 Pm;

max
j2Pm

sði; jÞ otherwise;

(
(1)

where Pm denotes the set of data points associated with
MTPm and sði; jÞ � 0. Note that instances can choose a
meta-point as an exemplar but a meta-point cannot choose
other meta-points as exemplars. In fact, each instance in a
must-link group will necessarily choose the meta-point
associated with it as its exemplar. The cannot-link con-
straints are enforced by adding factor nodes connected to
the meta-point such that if x hasMTPi as an exemplar, y has
MTPj as an exemplar, and ðx; yÞ have a cannot-link con-
straint between them, then the exemplar forMTPi cannot be
the same as the exemplar forMTPj. In this example, the can-
not-link factor node between MTPi and MTPj is �1 if the
two meta-points have the same exemplar, and is 0 other-
wise. Following the addition of the cannot-link factor nodes,
updates for the responsibilities need to be modified. The
new updates can be interpreted as a change in the similarity
for the meta-points that are connected by the cannot-link
constraints. Semi-supervised AP outperformed both AP
and constrained expectation maximization in image seg-
mentation tasks [6].

More recently, semi-supervised AP methods where the
clustering is preceded by supervision have been proposed.
Wang et al. [21] use instance-level constraints to guide the
search for a lower-dimensional projection in which AP is
performed. Zhu et al. [22] propose a semi-supervised AP
algorithm for networks where the supervision is facilitated
by an appropriate construction of the similarity measure. In
particular, the similarity between instances is set to 1 for
must-link pairs and 0 for cannot-link pairs, while the simi-
larity of pairs without constraints is determined based on
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their relationships with other objects [23]. A fast AP cluster-
ing is then performed using the pre-defined similarities.
Incremental AP clustering (I-APC) [24] and incremental and
decremental AP (ID-AP) [25] incorporate supervision into
AP via an iterative procedure that runs AP until conver-
gence and updates the labeled data set based on associa-
tions between labeled and unlabeled instances. The
similarity measure is updated once the new labeled data set
is determined. In ID-AP, the negative euclidean distance is
used as the basic similarity measure. The similarity between
data instances in must-link constraints is set to zero before
starting AP iterations, thus forcing similarly-labeled instan-
ces to be in the same cluster. Cannot-link constraints are
enforced by setting the similarity between points in the con-
straint set to the smallest value from the set of similarities.

As implied by the discussion in this section, there exist
no prior AP-based clustering scheme that directly imposes
soft constraints on pairs of data instances. Since the use of
meta-points and macro-nodes strictly enforces must-link
constraints, semi-supervised AP which relies on those con-
cepts [6], [19] cannot be readily modified to allow for soften-
ing of the instance-level constraints. Moreover, since the
instance level constraints in [22] affect only the similarity
metric while the actual AP algorithm remains unsuper-
vised, any softening of the constraints in that scheme would
have to be facilitated by modifying the initial similarity met-
ric (which then remains unaltered in the AP iterations).
Finally, while the semi-supervised AP algorithm in [21]
does not strictly enforce instance-level constraints, imposing
“softness” of the constraints in that framework appears to
be challenging.

3 SOFT-CONSTRAINT SEMI-SUPERVISED AFFINITY

PROPAGATION ALGORITHM

In this section we derive a new algorithm, soft-constraint
semi-supervised affinity propagation, that incorporates
pairwise constraints into the AP framework. As in AP, data
points are related by a pre-determined similarity measure
such as the negative euclidean distance. The instance-level
constraints, pairs of points that are similar or dissimilar, are
assumed to be known whether from partial labels or known
relationships between pairs of points. The derivation of
SCSSAP follows the AP message-passing framework on a
factor graph [2], where pairwise constraints are incorpo-
rated into the AP framework by introducing factor nodes
for each must-link and cannot-link constraint. A penalty is
incurred when a constraint is violated, with potentially dif-
ferent penalties imposed on must-link and cannot-link con-
straints. Since clusterings that violate constraints are not
prohibited, the penalty can express a confidence in the con-
straints. In the binary AP framework, variable node cij ¼ 1
if the jth data instance is the exemplar for the ith one and 0
otherwise, and factor nodes enforce the constraints.

Fig. 1 illustrates an example of the connections between
variable nodes and factor nodes in a segment of the factor
graph. In this example, the pair of points ði; kÞ is in the can-
not-link constraint set C and the pair ði;mÞ is in the must-
link constraint setM.

Factor nodes impose constraints that naturally arise in
the clustering problems. For instance, Iiðci1;...;iNÞ restrict

nodes to only have one exemplar,

Iiðci1;...;iNÞ ¼
�1 if

P
j cij 6¼ 1;

0 otherwise:

(
(2)

Furthermore, Ejðc1j;...;NjÞ enforces self-selection, i.e., if
instance j is an exemplar for any other instance then it must
be its own exemplar,

Ejðc1j;...;NjÞ ¼
�1 if cjj ¼ 0 and

P
i cij > 0

0 otherwise:

�
(3)

The must-link and cannot-link factor nodes introduce penal-
ties whenever the instance-level constraints are violated,

MLj
imðcij; cmjÞ ¼ �qm if cij 6¼ cmj for ði;mÞ 2 M

0 otherwise;

�
(4)

CLj
ikðcij; ckjÞ ¼

�qc if cij ¼ 1 and cij ¼ ckj forði; kÞ 2 C
0 otherwise;

�
(5)

where qm � 0 and qc � 0. In particular, for a clustering spec-
ified by the set of variables c ¼ fc11; c12; . . . ; cNNg, the max-
sum objective of SCSSAP is

argmax
c

X
i;j

SijðcijÞ þ
X
i

Iiðci1; . . . ; ciNÞ

þ
X
j

Ejðc1j; . . . ; cNjÞ þ
X
ði;kÞ2C

X
j

CLj
ik

þ
X

ði;mÞ2M

X
j

MLj
im;

(6)

where C denotes the set of instance pairs with cannot-link
constraints andM is the set of instance pairs with must-link
constraints. The similarity factor nodes Sij ensure that

Fig. 1. Soft-constraint semi-supervised affinity propagation. The cannot-
link and must-link factor nodes are not present in the classical AP formu-
lation. In this graph, the pair ði; kÞ is in the set of cannot-link constraints
and the pair ði;mÞ is in the set of must-link constraints, i; j; k; l;m 2
f1; 2; . . . ; Ng, where N denotes the number of instances. Here Sij is the
similarity between ith and jth instance, and cij indicates whether the jth
instance is the exemplar for the ith instance.
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similarities contributing to the objective function (6) are
only those between an instance and its exemplar,

