IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Decoding Genetic Variations:
Communications-Inspired Haplotype Assembly

Zrinka Puljiz, Student Member, IEEE, Haris Vikalo, Senior Member, IEEE

Abstract—High-throughput DNA sequencing technologies allow fast and affordable sequencing of individual genomes and thus enable
unprecedented studies of genetic variations. Information about variations in the genome of an individual is provided by haplotypes,
ordered collections of single nucleotide polymorphisms. Knowledge of haplotypes is instrumental in finding genes associated with
diseases, drug development and evolutionary studies. Haplotype assembly from high-throughput sequencing data is challenging due to
errors and limited lengths of sequencing reads. The key observation made in this paper is that the minimum error-correction formulation
of the haplotype assembly problem is identical to the task of deciphering a coded message received over a noisy channel — a classical
problem in the mature field of communication theory. Exploiting this connection, we develop novel haplotype assembly schemes that
rely on the bit-flipping and belief propagation algorithms often used in communication systems. The latter algorithm is then adapted to
the haplotype assembly of polyploids. We demonstrate on both simulated and experimental data that the proposed algorithms compare
favorably with state-of-the-art haplotype assembly methods in terms of accuracy, while being scalable and computationally efficient.

Index Terms—haplotype assembly, belief propagation, bit flipping

<+

1 INTRODUCTION

ECENT advancements in high-throughput DNA sequenc-
Ring [1; 2; 3; 4] have enabled fast and affordable re-
sequencing of individual genomes and hence opened up the
possibility of conducting routine tests of genetic variations.
Identification and study of such variations helps reveal sus-
ceptibility to genetic and complex diseases, and may lead to
the development of personalized treatment plans adjusted to
individual genetic codes [5; 6; 7; 8]. Majority of chromosome
pairs in diploid organisms, including humans, are homologous
— they carry fundamentally the same type of information and
are structurally similar but not identical. The most common
type of variation between chromosomes in a homologous pair
are single nucleotide polymorphisms (SNPs), i.e., occurrence
of different nucleotides in the corresponding locations on
the chromosomes. Variations between chromosomes are fully
specified by haplotypes, ordered sequences of SNPs associated
with each of the chromosomes.

To assemble haplotypes of an individual organism, we may
rely on high-throughput DNA sequencing platforms which
oversample the DNA sequence to create a library of over-
lapping reads. The reads are relatively short — typically, on
the order of hundreds of nucleotides. Paired-end reads link
genome fragments that are large distances apart (hundreds to
thousands of bases) by having inserts of approximately known
lengths that separate two reads. To provide information that
can be used to assemble haplotypes, a pair of linked reads
must cover more than one SNP location. If sequencing were
not affected by errors and the subsequent SNP and geno-
type calling steps were free of any uncertainties, haplotype

e Z. Puljiz and H.Vikalo are with the Department of Electrical and Computer
Engineering, University of Texas in Austin, Austin, TX, 78712. E-mail:
zrinka@utexas.edu, hvikalo@ ece.utexas.edu

assembly for diploid organisms would be straightforward and
could be reduced to separating reads into two subgroups —
one for each haplotype in a pair. In the realistic case of
having erroneous data, such classification necessarily results in
subgroups that contain reads with conflicting information. In
literature, haplotype assembly has led to several optimization
problems, most of them attempting to minimize the number
of transformations of the data set needed to make the reads
consistent with having originated from one of the chromo-
somes [9]. In particular, it motivated the use of the minimum
fragment removal, minimum edge removal, minimum SNP
removal, and minimum error correction (MEC) optimization
criteria. The MEC criterion, which attracted the most attention
in recent years and is known to be NP-hard [10], is considered
in this paper. Various methods for doing haplotype assem-
bly by optimizing the MEC criterion have been developed.
The optimal yet computationally intensive branch-and-bound
scheme was proposed in [11]. As an alternative, several
heuristic algorithms that trade off accuracy for speed have been
proposed [11; 12; 13; 14; 15; 16; 17]. More recent methods
include HapCompass [18] and the widely used HapCut [19]
algorithm.

Our key observation presented in this paper has been that
the MEC formulation of the haplotype assembly problem is
identical to the task of deciphering a coded message transmit-
ted over a noisy communication channel [20; 21]. Decoding of
noisy messages has been extensively studied in communication
theory over the last several decades [22; 23; 24; 25; 26].
Exploiting the aforementioned connection, we first propose
a haplotype assembly method that relies on the bit-flipping
algorithm originally developed in the context of decoding
low-density parity check codes [22]. We then design a belief
propagation algorithm that provides higher accuracy than
the bit-flipping scheme at the cost of a slight increase in
computational complexity. When tested on the 1000 Genomes

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Project and Fosmid [27] data sets, the proposed methods
compare favorably with HapCut and HapCompass while being
significantly faster.

Beside diploids, high-throughput sequencing has enabled
studies of genetic variations in polyploid organisms which
have k > 2 chromosomes. Haplotype assembly for polyploids
is considerably more challenging and requires larger coverage
to enable separation of the reads. Existing prior work on
haplotype assembly for polyploids includes HapCompass [18]
and HapTree [28]. We extend our belief propagation algorithm
to the assembly of polyploid haplotypes and demonstrate in
simulation studies that it significantly outperform HapCom-
pass.

The remainder of the paper is organized as follows. We start
by considering haplotype assembly for diploids and introduce
the system model and problem formulation in Section 2. In
Sections 3 and 4, we present the main contributions of the
paper: a representation of haplotype assembly as a decoding
problem and two algorithms that rely on that representation, re-
spectively. An analytical bound on the performance is given in
Section 5. Section 6 extends the belief propagation algorithm
to the polyploid case. Results and discussion are presented in
Section 7 while the conclusion and future work are in Section
8.

2 NOTATION AND PROBLEM STATEMENT

Following sequencing, aligning to a reference, and SNP and
genotype calling, to facilitate haplotype assembly the data is
typically organized in a SNP fragment matrix. Segments of
the reads that cover homozygous sites provide no information
about haplotypes and are hence discarded. Since the SNP sites
in diploids are typically bi-allelic, we may denote them using
binary symbols {0, 1}. The (i, 7) entry of the SNP fragment
matrix R indicates the information about the j'* SNP site
provided by the i*" read; if the i*" read does not cover the
j*" SNP site, the (i,j) entry of R is denoted by the symbol
x. As an illustration, the resulting SNP fragment matrix may
have the following form,

x x 0 x x 1
x 1 x x 0 x
x x 0 x 0 x
0 x x 1 x X
R= 1 x 1 x x X
x x 1 x 0 x
x 0 x 0 x x
| X x X 0 x 0 i
2.1 Notation

Throughout the paper, we use the following notation:

(h, h): an unordered pair of a haplotype and its comple-
ment, with support in {0,1}".

(hg,hy, ..., hg_1): an unordered k-touple of all the hap-
lotypes on all the chromosomes with support in {0,1}".
r;: read 4, 1 < ¢ < m, with support in {0, 1, x }", where
x denotes unobserved alleles.

R: an n x m matrix whose i*" row corresponds to r; and
4" column corresponds to the j*"* SNP site.

s: a vector indicating whether a read is associated with
hy, hy,...or hy_q, with support in {0,1,..., &k — 1}™.
c: a vector collecting numeric entries of the matrix R.
G: generator matrix of a linear block code.

H: parity-check matrix associated with the generator
matrix G.

2.2 Problem statement

Define a measure of distance d between two symbols in the
ternary alphabet {0, 1, x} as

d(a,b) |a — bl if a # x and b # X,
a7 = .
0, otherwise.

With the adopted MEC criterion, the goal of haplotype as-
sembly for diploid organisms is to minimize Z over a binary
vector h,

Z = min(hd(r;, h), hd(r;, h)),

=1

)

where hd(-,-) denotes the generalized Hamming distance
defined as

hd(ria h) = Zd(R(Zm?)v hj)v

where R(i,j) denotes the (4,7) entry in R. Intuitively, min-
imizing (1) leads to finding the smallest number of binary
entries (alleles) in R that should be flipped so that the rows
of R can be unambiguously associated with either h or h. For
convenience, we will refer to h as the reference haplotype.

The MEC objective is often used as a proxy for the switch
error rate (SWER). The switch between positions ¢ and ¢ 4 1
is defined as the event fli = h; and fliﬂ #h;4q, or fli # h;
and fli+1 = h,;;. Note that, unlike the MEC score that is a
function of the fragment matrix and the recovered haplotype,
SWER is calculated with respect to a (known) underlying
haplotype. We will use SWER to test the performance of the
proposed algorithms in Section 7.

3 REFORMULATING HAPLOTYPE ASSEMBLY
AS THE DECODING PROBLEM

It is beneficial to briefly consider the scenario where the SNP
fragment matrix R is error-free. In particular, let us assume
that the reference haplotype

h=0 1 0 1 0 1]

and its complement h (each comprising m = 6 alleles) were
sampled with n = 8 reads, and that the origin of the reads is
indicated in the following read select vector,

s=op 0o o o 1 1 1 1.

If the value of the i*" component of s is 0, that indicates the i*"
row of R originated by sampling h; otherwise, it originated

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

by sampling h. Then the corresponding error-free fragment
matrix is of the form

X X = o X X X
O X X X X =X
X X ==X OX O
O X X = X X X
X X = X X ©oX
X X X X X X =

)
o

X X

Clearly, all of the variables in the previous representation
of the data (h, s, and R) have binary numerical entries. A
closer inspection reveals that if the (i,7) entry in R, R, ;,
is numerical (i.e., 0 or 1), it is obtained as the result of an
exclusive-OR (XOR) operation between the i*" and j*" entries

of s and h, respectively, as indicated in Table 1.

[5i [Ay [[Rij]
0]o0] 0
0o 1| 1
1o 1
1] 1] o
ABLE 1

Tabular representation of the known entries in the
error-free fragment SNP matrix as a function of the
reference haplotype and read select variables.

Interestingly, XOR functions are building blocks of error-
correcting codes in communication systems, which we briefly
summarize next.

3.1 Communication systems

In data communication systems, the goal of point-to-point
communication is to reliably transmit and receive (decode)
messages that are adversely affected by the transmission
medium. The most simple communication system consisting
of a source, encoder, channel, decoder and destination is
illustrated in Fig. 1. The coder introduces redundancy into
the message in order to combat unknown effects of the
noisy channel by adding redundancy to the binary messages
generated by the source. Output of the coder — a codeword
that belongs to a pre-defined codebook — is transmitted across
the channel that modifies it in a nondeterministic way. The
task of the decoder is to reverse the effects of the channel and
map the received signal back to the “closest” valid codeword,
which is then converted back into the message and forwarded
to the destination.

A special class of codes are those where each bit in the
codeword is a linear function of the message bits. Such linear
codes are fully described by a code generator matrix G. Each
column of G specifies the linear function used to obtain the
corresponding codeword bit, and the entire codeword is formed
by simply multiplying over GF'(2) the message with the code
generator matrix; multiplications over GF(2) are identical to
the exclusive-OR operations illustrated in Table 1. We remark
that a subclass of communication channels, so-called binary
symmetric channels, invert each transmitted bit independently
with the same probability.