SijðcijÞ ¼ sði; jÞ if cij ¼ 1
0 otherwise:

�
(7)

Note that the probability of a given clustering c is given by

P ½c� ¼ 1

Z

Y
i;j

exp SijðcijÞ
� �Y

i

exp Ii½c�ð Þ
Y
j

exp Ej½c�
� �

Y
j;ði;kÞ2C

�CLj
ik

Y
j;ði;mÞ2M

�MLj
im;

(8)

where 1=Z is a normalizing term, �CLj
ik ¼ expðCLj

ikÞ and
�MLj

im ¼ expðMLj
imÞ. Clearly, both �CLj

ik;
�MLj

im 2 ½0; 1� and
hence qm, qc should be adjusted on a log scale in order to
have a significant effect on the objective. The proposed
SCSSAP framework reduces to the classical AP by setting
qm ¼ qc ¼ 0, while the pairwise constraints can be strictly
enforced by setting qm; qc !1 such that a clustering config-
uration that violates pairwise constraints will have probabil-
ity close to zero.

The SCSSAPmessages between factor and variable nodes
are labeled in Fig. 2. Update rules for these scalar messages
are derived following the max-sum update rules [26],

mf!xðxÞ ¼ max
x1;:::;xM

fðx; x1; :::; xMÞ þ
X

i2neðfÞnx
mxi!fðxiÞ

2
4

3
5

mx!fðxÞ ¼
X

l2neðxÞnx
mfl!xðxÞ;

where mf!x and mx!f are the messages being passed
between the factor node f and the variable node x, and
neðfÞnx indicates the neighborhood of node f excluding
node x.

As in the factor graph derivation of unsupervised AP [2],
each message is derived for both values of the variable node
(e.g., aijðbÞ; b 2 f0; 1g), with the difference defined as
aij ¼ aijð1Þ � aijð0Þ. The messages from the variable nodes
to the factor nodes are updated as

bij ¼ sði; jÞ þ aij þ
X

m:ði;mÞ2M
v
j
im þ

X
k:ði;kÞ2C

g
j
ik; (9)

rij ¼ sði; jÞ þ hij þ
X

m:ði;mÞ2M
v
j
im þ

X
k:ði;kÞ2C

g
j
ik; (10)

t
j
im ¼ sði; jÞ þ aij þ hij þ

X
l:ði;lÞ2M

l6¼m

v
j
il þ
X
k:

ði;kÞ2C

g
j
ik; (11)

�j
ik ¼ sði; jÞ þ aij þ hij þ

X
m:

ði;mÞ2M

v
j
im þ

X
l:ði;lÞ2C
l6¼k

g
j
il: (12)

Since messages from the factor nodes to the variable
node only depend on the value of the factor node and the
messages to the factor node, the update equations for hij
and aij remain the same as in [2],

hij ¼ �max
k6¼j

bik; (13)

aij ¼
min 0; rjj þ

X
k 62fi;jg

max½rkj; 0�
2
4

3
5 if i 6¼ j;

X
k6¼j

max½rkj; 0� if i ¼ j:

8>>>><
>>>>:

(14)

The messages from the cannot-link factor nodes to the
variable nodes are

g
j
ikð1Þ ¼ max

ckj

�
CLj

ikðckj; cij ¼ 1Þ þ �j
kiðckjÞ

�
¼ max

ckj

�� qc1ðckj ¼ 1Þ þ �j
kiðckjÞ

�
; (15)

g
j
ikð0Þ ¼max

ckj

�
CLj

ikðckj; cij ¼ 0Þ þ �j
kiðckjÞ

�
¼max

ckj

�
�j
kiðckjÞ

�
;

(16)

where 1 is an indicator function, and CLj
ikðckj; cij ¼ 0Þ ¼ 0

since cannot-link constraints only penalize the objective
when an instance pair in the cannot-link set shares the
exemplar (i.e., ði; kÞ 2 C and cij ¼ ckj ¼ 1). The final message

g
j
ik ¼ g

j
ikð1Þ � g

j
ikð0Þ is then

g
j
ik ¼max

ckj

�� qc1ðckj ¼ 1Þ þ �j
kiðckjÞ �max

ckj

�
�j
kiðckjÞ

��
¼max

�� qc þ �j
kið1Þ �maxckj�

j
kiðckjÞ;

�j
kið0Þ �maxckj�

j
kiðckjÞ

�
¼�min

�
qc þmax

�
0;��j

ki

�
; max

�
0; �j

ki

��
:

(17)

Following similar steps, we derive the message updates
from the must-link factor nodes to the variable nodes as

v
j
ikð1Þ ¼ max

ckj

�
MLj

ikðckj; cij ¼ 1Þ þ t
j
kiðckjÞ

�
¼ max

ckj

�� qm1ðckj ¼ 0Þ þ t
j
kiðckjÞ

�
; (18)

Fig. 2. Messages in soft-constraint semi-supervised affinity propagation.
The a, r, h, and b messages are as same as those in the classical AP
derived for the binary factor graph. Here i; j; k; l;m 2 f1; 2; . . . ; Ng,
where N is the number of instances.
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v
j
ikð0Þ ¼ max

ckj

�
MLj

ikðckj; cij ¼ 0Þ þ t
j
kiðckjÞ

�
¼ max

ckj

�� qm1ðckj ¼ 1Þ þ t
j
kiðckjÞ

�
; (19)

v
j
ik ¼ max

ckj

�� qm1ðckj ¼ 0Þ þ t
j
kiðckjÞ

�
�max

ckj

�� qm1ðckj ¼ 1Þ þ t
j
kiðckjÞ

�
¼ max

�
min

�� t
j
ki;�qm

�
; min

�
t
j
ki; qm

��
:

(20)

Note that the confidence in each of the pairwise con-
straints may additionally be tuned by multiplying qc in
eq. (17) and qm in eq. (20) with a constraint-specific value
2 ½0; 1�.

The dependence of rij on hij can be eliminated using
eqs. (9) and (13). The new update for rij becomes

rij ¼ sði; jÞ þ
X

m:ði;mÞ2M
v
j
im þ

X
k:ði;kÞ2C

g
j
ik

�max
l6¼j

sði; lÞ þ ail þ
X
m:

ði;mÞ2M

vl
im þ

X
k:

ði;kÞ2C

g l
ik

8><
>:

9>=
>;: (21)

From eq. (10), we can also write hij in terms of r; s;v; g.