1

-

Linear block code

|

-

Binary Symmetric Channel

B . Code 1
(oY) generator 0 - 0
\ C—m*G/ matrix
PSS
Codeword Message 1 N 1

Fig. 1. Components of a simple communication system
operate as follows: 1) a message is sent by a source,
2) a coder maps messages to a codeword using a set
of linear functions, 3) the codeword is corrupted by the
binary symmetric channel, 4) a decoder maps back the
corrupted codeword into a valid message, 5) the recov-
ered message reaches the destination.

3.2 Decoding haplotypes

Let us define a “message” as the vector formed by concate-
nating the haplotype vector h with the read select vector s,
m = [h s]. Let {fx} denote the collection of indices
{(ix,Jx)} identifying positions where the matrix R has nu-
meric entries, i.e., R(ig,jrx) # X, 1 < k < M, where M
denotes the total number of informative (binary) entries in R.
Define the “code generating” matrix G with the entries

G, k) = lifl=jyorl=1+n, 1<k M,
e 0, otherwise,

where n denotes the length of the haplotype. Therefore, each
column of G by construction has only two non-zero elements,
one at the location (ji, k) and the other at the location (n +
ik, k). To clarify the construction of G, we give an example
next.

Example 1: Consider the following SNP fragment matrix,

0 1 X
R: X 1 1 .
1 X 0

The set {fi} collects indices of the binary elements
in R in a row-wise order, {fx} = {(1,1),
(1,2),(2,2),(2,3),(3,1),(3,3)}. The corresponding code
generating matrix G has the following form,

1 0 0 0 1 O
0 1 1 0 0 O
0O 0 O 1 0 1
G= 1 1 0 0 0 O
0 0 1 1 0 O
o 0 0 o0 1 1

Each column of G is associated with one binary entry in
R, where the two non-zero entries in the k" column of G
correspond to indices (iy,jx) of the k*" (ordered row-wise)
informative entry in R, R(ig,jx) 7 X. The horizontal line in
G separates the rows of G associated with the columns i, of
R (i.e., with the SNP position) from the rows of G associated
with the rows jir of R (i.e., with the reads).

In the absence of SNP-calling errors, it holds that
c=|h s|G, 2)

where the k" entry of c is equal to the k* (ordered row-wise)
numeric entry of R, i.e., ¢ = R(ik, jk)-

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Remark: Note that any permutation of the rows or columns
of G corresponds to the permutation of the components in
the vectors h and s, or the order in which numeric entries of
matrix R occur in the codeword c. All such generated code
generator matrices are valid (and equivalent) representations
of R.

1 1-p 1

>

Fig. 2. An illustration of a binary symmetric channel with
crossover probability p.

Going back to the setting of Example 1 where h = [0 1 1],
s =001 and c =[011110] it is easy to verify
(2). However, sequencing errors adversely affect SNP and
genotype calling and hence the SNP fragment matrix R
typically has a fraction of entries that are incorrect (flipped).
This can be modeled by thinking of the “codeword” c in
(2) as being transmitted across the binary symmetric channel
(BSC) illustrated in Fig. 2, where p denotes the probability of
inverting a bit (i.e., p represents the error rate in R)). Therefore,
the possibly erroneous entries in R can be represented as

y=1[h s|G+e, 3)

where the k' entry of y is yx = R(iy,jr), e denotes the
error vector, and all the operations are in GF'(2). The goal
of haplotype assembly can be restated as follows: Given the
vector 'y and the matrix G, both derived from the SNP-
fragment matrix R, find the most likely vector [h s|.

To facilitate the decoding of [h s| and hence perform
haplotype assembly, we rely on the parity check matrix H.
For the linear codes defined by the encoding operation (2), H
is orthogonal to G7, i.e., the range of G” is the null space
of H. Given G, we find H by means of the simple Gaussian
elimination. Note that

Hy =H (G"[h r|" +e) = He,

and that the vector e can be viewed as the distance between the
observations y and the closest valid codeword. The minimum
distance decoding is concerned with finding the codeword c
(or, equivalently, e) that solves the minimization problem

mind(e,y) = minlly —cllo=__min_ fleflo
= min |le|lo, 4)
e:H(y+e)=0
where || - ||o denotes the lo-norm (the number of non-zero

entries) of its argument. Recall that the goal of the minimum
error correction (MEC) formulation of the haplotype assembly
problem is to select h minimizing the number of entries in R
that need to be flipped so that there is no conflicting informa-
tion in the SNP-fragment matrix. Therefore, its objective (1)

can be restated as
7 = min

e:H(y+e)=0 HeHO

Comparing the two optimizations above, we see that the
minimum distance decoding also leads to minimization of the
MEC score. Moreover, note that in the absence of any prior
information the minimum distance decoding coincides with
the maximum a posteriori decoding.

Based on the observed connection between communications
and haplotype assembly, we design graphical models and
utilize them for the design of algorithms solving the latter
problem.

3.3 Graphical models

Fig. 3 shows the graphical representation of the measurement
model (3), illustrating the interactions between elements of the
read select vector s, reference haplotype h and the observa-
tions collected in y. Both the reference haplotype and read
select vector are unobserved variables in this model, and the
interactions between them are driven by the structure of the
code generating matrix G. These interactions are depicted by
the square nodes in the graph, each connected to exactly one
SNP variable (a component of h), one read select variable
(a component of s) and one observation (a component of y,
connected via the codeword c). This graphical model will be
the basis for the derivation and implementation of the belief
propagation algorithm for haplotype assembly presented in the
next section.

observations

vatons (o] [[o] [o] [1]
true alleles

(c))
XOR nodes

(generator G)

SNP/haplotype
variables (h;)

read select
variables (s;)

Fig. 3. A graphical model illustrating how the data used
for haplotype assembly is generated. The numeric entries
in the SNP fragment matrix R are collected into a vector
y; due to sequencing and data processing errors, these
may differ from the true alleles. Read select variables
(components of s), SNP variables (components of the
haplotype vector h), and true alleles (components of c)
are connected through check nodes (i.e., XOR functions
defined by the structure of G).

An alternative graphical model, based on the parity check
matrix H, is illustrated in Fig. 4. The variables in this model
are associated with the entries in the vector y. The rows of
the parity check matrix define parity check nodes illustrated in
the figure. The edges in the graphical model emanating from
a parity check node connect to the variables identified by the
locations of the non-zero entries of the corresponding row of
H. When the variables connected to the parity check nodes are
such that their linear combinations (over GF(2)) at each node

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

are zero, consistent haplotype can be recovered. This will be
exploited to design and implement the bit-flipping haplotype
assembly algorithm in the next section.

true alleles

(c)

parity-check
(rows of H)

Fig. 4. A graphical model facilitating haplotype assembly
via satisfying conditions imposed by the parity check
matrix H. The ‘" parity check node, defined by the it"
row of H, is connected to the variable ¢ if H(l,k) # 0.

4 HAPLOTYPE ASSEMBLY VIA DECODING OF
LINEAR BLocK CODES

Motivated by the decoding algorithms that correct noise-
induced errors in communication systems, in this section we
present two haplotype assembly methods: the bit flipping
algorithm and the belief propagation algorithm. These are
computationally efficient yet highly accurate heuristics for
solving the NP-hard assembly problem.

4.1

The bit-flipping algorithm relies on the graphical model il-
lustrated in Fig. 4. The basic idea of the algorithm is to
examine each variable node of the graph and find the number
of parity check equations Hy = 0 it violates; there exists one
such variable for each numerical entry in R. The bit in y
with the largest margin of unsatisfied parity check equations
versus satisfied parity check equations is flipped (i.e., the
corresponding entry in y is changed from O to 1 or vice versa).
We proceed greedily, identifying and changing the component
of y such that the number of unsatisfied parity check equations
reduces in each step.

Intuitively, the algorithm in each step attempts to improve
the objective function of the minimum-distance decoding,
which coincides with the goal of the MEC haplotype assembly.
The procedure is terminated when there are no more alleles
with a negative drift (with more unsatisfied than satisfied check
nodes) or when there are no parity check node violations. The
procedure is formalized as Algorithm 1.

There are two main sources of randomness in the bit-
flipping algorithm — construction of the parity check matrix
and breaking ties among flipping variables. For one codebook
there are many different code generator matrices with many
different orthogonal parity check matrices. We use breadth-
first search on the bi-partite graph of the haplotype and read
select variables to form a code generator matrix from a random
starting point and rely on the Gaussian elimination to obtain

The bit-flipping algorithm

the parity check matrix. While performing the bit-flipping
algorithm, in case of several variables having the same number
of unsatisfied versus satisfied check nodes, we break the ties
uniformly at random.

The bit-flipping algorithm was originally proposed for de-
coding of low-density parity check (LDPC) codes in [22], with
the difference that the algorithm there flips more than one bit
in each iteration. We should also point out that the bit-flipping
algorithm is related to the coordinate descent algorithm for /; -
norm minimization, where the goal is to reconstruct a sparse
error vector.

4.2 The belief propagation algorithm

Belief propagation is a message-passing scheme for inference
in graphical models. A node in the graph receives messages
from the nodes its connected to and, based on the received
messages, computes and broadcasts its belief about the asso-
ciated variable. Our belief propagation algorithm works with
the code generator matrix and does not require computation
of the parity check matrix; for this reason, its computational
complexity compares favorably with bit-flipping, as shown in
Section 7.

The algorithm takes as input four variables: the starting
point sp, the probability of error p., the maximal number of
iterations MAXITER, and the precision € used as a stopping
criterion. In the graphical model representing the haplotype
assembly problem, the edges connecting the read nodes with
the SNP (haplotype) nodes are associated with the numeric
entries in R; since those entries are potentially erroneous,
we define an auxiliary variable y; ; that accounts for the
probability of read errors,

Yij = (1/2 = pe)(2R(i,5) — 1) + 1/2. &)

In fact, the variables y; ; are the beliefs propagated from the
haplotype variables to the read select variables via the XOR
function nodes in Fig. 4.

We use bars ~ to denote the belief complement of a variable;
in particular, for any value z, * = 1 — 2. We define the set
of active haplotype positions Ay and the set of active reads
AR to be the collection of haplotype and read nodes which
received a message on any of their edges in a given iteration,
respectively. The belief propagation algorithm for haplotype
assembly is formalized as Algorithm 2.

4.3 Complexity

Haplotype assembly concerned with optimizing the MEC
criterion is known to be N P-hard [9]. Both bit flipping
and belief propagation algorithms are heuristics, and we are
interested in characterizing their complexity. Here we provide
the complexity analysis in terms of the length of the connected
component, i.e., a haplotype block that is connected with
the reads. For convenience, we will keep the same notation
but with this slightly altered meaning: variable n denotes the
length of the connected components of the haplotype (i.e., the
length of a haplotype block) and R is the submatrix of the
SNP-fragment matrix containing information relevant to the
haplotype block under consideration. We assume that the total

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Algorithm 1 Bit Flipping Haplotype Assembly

1: procedure BF
2: H <« getParityCheckMatrix

3: c(0) + 1 — 2C set initial values of check nodes to 1 or -1

4: t < 1 iterations

5: repeat

6: vz(tj) + ¢i(t — 1) messages from entries to checks

7: u§t2 — Jlie Nyi v,(f; messages from checks to entries

8: 0i(t) « —ci(t —1) (ZjeNi u??) marginal values

9: if min; ((S, (t)) < 0 then

10: k < argmin(0;(t)) find the index of highest margin.
11: ck(t) < —ci(t — 1) flip the value of the entry.