Substituting this definition of hij into the equations for tjim
and �j

ik (eqs. (11) and (12)), we can simplify these messages:

t
j
im ¼ aij þ rij � v

j
im; (22)

�j
ik ¼ aij þ rij � g

j
ik: (23)

The update for rij can further be simplified by modifying
the similarity metric and introducing

ŝði; jÞ ¼ sði; jÞ þ
X

m:ði;mÞ2M
v
j
im þ

X
k:ði;kÞ2C

g
j
ik: (24)

Then the update for rij can be rewritten as

rij ¼ ŝði; jÞ �max
k 6¼j
fŝði; kÞ þ aikg; (25)

which is of the same form as the responsibility update in the
unsupervised AP with a modified similarity metric.

Note that qc > 0 (by construction) and hence, as evident

from the update for gj
ik in eq. (17), it holds that gjik � 0, i.e.,

as expected, the cannot-link constraints can only decrease
the modified similarity function.

The SCSSAP algorithm summarized as Algorithm 1
replaces the t

j
ki and �j

ki messages in the updates of g
j
ik

(eq. (17)) and v
j
ik (eq. (20)) by their definitions in eqs. (22)

and (23). Therefore, the algorithm only requires update and
storage of two messages in addition to the availabilities a

and responsibilities r. The damping parameter m 2 ½0:5; 1Þ
is also explicitly employed in Algorithm 1. The damping
parameter aids the convergence of AP in the case of oscillat-
ing solutions.

Algorithm 1. Soft-Constraint Semi-Supervised Affinity
Propagation

Initialize: t ¼ 1t ¼ 1; a
ð0Þ
ij ¼ 0; r

ð0Þ
ij ¼ 0; g

jð0Þ
ik ¼ 0;v

jð0Þ
ik ¼ 0 for

i; j; k 2 f1; 2; . . . ; Ng
while termination criteria not met do

g
jðtÞ
ik ¼ �min qc þmaxf f0;�ðaðt�1Þkj þ r

ðt�1Þ
kj � g

jðt�1Þ
ki Þg;

maxf0;aðt�1Þkj þ r
ðt�1Þ
kj � g

jðt�1Þ
ki gg

v
jðtÞ
ik ¼ max minf�qm;�ðaðt�1Þkj þ r

ðt�1Þ
kj � v

jðt�1Þ
ki Þg ;

n
minfqm;aðt�1Þkj þ r

ðt�1Þ
kj � v

jðt�1Þ
ki gg

ŝði; jÞðtÞ ¼ sði; jÞ þPm:ði;mÞ2M v
jðtÞ
im þ

P
k:ði;kÞ2C g

jðtÞ
ik

a
ðtÞ
ij ¼ ma

ðt�1Þ
ij þð1�mÞmin 0;r

ðt�1Þ
jj þPk62fi;jgmaxfrðt�1Þkj ; 0g

n o
if i 6¼ j

a
ðtÞ
jj ¼ ma

ðt�1Þ
jj þ ð1� mÞPk 6¼j maxfrðt�1Þkj ; 0g

r
ðtÞ
ij ¼ mr

ðt�1Þ
ij þ ð1� mÞ�ŝði; jÞðtÞ �maxk6¼jfŝði; kÞðtÞ þ a

ðtÞ
ik g
�

t ¼ tþ 1t ¼ tþ 1;
end while
Identify exemplars ci:
C ¼ fk : akk þ rkk > 0g
ci ¼ argmaxk:k2Caik þ rik

While the availability a and responsibility r need to be

calculated for all instance pairs, the messages g
j
ik and v

j
lm

only need to be calculated for ði; kÞ 2 C, ðl;mÞ 2 M and
j 2 f1; . . . ; Ng. Note that if ði; kÞ 2 C then ðk; iÞ 2 C; a similar
statement can be made for the set M of must-link pairs.
Therefore, compared to the classical AP, SCSSAP requires
an additional 2NðjCj þ jMjÞ message updates in each itera-
tion, where j � j denotes the number of non-ordered pairs in
the set. We may choose to terminate the iterations once a
change in message values falls below a certain threshold, or
after we obtain a consistent set of exemplars for a predeter-
mined number of iterations, or upon reaching a maximum
number of iterations. Instance j is identified as a self-exem-
plar if ajj þ rjj > 0 after the iterations terminate. The exem-

plar for instance i is identified as argmaxk aik þ rik, where k
is in the set of self-exemplars.

4 SCSSAP EVALUATION

4.1 Evaluation Metrics and Datasets

To evaluate the performance of the proposed SCSSAP
algorithm and compare it with existing schemes, we have
used the negative squared euclidean distance as the simi-
larity measure, sði; jÞ ¼ �kxi � xjk2, and the affinity prop-
agation damping parameter m ¼ 0:75. The damping
parameter was chosen to be the middle of the typical range
m 2 ½0:5; 1Þ. The algorithms were also tested with a larger
damping parameter, m ¼ 0:9 (results not shown), however,
the higher damping parameter did not change conver-
gence properties and gave very similar results to m ¼ 0:75.
All the preferences (i.e., diagonal elements of the similarity
matrix) were set to the median value of the similarities
between data instances. Eight datasets from the UCI
Machine Learning Repository [27] were examined: iris,
wine, parkinsons [28], SPECTF heart, ionosphere, breast
cancer, balance, and diabetes. We performed clustering
with SCSSAP using several penalty parameters
expð�qcÞ ¼ expð�qmÞ 2 f0; 0:00005; 0:1; 0:5; 0:9g, where
expð�qÞ ¼ 0 imposes an infinite penalty for violating
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constraints and expð�qÞ ¼ 1 is equivalent to the unsuper-
vised affinity propagation.

For benchmarking purposes, SCSSAP is compared to the
unsupervised AP, Givoni and Frey’s semi-supervised AP
(SSAP-G) [6], and Leone et al.’s soft-constraint AP with
semi-supervision (SSAP-L) [19]. Note that the softness of
the constraints in [19] is only for the AP self-selection con-
straint and not the instance-level constraints. Additionally,
the latter algorithm only considers must-link constraints.

To extract instance-level constraints from the data in the
noiseless setting, pairs of points are randomly selected to be
part of the instance-level constraints. These pairs are
assigned to the must-link setM if they share the same label
or the cannot-link set C if they have different labels. The
algorithms were tested in the presence of two types of noise.
In the first type of noise, after the constraint sets C andM
were selected, 5 or 10 percent of the constraint pairs in
C [M were moved from one set to the other. This type of
noise occurs in the situation were the constraints are
derived subjectively, such as when different physicians
determine similarity of hospital patients, and can result in
relationships such as ði; jÞ 2 M; ði; kÞ 2 M; ðj; kÞ 2 C when
the constraints are propagated. The second type of noise
examined simulates mislabeled data and does not result in
contradicting pairwise constraints. The labels of 10 or 20
percent of the data instances are randomly changed before
randomly selecting the pairwise constraints, simulating
questionable labeling such as scoring of different stages of a
progressive disease or in user-provided image tags. Note
that data entry errors can result in either type of noise.

As an example of a semi-supervised clustering algorithm
that is not based on AP, we also tested the performance of
the constrained expectation-maximization [8] algorithm.
Since constrained EM assumes prior knowledge of the num-
ber of clusters, we used the number of clusters identified by
SCSSAP with an infinite penalty as an input to the con-
strained EM algorithm. Note that, in constrained EM, must-
link constraints are enforced by introducing so-called
chunklets in the formulation of the clustering problem. The
chunklets are defined as the transitive closure of the must-
link constraints; data instances absent from the constraint
set are in a chunklet of size one. The chunklets are then
treated as data points weighed by their cardinality. To
incorporate the cannot-link constraints, the joint distribu-
tion of data instances and labels conditioned on the con-
straints is described using a Markov network.

Performance of the algorithms is quantified using the
modified Rand index. The original Rand index, a measure
of overall clustering accuracy, gives the percentage of
instance pairs that are correctly classified as being in either
the same cluster or different clusters. More specifically, let
ci be the label of instance i and ĉi be the exemplar or a clus-
ter assigned to instance i by the clustering algorithm. Then,

Rand ¼
P

i>j 1 1ðci ¼ cjÞ ¼ 1ðĉi ¼ ĉjÞ
� �

total number of instance pairs
: (26)

For n data instances, there are 0:5nðn� 1Þ instance pairs. The
modified Rand index [6] weighs point pairs that are in the
same cluster and those that are in different clusters equally,

modRand ¼
P

i>j 1ðci ¼ cjÞ1ðĉi ¼ ĉjÞ
2
P

i>j 1ðĉi ¼ ĉjÞ

þ
P

i>j 1ðci 6¼ cjÞ1ðĉi 6¼ ĉjÞ
2
P

i>j 1ðĉi 6¼ ĉjÞ :

(27)

Typically, clustering algorithms correctly separate the
majority of instance pairs that should indeed belong to
different clusters. This may result in a misleadingly
inflated Rand index, especially when the number of clus-
ters is large. In the modified Rand index, accurate pre-
dictions that pairs of points should be in different
clusters contribute to no more than half of the accuracy
measure, while the correct predictions that pairs of
points belong to the same cluster account for the rest
(this means that the latter carries a higher weight than in
the Rand index as soon as there are more than two clus-
ters). It should be noted that, as with the Rand index,
the modified Rand index is inflated when applied to
assess algorithms that produce a high number of
clusters.

4.2 SCSSAP Results

Overall, the results for various data sets consistently dem-
onstrate that the proposed SCSSAP algorithm performs at
least as well as SSAP-G and SSAP-L (jointly referred to as
SSAP), with significant improvements in the clustering
accuracy when the constraint noise is present. Note that
each point in the graphs shown in this section corresponds
to the average of 20 random sets of constraints.

In the noiseless case (the results shown in Fig. 3), a
very large SCSSAP penalty parameter (expð�qÞ ¼ 0) leads
to the most accurate clustering performance. Depending
on the dataset, SCSSAP either performs comparably to
SSAP (iris, parkinsons, breast cancer, diabetes) or outper-
forms SSAP over a wide range of explored constraints. As
expected, a small SCSSAP penalty (expð�qÞ ¼ 0:9) typi-
cally results in clustering accuracy similar to that of unsu-
pervised AP, although a notable improvement in
clustering is evident in the balance and iris datasets even
when the SCSSAP penalty is small.

The advantage of allowing the constraints to be violated
(and penalizing the clustering objective when such viola-
tions take place) instead of strictly enforcing the constraints
become evident in the presence of constraint and label
noise (see Figs. 4 and 5). By constructing metapoints, SSAP
ensures that must-link constraints are satisfied in the final
cluster assignments. In the case of contradicting con-
straints, some of the cannot-link constraints are ignored
because a cannot-link factor node cannot point to a single
metapoint. Noisy constraints greatly decrease the accuracy
of SSAP and, in fact, often lead to a worse clustering solu-
tions than unsupervised AP. The performance of SCSSAP
may also deteriorate in the presence of noisy constraints
and may result in inferior performance compared to unsu-
pervised AP in scenarios where the penalty parameter is
very large and the noisy constraints are numerous. How-
ever, in all of the datasets we studied, SCSSAP provides
more accurate clustering than AP for some penalty param-
eter. Moreover, for most datasets, SCSSAP can overcome
noisy constraints and lead to clustering with a modified
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Rand index closer to noiseless SCSSAP than to unsuper-
vised AP.

Unlike the scenario where the noise is added directly to
constraints, the constraints derived from noisy labels will
not create contradictions in the transitive closures of the
must-link and cannot-link sets. In situations where strong
supervision (imposed by choosing very large values of pen-
alty parameters) is beneficial to the clustering results, per-
formances of SCSSAP and SSAP-G are comparable. This is
reflected in the results for parkinsons, ionosphere, balance,

and diabetes datasets shown in Fig. 5. However, if strict
supervision is detrimental for the clustering performance
(i.e., if one should use small values of penalty parameters),
SCSSAP outperforms both SSAP and unsupervised AP. This
is illustrated with the results for iris and wine datasets, and
breast cancer with 20 percent label noise shown in Fig. 5.

Not only does SCSSAP outperform SSAP and unsuper-
vised AP, it also clusters more accurately than constrained
expectation-maximization (EM, see Fig. 6). Although the per-
formances of constrained EM and SCSSAP are comparable

Fig. 3. Modified Rand index for SCSSAP (o), Givoni and Frey’s SSAP
(blue), Leone et al.’s SSAP (orange), and unsupervised AP (red). The
darkness of the SCSSAP curve indicates magnitude of the penalty
parameter, where the darkest curve is for expð�qÞ ¼ 0.

Fig. 4. Modified Rand index for SCSSAP, Givoni and Frey’s SSAP
(blue), Leone et al.’s SSAP (orange), and unsupervised AP (red) in the
presence of 5 percent (o) and 10 percent (�) noisy constraints. The dark-
ness of the SCSSAP curve indicates the magnitude of the penalty
parameter, where the darkest curve is for expð�qÞ ¼ 0.
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for noise-free constraints, SCSSAP ismore accurate for all the
tested datasets in the scenario where noise is added to the
constraints.