12: Vi # k :¢;(t) < ¢;(t — 1) keep all other values same
13: end if

14: t—t+1

1s: until (t> MAXITER)V (Vi,j : ¢;(t) == u'")) V (min; (5;(t)) > 0)

16: end procedure

number of binary entries in R is O(n), which is a reasonable
assumption given the sparse structure of the SNP-fragment
matrix.

We distinguish between time and space complexity. Time
complexity characterizes the minimum time needed to obtain
the output of the algorithm and is concerned with its longest
sequential path. This measure is particularly interesting when
running algorithms on distributed systems. On the other hand,
space complexity characterizes the algorithm’s memory re-
quirements.

The bit-flipping algorithm. The time complexity for the
bit-flipping algorithm is O(n). To show this, we divide the
procedure in two major steps: finding the parity check matrix
and running the bit flipping algorithm. The time complexity
of finding the parity check matrix from the code generator
matrix is O(n). This is lower than the standard Gaussian
elimination since we arrange the code generator matrix to
have lower triangular form by following an O(n) breadth-first
search that permutes the haploype and read select variables
in an appropriate fashion. In addition, each pivot has only
one non-zero value above it, and thus the time needed for the
transformation to the fully reduced form is again O(n). On the
other hand, the maximal number of iterations of the bit flipping
algorithm is O(n). The number of iterations is upper bounded
by the number of unsatisfied parity check nodes. Since at each
iteration this number is reduced by at least 1, the maximal
number of iterations is upper bounded by the number of check
nodes in the parity check matrix. Now, from the procedure
used to generate parity check matrix one can observe that the
number of check nodes in the parity check matrix is strictly
less than the number of entries in R, which is again given
by O(n). The space complexity of the BF algorithm does not
exceed O(n?) since the number of connections between parity
check nodes and observed alleles is at most quadratic in n.

The belief propagation algorithm. The time complexity of
the belief propagation algorithm is bounded by the number of
iterations. Unlike the bit-flipping algorithm, the belief prop-
agation algorithm does not need the transformation from the

code generator matrix to the parity check matrix. The number
of iterations of the belief propagation algorithm is upper
bounded by the MAXITER variable. Note that MAXITER
variable needs to be larger than the depth of the graphical
model since we want all the SNPs and read select variables
to be in the active set. Also note that in each iteration all
the values of the active nodes need to be updated, whereas
in the bit flipping algorithm only a single variable is updated.
The space complexity of the belief propagation algorithm is
O(n) since all that is required to store is the description of
the original graphical model.

Initialization and reruns (for both algorithms). Performance
of both algorithms depends on the starting point; hence to
obtain better results we repeat the execution of the algorithm
from different starting points. We use a random restart and
keep searching for the solution as long as the MEC score
improves. The number of times we rerun the algorithms is
adaptively determined based on the incremental change in the
MEC score.

5 LIMITS OF PERFORMANCE OF HAPLOTYPE
ASSEMBLY

We find analytical expressions for the achievable accuracy of
the haplotype assembly problem concerned with optimization
(4). In particular, we compute the lower bounds on the
probability of haplotype assembly and switch errors, and the
expected number of SNP and switch errors.

To start, in Fig. 5 we introduce a simple bipartite graph
model of the SNP fragment matrix. The nodes on the left
correspond to the haplotype/SNP values (i.e., components of
h) while the nodes on the right correspond to the read select
variables (components of s). The edge between a SNP and a
read select node exists if the read covers the SNP and provides
information about its allele. Here the actual values of the
observed alleles are not important since the error probability
characterizing the performance of a linear block code is the
property of a codebook, not a specific codeword. In Fig. 5

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Algorithm 2 Belief Propagation Haplotype Assembly

1: procedure BP

2: sp < randomStarting Point

3 if starting point is a read then

4 rl <— sp

5: — rl (set active reads), A) rA (O)) (set active haplotype)

6: b((l)LS — pe (set initial beliefs), mg?th < 1 — p. (set initial messages)

+ 1 — p. (set initial messages)

1)

1 (t)
< 7 HhkeA(t D\, (mhk_w Yik + 1My, 0 Ui k) send messages from A}

) update read beliefs

t _ (¢ _ t
HrkeA%)\m (mik)%hj Yk,j + mér)kﬂhj)yw) send messages from Aﬁq)

update haplotype beliefs

(0) (0) _(0)
7: My, Z}Lj HmeAg’)\m (mrk_,hj Yk,j T My, b, ykd') send messages
8 else '
9: hj < sp
10: A(O) < h; set active haplotype
11: b(g) < 1 — p. (set initial belief), mglo)_w
12: end i
13: t < 1 iterations
14: repeat
15: A%) — F(A(bt[_l)) update the active reads
. ®) (t-1) =

: 7‘7;—>hj

t 1
17: by Zre, theAg;m (ng _3 Yij+ mﬁlﬁl,;yi,j
18: A(t) — F(Ag)) update active haplotype

(t) 1
19 mh]—Vu = Zhi,j

(t) (t=1) t) = ()
20 by, < zib by, HmeA;‘) (mr,qh_jyi’j +my Vi
21: t—t+1

2. until (¢t> MAXITER) V (|b{"” — b{'™"|, < ¢)
23: end procedure

there are three examples of cuts that will be of interest in our
analysis. Cut C1 isolates a single SNP node, and we define
the cardinality of that cut to be equal to the coverage of the
isolated SNP. Cuts C2 and C3 partition the SNP nodes in two
non-empty sets.

The probability of error, defined as the probability that the
assembled haplotype is different from the true one, is given
by

k
A=z S (Vra-p

i=k/2]+1

where p denotes the SNP calling error rate and £ is the smallest
coverage over all SNP positions (the SNP with the lowest
coverage is the most error prone). If the number of SNP calling
errors is large (> |k/2] + 1), it is likely that the algorithms
will arrive at a haplotype sequence with an erroneous SNP
position. In the bipartite graph representation in Fig. 5, this
bound corresponds to the errors introduces along the smallest
isolating cut.

Accuracy of haplotype assembly is often expressed in terms
of the switch probability. Switch refers to the event where
a subsequence of consecutive errors starts at a site in the
assembled haplotype; the errors essentially imply mistaking
a segment of h for that of of h. In the bipartite graph
representation each separating cut potentially leads to the
switch in the decoded haplotype. Now, looking at all possible
locations of switches, it is straightforward to show that the

read select
variables

haplotype/SNP
variables

O

observations

C1

=0

C3

Fig. 5. A sample bipartite graph representation of the
fragment matrix. The nodes on the left represent SNPs
while the nodes on the right represent read select vari-
ables. The edge between a SNP and a read select node
exists if the read covers the SNP location. Three cuts
are illustrated in the figure: C1, C2 and C3. We refer to
the cut C1 as isolating cut since it contains all the edges
emanating from a single SNP, and define the cardinality
of the cut as the coverage of the corresponding SNP. We
refer to the cuts C2 and C3 as separating cuts since they
partition SNPs into two non empty sets.

probability of a switch can be bounded by

- SN s—i
Pswitch = 1/2 Z <z>p (1-=p)°",

i=|s/2]+1

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

where s denotes the minimum separating cut of the bipartite
graph representation of fragment matrix. Notice that the switch
probability is always greater than the probability of an erro-
neous SNP, as the smallest isolating cut is just one possible
separating cut in the graph.

Next, we examine the expected number of erroneous (i.e.,
inverted) SNPs. This expectation is lower bounded by the
coverage errors as

E[h~hlo] =

IV
_l\')\»—l

where k; denotes the coverage of the i*" SNP. Note that
on the right-hand side in (6) we sum up the probabilities
of each SNP being inverted due to the errors introduced
into the corresponding isolating cut. This leads to a lower
bound because all isolating cuts in the bipartite graph are
independent, i.e., each edge of the bipartite graph appears in
at most one isolating cut.

For arbitrary separating cuts in the graph, the independence
assumption does not hold (for example, cuts C2 and C3 are
not independent since they share two edges). We need to take
that into account when characterizing the lower bound on the
expected number of switches,

E[SWER] = 1 > P(switch between i — 1 and)
"=

Tl & si\ ,
72:, §)i (1 —)%
né2 (j>p (1-»)

=2 j=1F]+1

Here s; denotes the smallest cut separating the i** SNP node
that is independent of all other separating cuts s; # s;. It
readily follows that

n k;
E[SWER] > Z% > (’;?)pﬂu
i=1 j= R4

- p)kl_j7

2

where k; denotes the coverage of the i*” SNP.

We should point out that the lower bound on the probability
of switching is always greater than the lower bound on the
probability of error under maximum a posteriori decoding. For
the scenario where the data is characterized by long reads
and low coverage (as in, e.g., Fosmid datasets), the computed
bounds are fairly tight; however, when the coverage is high
and the reads are relatively short (resembling reads in 7000
Genomes Project datasets), they tend to be loose. Either way,
they provide a useful insight about the achievable accuracy of
single individual haplotyping.

6 POLYPLOID HAPLOTYPE ASSEMBLY

In previous sections, we focused on haplotype assembly for
diploids. We now turn our attention to the polyploid version of
the haplotype assembly problem. For simplicity of presenta-
tion, we constrain SNPs to be bi-allelic; extension to the multi-
allelic scenario is relatively straightforward (albeit somewhat

cumbersome) and involves replacing vectors of beliefs by
matrices. Hence, the alphabet used to denote alleles in the SNP
data matrix remains {0, 1, x }, where x marks the positions
in a read not covering the corresponding SNP sites.

The goal of polyploid haplotype assembly concerned with
optimizing the MEC criterion' is to minimize Z over the set
(hg,hy, ..., hy_1),

Z =" min(hd(r;, ho),hd(r;, hy), ..., hd

i=1

(ri;hi—1)), (D

where k denotes the ploidy and hd(:,-) is the generalized
Hamming distance between its arguments.

The above minimization can be rewritten using a select
variable vector s. The definition of the select variables is
somewhat modified in the polyploid case: the i*"* component
of s, s;, is the index of the haplotype that the read is nearest
to in terms of the generalized Hamming distance. This means
that the optimization of the MEC objective can be rewritten

as
m k—

se{0ke1}m Zgo {si==5yhd(ri, hj).

()

The graphical model that describes the data used for poly-
ploid assembly is illustrated in Fig. 6. Since the read select
variables (i.e., components of s) no longer take the binary
values {0,1}, the linear coding analogy does not extend to
this scenario. However, relying on the graph in Fig. 6, we
can still design a belief propagation algorithm for polyploid
haplotype assembly. Note that the select function nodes of the
graph shown in Fig. 6 act as a simple multiplexer, allowing
only one of the entries {hg,hy,..., h;} to “pass” depending
on the value of the select variable s.

observations @

true alleles () ‘ <> ()

|—[]
ho
h,

select
function

haplotypes
hk

read select
variables O

Fig. 6. An illustration of the graphical model used for
polyploid haplotype assembly. This model is an extension
of the model in Fig. 3. The modified belief propagation
algorithm is implemented on this graph.

1. It was remarked in [28] that the MEC objective may not be suited
for use in the polyploid case due to ambiguity when phasing with reads
that cover the same collection of SNP sites. However, when the reads are
long and cover diverse subsets of SNP sites, as is the case with recent
high-throughput technologies such as fosmid, the MEC objective facilitates
successful assembly as indicated by the results presented in Section 7.