5 SCSSAP WITH METRIC LEARNING

Learning a global or local (cluster-specific) pseudometric
prior to or during clustering can greatly increase cluster-
ing accuracy [9], [10], [11], [29] (note that, as in much of
the metric learning literature, we will use the terms

metric and pseudometric interchangeably). A pseudo-
metric dðx; yÞ satisfies the following: dðx; yÞ � 0,
dðx; yÞ ¼ dðy; xÞ, and dðx; yÞ þ dðy; zÞ � dðx; zÞ. In this sec-
tion, we focus on the Mahalanobis distance, where

dAðx; yÞ ¼ kx� ykA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞTAðx� yÞ

q
. For dAðx; yÞ to

be a metric, A must be positive semidefinite. Most of the
work described in this section aims to find the Mahala-
nobis matrix A, where the feature selection or feature
weighing problems constrain the potential matrices to
those of diagonal form.

Fig. 5. Modified Rand index for SCSSAP, Givoni and Frey’s SSAP
(blue), Leone et al.’s SSAP (orange), and unsupervised AP (red) in the
presence of 10% (o) and 20% (�) noisy labels. The darkness of the
SCSSAP curve indicates the magnitude of the penalty parameter, where
the darkest curve is for expð�qÞ ¼ 0.

Fig. 6. SCSSAP (circles) and constrained EM (lines) modified Rand
index for datasets without noise (black), 5 percent constraint noise (red),
and 10 percent label noise (blue).
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5.1 Related Work: Learning a Similarity Metric

In the early work on semi-supervised metric learning, Xing
et al. [9] infer a global Mahalanobis metric by minimizing
the squared distance over similar points subject to a mini-
mum distance over dissimilar points. While [9] relies on
must-link and cannot-link pairs, relevant components anal-
ysis (RCA) [11] learns the Mahalanobis matrix by examining
the covariance of chunklets, groups of instances that are
known to belong to the same class. This method yields simi-
lar clustering accuracy to [9], while finding the solution in a
single step instead of requiring gradient descent [11]. Dis-
criminant component analysis (DCA) [30] generalizes RCA
by including dissimilarity constraints and aims to both min-
imize the variance of the data within the chunklets and
maximize the variance of the data between chunklets that
contain dissimilar instances. In [31], the DCA objective is
changed from a ratio of determinants to a ratio of distances,
expressed as traces, subject to an orthogonality constraint
which prevents degenerate solutions.

The pseudo-metric online learning algorithm (POLA) [12]
incrementally learns a metric and a threshold, and decides
that a pair of points is dissimilar if the distance between
them exceeds the threshold. The metric and threshold are
updated using the feedback about correct classifications by
minimizing the loss function and ensuring a positive semide-
finite metric. In an information theoretic approach to metric
learning [32], [33], the LogDet divergence between a prese-
lected Mahalanobis distance function evaluated using prior
information and the Mahalanobis matrix being learned is
minimized subject to the constraints on distances between
pairs of instances. In a Bayesian approach to metric learning
[34], the Mahalanobis matrix is assumed to be a weighted
combination of the top eigenvectors of the data, and the pos-
terior distribution of the weights is learned by a variational
method through EM-like iterations.

Other algorithms simultaneously learn a metric while
clustering in either unsupervised or supervised settings [10],
[35], [36], [37]. Bilenko et al. [10] learn cluster-specific Maha-
lanobis matrices in a k-means clustering framework through
an EM procedure by alternating between assigning clusters
(E-step) and updating centroids and performing metric
learning (M-step). There, constraint violations incur a pen-
alty weighted by the distance between points violating the
constraints. In [35], the metric is updated using instance-
level constraints but the clustering steps are unsupervised.
The similarity metric in AP, the clustering method used, is
gradually adjusted bymodifying the weights for each pair of
points in the constraint set based on how correctly they were
classified. Adaptive metric learning (AML) [36], an unsuper-
vised algorithm, is formulated as the maximization of the
distance between clusters in a lower dimensional embed-
ding. Locally adaptive clustering (LAC) [37], assigns a
weight vector to each cluster, which is similar to learning a
diagonalMahalanobis matrix with unit trace. LAC alternates
updating weights and centroids until convergence, which is
achieved quickly due to using an exponential weighting
scheme [37]. In [38], a data partitioning matrix and the clus-
ter-specific classifiers are alternately optimized. The con-
strained optimization problem has a log loss function as the
objective and constraints that regulate the cluster sizes and
enforce the given instance-level constraints.

Sparse metrics are desirable in a multitude of applica-
tions. Metric learning algorithms that enforce sparsity often
include an ‘1 penalty in the objective. Roth and Lange [39]
use an EM framework where fuzzy labels are estimated in
the E-step while the M-step employs a linear discriminant
analysis (LDA) with feature selection by ‘1 penalty. In [40],
a regression problem with constraints promoting super-
vised clustering and feature selection is solved. In sparse
distance metric learning (SDML) [41], a sparse Mahalanobis
matrix is learned by minimizing the sum of the LogDet
divergence between a given matrix with the a priori distri-
bution, the ‘1 norm of the off-diagonal elements of the
matrix, and a loss function defined over the instance-level
constraints. The semi-supervised sparse metric learning
algorithm (S3ML) [42] aims to minimize the LogDet diver-
gence between a given matrix and the desired matrix with
an added ‘1 penalty term that promotes a sparse metric.

By focusing on the nearest neighbors, metric learning
algorithms designed for kNN classifiers [29], [43], [44], [45],
[46], [47] often make no parametric assumptions about the
data structure [29], [44], [46]. Neighborhood components
analysis (NCA) [29] seeks to maximize the expected number
of correctly classified points in a leave-one-out framework
which is then solved with a gradient-based optimizer. Large
margin nearest neighbor metric learning (LMNN) [44] mini-
mizes the distance between points and the desired neighbors
while maximizing the margin with points belonging to other
classes. As in NCA and LMNN, local distance metric learn-
ing (LDM) [45] does not assume unimodal classes. The LDM
objective aims to maximize the log-likelihood of correctly
predicting the classes, where the probability of a correct pre-
diction is derived from kernel-based kNN. The maximally
collapsing metric learning algorithm (MCML) [46] objective
aims to collapse instances from the same class into a single
point and make distance between points in different classes
infinite byminimizing the KL divergence. The Laplacian reg-
ularized metric learning (LRML) [47] objective minimizes a
regularization term equal to the sum of distances between
instances and their designated nearest neighbors along with
loss terms corresponding the instance-level constraints.

Distance metrics can also be learned when sets of similar
or dissimilar points are not readily available but are
described in a rather qualitative form such as “xi is more
similar to xj than it is to xk” [48], [49].

Depending on the formulation of the objective func-
tion, the metric learning problem can be solved by means
of convex optimization [9], [35], [40], [41], [44], [46], [47],
eigendecomposition [12], [30], [31], [46], iterative schemes
[32], [33], [36], [38], [42], [45], or admit closed form solu-
tions [10], [11], [37].

5.2 SCSSAP with Metric Learning Algorithm

In this section, we add feature weighings to the clustering
problem by learning a pseudometric for each cluster. In
order to maintain the AP objective for clustering, we focus
on metric learning objectives that include the Mahalanobis
distance between data instances and their corresponding
cluster centers. By defining the similarity function in
SCSSAP as a negative squared Mahalanobis distance and
adding a regularizing function g to the SCSSAP objective in
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eq. (6), we can potentially improve clustering by learning a
new metric for instances in the same cluster. The objective
then becomes

arg max
c;Al1

...AlN

X
i;j

S0ijðcijÞ þ
X
i

Iiðci1; . . . ; ciNÞ

þ
X
j

Ejðc1j; . . . ; cNjÞ þ
X

k:ði;kÞ2C

X
j

CLj
ik

þ
X

m:ði;mÞ2M

X
j

MLj
im �

X
i

gðAliÞ;

(28)

where li is the cluster of instance i. For data vectors xi and
xj, S

0
ijðcijÞ ¼ s0ði; jÞ if j is the exemplar of i and 0 otherwise.

We define s0ði; jÞ ¼ �0:5kxi � xjk2Ali
� 0:5kxi � xjk2Alj

. We

only consider diagonal matrices A and add the constraint
traceðAÞ ¼ 1 to be able to interpret the resulting matrix as
feature weights.

We consider two regularizing functions g and ĝ for the
objective argmaxAli

P
i;j S

0
ijðcijÞ �

P
i gðAliÞ ¼ arg minAli

P
i

ðkxi � cik2Ali
þ gðAliÞÞ,

g ¼ �log detðAliÞ (29)

ĝ ¼ h
X
d

a
li
ddlog

�
a
li
dd

�
; (30)

where a
li
dd is the dth component of the diagonal of Ali and

h � 0. The metric learning is a convex problem if the regu-
larizing function is convex and the matrix A is positive
semidefinite. Both regularizing functions satisfy the convex-
ity constraint. Moreover, since we are only considering
diagonal matrices A, the regularizing functions force the
values on the diagonal to be � 0 thus ensuring positive
semidefiniteness. The function g, which enforces the posi-
tive semidefinite constraint on A, is derived from the solu-

tion to the maximum likelihood problem where the lthi
cluster is Gaussian with covariance matrix A�1li

[10], [11].

The function ĝ, the negative entropy of the feature weight
distribution, penalizes clusters that just use a single feature.
The parameter h controls how much the distribution of the
weights deviates from a uniform distribution [37].

These above functions are of interest since they have
closed-form solutions [10], [37]. Let U be the set of clusters
and u 2 U be the set of data instances in cluster u, and cu be
the exemplar for cluster u. Our metric learning objective can
be rewritten as

arg min
Au;u2U

X
u2U

X
i2u

�kxi � cik2Au
þ gðAuÞ

�
: (31)

Let a
ðuÞ
dd be the dth component of the diagonal of Au when

g ¼ g, â
ðuÞ
dd be the dth component of the diagonal of Au

when g ¼ ĝ, jXuj be the number of data instances in clus-
ter u, and xid and cid be the dth element of xi and ci
respectively. Then, the closed-form expressions for these
entries can be found as

a
ðuÞ
dd ¼ jXuj

X
i2u
ðxid � cidÞ2

 !�1
; (32)

â
ðuÞ
dd ¼

exp �Pi2uðxid � cidÞ2=ðhjXujÞ

 �

P
d exp �

P
i2uðxid � cidÞ2=ðhjXujÞ


 � : (33)

The closed-form solution in eq. (32) does not enforce the
constraint traceðAÞ ¼ 1. Nevertheless, the alternating opti-
mization without this constraint was tested and empirically
found to perform similarly to the case where the matrix was
normalized to have its trace equal 1. The results presented

include the additional step of a
ðuÞ
dd  a

ðuÞ
dd =

P
d a
ðuÞ
dd .

The SCSSAP with metric learning objective in eq. (28) is
solved by means of an alternating maximization over the
parameters. SCSSAP is employed in the optimization of
the exemplars c ¼ c11; c12; . . . ; cNN , while the optimization
over Al1 ; . . .AlN is performed by solving eq. (31) (see

Algorithm 2). Similar to SCSSAP, SCSSAP with metric
learning terminates after the list of exemplars is unchanged
for a given number of iterations or a maximum number of
iterations is reached.

Algorithm 2. SCSSAP with Metric Learning

Initialize: u ¼ f1; . . . ; Ng; Au ¼ 1
D ID	D; U ¼ u

while termination criteria not met do
define sði; jÞ ¼ �0:5kxi � xjk2Ali

� 0:5kxi � xjk2Alj
forfor i; j 2 f1; . . . ; Ng

update clusters: run SCSSAP
update metric: solve a

ðuÞ
dd forfor d2f1; ; Dg; u2U

end while

5.3 Results

Algorithm 2 is evaluated on the iris, wine, parkinsons, and
soybean datasets from the UCI Machine Learning Reposi-
tory [27] with regularizing functions g (eq. (29)) and ĝ
(eq. (30)) with h ¼ 0:1. In learning the metric with ĝ, a very
large value of h will select a uniform weight vector while
setting h ¼ 0 will assign all the weight to a single feature
[37]. Both single metrics and cluster-specific metrics are
learned for each dataset.

For some datasets, such as iris and soybean, metric learn-
ing can greatly improve the results of SCSSAP (see Fig. 7),
while others do not benefit much from metric learning. Met-
ric learning aids with clustering in the wine dataset as well,
providing moderate improvements. The clustering perfor-
mance with ĝ as the regularizing function could potentially
be improved by finding the optimal h for each dataset. In
addition to h ¼ 0:1, SCSSAP with metric learning with
h ¼ 1 was evaluated (results not shown), but the resulting
accuracy was similar to that of SCSSAP without metric
learning. This indicates uniform feature weights are not
optimal for clustering in the iris, wine, and soybean data-
sets. Although the regularizing functions do not explicitly
impose sparsity, when clusters are best characterized by a
subset of features, SCSSAP with cluster-specific metric
learning will provide an improved clustering over SCSSAP.
Sparse solutions, however, may be undesirable in the case
of single metric learning. In particular, when using g as the
regularizing function, if there exists one or more features d
for which

P
iðxid � cidÞ ¼ 0, then the metric will be uniform

over these features and 0 elsewhere. This could result in a
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very sparse metric that does not capture the feature set nec-
essary for optimal clustering and lead to deterioration of the
performance of SCSSAP, as in single metric learning with g
in the soybean dataset.