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

6.1 The polyploid belief propagation algorithm

To extend the belief propagation algorithm from Section 4 to
the assembly of haplotypes in polyploids, we need to redefine
the nodes that participate in the exchange of the beliefs as well
as specify messages that are being exchanged. For each SNP
location, we need to infer the probabilities of the alleles for
each of the k haplotypes. To this end, for the it" component
of h we define a variable pg) as the probability vector with &
entries. The value of the jth entry in this vector, p](r:)J is the
probability of the 7! haplotype having a reference allele at the
it" position. Similarly, for the it" component of s we define a
probabilit_ vector pg) of length k, where the j“L component
of pél), psg, is the beliefs that the it" read is associated with
the j*" haplotype (1 < j < k).

Note a major distinction between the probability vectors
pg) and pél). On one hand, an allele may occur at a particular
position in multiple haplotype strands, and the information
about an allele in one haplotype may not help infer alleles at
the same position in other haplotypes. On the other hand, each
read should eventually be associated with a single haplotype
strand, thus helping uniquely determine multiple SNP posi-
tions in the haplotype. This difference between the probability
vectors motivates different ways of aggregating messages at
the graph nodes. Since SNP variables act as factors in the
belief propagation factor graphs, imposing the presence of an
allele in a haplotype, messages at the corresponding nodes
are computed via sum aggregation. The read select variables
are the ones for which we want to find the most likely
configuration via marginalization, leading us to the product
form.

The auxiliary variable y; ; has the same definition as in the
belief propagation algorithm for diploids (see eq. (5)). How-
ever, we modify the notation ~ to denote the belief complement
of a vector variable; in particular, for any probability vector x
of size k, x = (1 —x)/(k—1).

The starting point of the algorithm is restricted to a read,
and a separate starting point is chosen for each strand of the
haplotype. A different read will be uniquely associated with
each one of the haplotype strands, as seen in Step 22 of the
polyploid belief propagation algorithm.

The algorithm is formalized as Algorithm 3.

7 SIMULATION RESULTS AND DISCUSSION

We test the performance of the proposed algorithms on both
real and simulated data sets. The experimental data include
the 1000 Genomes Project [29] and Fosmid [27] data sets,
on which we compare the MEC scores and runtimes of
bit-flipping and belief propagation algorithms with those of
HapCUT [19], HapCompass [18] and RefHap [30]. RefHap is
part of the Single Individual Haplotyping (SIH) package that
includes DGS [17], FastHare [31], SHRThree [32], Speedhap
[33], 2d-MEC [34], and WMLF [35]. These algorithms were
compared against each other as well as against HapCUT
[19] in [36]. We also tested all of the aforementioned al-
gorithms from the SIH package on the Fosmid dataset and
found that RefHap outperforms others in terms of both speed
and accuracy. On another note, simulated data mimics long

(fosmid-like) pair-end reads with varying coverages, allow-
ing comprehensive study of the algorithms’ performance in
terms of switch error rates (SWER) which we can com-
pute due to availability of the ground truth. The algorithms
were run on MacBook Air with 2.13GHz Intel Core Duo
processor with 4 GB of DDR3 RAM and MacBook with
2.4GHz Intel Core i5 processor with 4 GB of DDR3 RAM.
Implementation of the algorithms is available for download
from http://users.ece.utexas.edu/ hvikalo/DecodingBFBP.html
and http://sourceforge.net/projects/bfbp.

7.1

For the first test of the proposed algorithms we relied on
a data set from the 1000 Genomes Project — in particular,
the sample NA12787 sequenced at high coverage using 454
sequencing platform, also considered in several recent studies
including [18]. We compared the MEC scores achieved by
our algorithms to those of the widely used HapCUT [19]
and the more recent RefHap [30] and HapCompass [37].
HapCompass, RefHap and HapCUT were called with their
default settings; for HapCUT that means using software ver-
sion v.05 and running standard 100 iterations, for RefHap it
means version of SIH package 1.0, while for HapCompass we
ran software version 0.7.1. HapCompass processed BAM and
VCF files downloaded from the 1000 Genomes Project data
repository and its resulting fragment matrix was partitioned
into connected components. Each component was separately
fed into HapCUT along with the corresponding quality scores,
ensuring that both algorithms take into account the same SNP
locations and provide a fair comparison of the MEC scores
(i.e., the number of SNPs, reads, alleles and blocks was the
same for all the algorithms). The resulting MEC scores are
reported in the second super-column of Table 2. As can be
seen there, among all algorithms belief propagation provides
the smallest MEC score for all chromosomes. Bit-flipping (BF)
is slightly worse than belief propagation (BP), matching its
performance on 4 chromosomes, but better than HapCUT on
all and better than HapCompass and RefHap on all but one
chromosome. Note that RefHap does not phase all the SNPs
and discards a fraction of reads which leads to an unrealistic
MEC score that is artificially lower than those achieved by the
other algorithms. To make a fair comparison, we assigned the
reads discarded by RefHap to either h or h using the phased
SNPs and then phased the remaining SNPs in such a way
that the resulting total MEC score of RefHap is the lowest
possible. The computational overhead due to these additional
operations is not included in the reported RefHap runtimes;
for completeness, the original RefHap MEC scores evaluated
on a reduced set of reads are reported in parenthesis.