6 CONCLUSION

In this paper, a novel soft-constraint semi-supervised
affinity propagation scheme is derived from a factor graph
with additional factor nodes linking data instances in the
constraint set. Instead of forcing must-link and cannot-link
constraints to be met in the final clustering, these factor
nodes allow constraints to be violated while imposing a
penalty to the clustering objective. The penalty parameter
can be tuned to represent a confidence level on the con-
straints. The algorithm follows the message updates from
AP, but at each iteration the messages flowing from the
instance-level constraint nodes affect the similarity
between data points. In a noiseless setting, SCSSAP per-
forms at least as well as constrained EM and semi-super-
vised AP, which strictly enforce instance-level constraints.
In the presence of constraint noise or label noise, SCSSAP
significantly outperforms both of the existing algorithms.
The SCSSAP algorithm is also extended to alternately opti-
mize the clustering and learn a global or cluster-specific
metric by means of an unsupervised step with a closed
form solution. Depending on the dataset, this extension
can further improve the clustering performance. In conclu-
sion, we derived a semi-supervised clustering algorithm,
based on message passing, which does not strictly enforce
constraints and is beneficial in a plethora of scenarios
where the constraints are noisy. Moreover, we provided

an extension that includes metric learning and often
results in an increase in accuracy of the clustering.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. DGE-1110007 and Jack Kilby/Texas Instruments
fellowship.

REFERENCES

[1] B. J. Frey and D. Dueck, “Clustering by passing messages between
data points,” Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007.

[2] I. E. Givoni and B. J. Frey, “A binary variablemodel for affinity prop-
agation,”Neural Comput., vol. 21, no. 6, pp. 1589–1600, Jun. 2009.

[3] W. Li, “Clustering with uncertainties: An affinity propagation-
based approach,” in Proc. 19th Int. Conf. Neural Inf. Process.—Vol-
ume Part V, 2012, pp. 437–446.

[4] I. Givoni, C. Chung, and B. J. Frey. (2012, Feb.). “Hierarchical
affinity propagation,” arXiv e-print 1202.3722 [Online]. Available:
http://arxiv.org/abs/1202.3722

[5] C.-D. Wang, J.-H. Lai, C. Y. Suen, and J.-Y. Zhu, “Multi-exemplar
affinity propagation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 9, pp. 2223–2237, Sep. 2013.

[6] I. E. Givoni and B. J. Frey, “Semi-supervised affinity propagation
with instance-level constraints,” in Proc. 12th Int. Conf. Artif. Intell.
Statist., 2009, pp. 161–168.

[7] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained k-
means clustering with background knowledge,” in Proc. 18th Int.
Conf. Mach. Learn., 2001, pp. 577–584.

[8] N. Shental, A. Bar-hillel, T. Hertz, and D. Weinshall, “Computing
Gaussian mixture models with EM using equivalence con-
straints,” in Advances in Neural Information Processing Systems,
vol. 16. Cambridge, MA, USA: MIT Press, 2003.

[9] E. Xing, A. Ng, M. Jordan, and S. Russell, “Distance metric learn-
ing, with application to clustering with side-information,” in Proc.
Proc. Adv. Neural Inf. Process. Syst., 2002, vol. 15, pp. 505–512.

[10] M. Bilenko, S. Basu, and R. J. Mooney, “Integrating constraints
and metric learning in semi-supervised clustering,” in Proc. 21st
Int. Conf. Mach. Learn., 2004, p. 11.

[11] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning
distance functions using equivalence relations,” in Proc. 20th Int.
Conf. Mach. Learn., 2003, pp. 11–18.

[12] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, “Online and batch
learning of pseudo-metrics,” in Proc. 21st Int. Conf. Mach. Learn.,
2004, p. 94.

[13] C. E. Brodley and M. A. Friedl, “Identifying mislabeled training
data,” J. Artif. Intell. Res., vol. 11, pp. 131–167, 1999.

[14] L. S. Kennedy, S.-F. Chang, and I. V. Kozintsev, “To search or to
label?: Predicting the performance of search-based automatic
image classifiers,” in Proc. 8th ACM Int. Workshop Multimedia Inf.
Retrieval, 2006, pp. 249–258.

[15] W. Liu, J. Wang, and S.-F. Chang, “Robust and scalable graph-
based semisupervised learning,” Proc. IEEE, vol. 100, no. 9,
pp. 2624–2638, Sep. 2012.

[16] N. D. Lawrence and B. Sch€olkopf, “Estimating a kernel fisher dis-
criminant in the presence of label noise,” in Proc. 18th Int. Conf.
Mach. Learn., 2001, pp. 306–313.

[17] M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pechenizkiy,
“Class noise and supervised learning in medical domains: The
effect of feature extraction,” in Proc. 19th IEEE Int. Symp. Comput.-
Based Med. Syst., 2006, pp. 708–713.

[18] C. Bouveyron and S. Girard, “Robust supervised classification
with mixture models: Learning from data with uncertain labels,”
Pattern Recognit., vol. 42, no. 11, pp. 2649–2658, Nov. 2009.

[19] M. Leone, Sumedha, and M. Weigt, “Unsupervised and semi-
supervised clustering by message passing: Soft-constraint affinity
propagation,” Eur. Phys. J. B, vol. 66, no. 1, pp. 125–135, 2008.

[20] M. Leone, Sumedha, and M. Weigt, “Clustering by soft-constraint
affinity propagation: Applications to gene-expression data,” Bioin-
formatics, vol. 23, no. 20, pp. 2708–2715, 2007.

[21] H. Wang, R. Nie, X. Liu, and T. Li, “Constraint projections for
semi-supervised affinity propagation,” Knowl.-Based Syst., vol. 36,
pp. 315–321, 2012.

Fig. 7. SCSSAP without metric learning (black), with g in the objective
(blue) and with ĝ in the objective (green). Empty circles correspond to a
single metric for the entire dataset, while filled circles correspond to clus-
ter-specific metrics.

ARZENO AND VIKALO: SEMI-SUPERVISED AFFINITY PROPAGATIONWITH SOFT INSTANCE-LEVEL CONSTRAINTS 1051



[22] M. Zhu, F. Meng, and Y. Zhou, “Semisupervised clustering for
networks based on fast affinity propagation,”Math. Problems Eng.,
vol. 2013, pp. 1–13, 2013.

[23] G. Jeh and J. Widom, “SimRank: A measure of structural-context
similarity,” in Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discov-
ery Data Mining, 2002, pp. 538–543.

[24] X. H. Shi, R. C. Guan, L. P. Wang, Z. L. Pei, and Y. C. Liang, “An
incremental affinity propagation algorithm and its applications
for text clustering,” in Proc. Int. Joint Conf. Neural Netw., 2009,
pp. 2734–2739.

[25] C. Yang, L. Bruzzone, R. Guan, L. Lu, and Y. Liang, “Incremental
and decremental affinity propagation for semisupervised cluster-
ing in multispectral images,” IEEE Trans. Geosci. Remote Sensing,
vol. 51, no. 3, pp. 1666–1679, Mar. 2013.

[26] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, Aug. 2006.

[27] K. Bache andM. Lichman. (2013).UCI Machine Learning Repository,
School Inform. Comput. Sci., Univ. California, Irvine, CA, USA
[Online]. Available: http://archive.ics.uci.edu/ml

[28] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. Costello, and I. M.
Moroz (2007, Jun.). Exploiting nonlinear recurrence and fractal
scaling properties for voice disorder detection. BioMed. Eng.
OnLine [Online]. 6(23), Available: http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1913514/

[29] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov,
“Neighbourhood components analysis,” in Proc. Adv. Neural Inf.
Process. Syst., 2005, vol. 17, pp. 513–520.

[30] S. Hoi, W. Liu, M. Lyu, and W.-Y. Ma, “Learning distance metrics
with contextual constraints for image retrieval,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2006, vol. 2,
pp. 2072–2078.

[31] S. Xiang, F. Nie, and C. Zhang, “Learning a Mahalanobis distance
metric for data clustering and classification,” Pattern Recognit.,
vol. 41, no. 12, pp. 3600–3612, Dec. 2008.

[32] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proc. 24th Int. Conf. Mach. Learn.,
2007, pp. 209–216.

[33] P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon, “Metric and kernel
learning using a linear transformation,” J. Mach. Learn. Res.,
vol. 13, pp. 519–547, 2012.

[34] L. Yang, R. Jin, and R. Sukthankar, “Bayesian active distance met-
ric learning,” in Proc. 23rd Conf. Uncertainty Artif. Intell., 2007,
pp. 442–449 [Online]. Available: http://arxiv.org/abs/1206.5283

[35] B. Conroy, Y. Xi, and P. Ramadge, “A supervisory approach to
semi-supervised clustering,” in Proc. IEEE Int. Conf. Acoustics
Speech Signal Process., 2010, pp. 1858–1861.

[36] J. Ye, Z. Zhao, and H. Liu, “Adaptive distance metric learning for
clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2007, pp. 1–7.

[37] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and
D. Papadopoulos. (2007, Feb.). Locally adaptive metrics for clus-
tering high dimensional data Data Mining Knowl. Discovery
[Online]. 14(1), pp. 63–97, Feb. 2007. [Online]. Available: http://
link.springer.com/article/10.1007/s10618-006-0060-8

[38] Y.-Y. Lin, T.-L. Liu, and C.-S. Fuh, “Clustering complex data with
group-dependent feature selection,” in Proc. 11th Eur. conf. Com-
put. Vis.: Part VI, 2010, pp. 84–97.

[39] V. Roth and T. Lange, “Feature selection in clustering problems,”
in Proc. Adv. Neural Inf. Process. Syst., 2003, vol. 16.

[40] X. Shen, H.-C. Huang, and W. Pan, “Simultaneous supervised
clustering and feature selection over a graph,” Biometrika, vol. 99,
pp. 899–914, Oct. 2012.

[41] G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang, “An effi-
cient sparse metric learning in high-dimensional space via l1-
penalized log-determinant regularization,” in Proc. 26th Annu. Int.
Conf. Mach. Learn., 2009, pp. 841–848.

[42] W. Liu, S. Ma, D. Tao, J. Liu, and P. Liu, “Semi-supervised sparse
metric learning using alternating linearization optimization,” in
Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2010, pp. 1139–1148.

[43] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neigh-
bor classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18,
no. 6, pp. 607–616, Jun. 1996.

[44] K. Q. Weinberger and L. K. Saul, “Distance metric learning for
large margin nearest neighbor classification,” J. Mach. Learn. Res.,
vol. 10, pp. 207–244, Jun. 2009.

[45] L. Yang, R. Jin, R. Sukthankar, and Y. Liu, “An efficient algorithm
for local distance metric learning,” in Proc. 21st Nat. Conf. Artif.
Intell., 2006, pp. 543–548.

[46] A. Globerson and S. Roweis, “Metric learning by collapsing class-
es,” in Advances in Neural Information Processing Systems, vol. 18, Y.
Weiss, B. Sch€olkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT
Press, 2006, pp. 451–458.

[47] S. Hoi, W. Liu, and S.-F. Chang, “Semi-supervised distance metric
learning for collaborative image retrieval,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2008, pp. 1–7.

[48] M. Schultz and T. Joachims, “Learning a distance metric from rela-
tive comparisons,” in Proc. Neural Inf. Process. Syst., 2003.

[49] N. Kumar and K. Kummamuru, “Semisupervised clustering with
metric learning using relative comparisons,” IEEE Trans. Knowl.
Data Eng., vol. 20, no. 4, pp. 496–503, Apr. 2008.

Natalia M. Arzeno received the BS and MEng
degrees in electrical engineering from the Massa-
chusetts Institute of Technology in 2006 and
2007. She is currently working toward the PhD
degree in the Electrical and Computer Engineer-
ing Department at the University of Texas at Aus-
tin. She received the National Science
Foundation Graduate Research Fellowship. Her
research interests include machine learning, data
mining, and healthcare analytics.

Haris Vikalo received the BS degree from the
University of Zagreb, Croatia, in 1995, the MS
degree from Lehigh University in 1997, and the
PhD degree from Stanford University in 2003, all
in electrical engineering. He held a short-term
appointment at Bell Laboratories, Murray Hill, NJ,
in the summer of 1999. From January 2003 to
July 2003, he was a postdoctoral researcher; and
from July 2003 to August 2007, he was an associ-
ate scientist at the California Institute of Technol-
ogy. Since September 2007, he has been with

the Department of Electrical and Computer Engineering, the University
of Texas at Austin, where he is currently an associate professor. He
received the 2009 National Science Foundation Career Award. His
research interests include signal processing, bioinformatics, machine
learning, and communications. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1052 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 5, MAY 2015



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