When comparing the speed of the algorithms, we wanted
to exclude the bias due to the system calls for I/O operations;
therefore, in the table we report the user time provided by the
UNIX time command. For HapCUT, the total time including
the system calls, operations and context switches is around an
order of magnitude greater than the times reported in Table 2.
For HapCompass, the total time in only marginally greater than
the user time given in the table. The BP and BF algorithms also

Benchmarking on 1000 Genomes Project data

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Algorithm 3 Polyploid Belief Propagation Haplotype Assembly

1: procedure PBP

2: sp < randomStarting Point

3 order < 1

4 Ti < Sp

5 Agg) < 7; (set active reads)

6 b0 [1 —pe 2L ,f;l} (set initial beliefs), ", « [1 —pe 2 . ,f;l} (set initial messages)

7 t < 1 iterations ‘

8 repeat

9: AE*—? — F(Agfl)) update active haplotype

10: if order = k then

11: bias; < vector with h; degree on the reference number of largest beliefs

12: else

13: bias; < [0 0 ... 0]

14: end if

15: mgltj)ﬁm — Z;m_ [biasj + Zr,eAﬁé)\n (mﬁjghj Y15 + mg?l_mj)yl,j)} send messages from Ag)

16: bg) — thb b;ff” [bz’asj + Zr_eA%) (mﬁtgh Yij + mitgh gm«ﬂ update haplotype beliefs
J 5 J i z J T J

17: A%) — F(A(é_l)) update the active reads

18: bg) — ZTl‘bi theAﬁf,‘” (mgfj__tzl Yij + m}fj‘_{zlg”) update read beliefs

19: mg’)_}hj < 7o Mpeat-\n, (mﬁfl;lﬂyu + mﬁfl;lﬁgu) send messages from A"

20: if order <k then ’

21: re < with lowest margin of belief that it belongs to haplotypes 1 to order

22: bS? +— {% I —pe ... 5| assign aread to haplotype hopder

23: mg,tc)_mj — Lkpel 1—pe ... kpjl] update the messages for this read

24: order < order + 1

25: end if

26: t—t+1

270 until (t> MAXITER) V (bl — b{* V|, <)
28: end procedure

have the total time only marginally greater than the user time.
As evident from the table, RefHap is the fastest among the
considered schemes but its speed comes at the cost of reduced
accuracy. On the other hand, the BP and BF algorithms are
faster than HapCUT and HapCompass except for chromosome
6 where HapCUT incurs the least amount of runtime.

7.2 Fosmid data

Fosmid pool-based sequencing provides very long fragments,
characterized by much higher ratio of the number of SNPs
to the number of reads than in standard high-throughput
sequencing platforms. We consider the fosmid sequence data
for a HapMap NA12878, also studied in [27]. As an example,
chromosome 1 of this dataset has 22, 737 reads and 122,960
SNPs.

We compared the performance of our bit-flipping (BF) and
belief propagation (BP) algorithms to that of HapCUT and
RefHap and report the results in Table 3 (we attempted running
HapCompass on the same dataset but that algorithm was
running out of memory or stopping for unknown reasons). As
can be seen from Table 3, BF or BP outperform HapCUT
on half of the chromosomes; the MEC scores of all three
algorithms are within 1% margin for all chromosomes. At

the same time, both bit-flipping and belief propagation are
significantly faster than HapCUT - the widest gap in speed is
seen on chromosome 6 where belief propagation is about 40
times faster than HapCUT. RefHap is again the fastest among
the considered schemes but its speed is traded off for accuracy.
As before, the reported runtimes exclude the system calls time.

7.3 Simulation results: the diploid case

We simulate two scenarios, one with high coverage paired-end
reads that resemble those in 1000 Genomes Project datasets
and the other with long reads and low coverage similar to what
may be available in a Fosmid dataset.

To emulate the short-read high-coverage scenario, we gen-
erated reads that span 500 basis with inserts having 10k mean
length and 10% deviation. The rate of SNPs is assumed to be
1 in 300 basis as reported in [38]. We simulate sampling of the
entire genome with the paired-end reads, marking each base
as a SNP location with probability 1 in 300. This means that
the number of basis between two neighboring SNP locations
is a geometrically distributed random variable (as assumed in,
e.g., [28]).

We study the dependence of the switch error rate (SWER)
on coverage. Moreover, we are interested in understanding

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

TABLE 2
MEC scores and execution times for HapCUT (HCUT), HapCompass (HCom), bit-flipping (BF) and belief propagation
(BP) algorithms for the 1000 Genomes Project individual NA12787.

Properties MEC score Execution time (s)

[Chr. #SNP #Read #Allele #blocks | HCUT HCom. RefHap BF BP HCUT HCom. RefHap BF BP
1 122960 180199 403138 21825 12675 12390 12380 (11203) 12312 12310 115 214 28 59 39
2 139475 211311 475770 24836 15363 15015 14991 (13650) 14933 14916 134 243 61 117 99
3 117657 180572 407084 20855 13243 12970 12947 (11777) 12882 12872 113 203 37 70 60
4 119330 190029 437636 20802 14980 14642 14631 (13361) 14536 14532 123 202 45 116 89
5 112643 171881 387704 20049 12611 12266 12260 (11070) 12200 12196 122 167 30 62 48
6 116414 189932 463272 19579 17057 16805 16800 (15474) 16924 16769 202 16290 987 1193 1073
7 94511 148305 340748 16624 11445 11174 11165 (10098) 11110 11108 97 164 26 96 51
8 94024 152864 34966 16571 11088 10817 10797 (9750) 10735 10732 97 133 21 60 60
9 71898 115722 263419 12979 8481 8319 8279 (7503) 8237 8236 72 149 32 140 43
10 85499 136288 310879 15001 10167 9899 9893 (9030) 9833 9828 86 122 21 61 47
11 81018 126027 288307 14225 9308 9104 9111 (8273) 9047 9042 83 131 25 64 68
12 78146 117673 265958 13849 8659 8418 8400 (7651) 8362 8361 76 131 17 40 32
13 63689 100081 230321 11241 7848 7695 7687 (7041) 7652 7631 64 108 40 80 67
14 53934 82139 185435 9598 5866 5715 5698 (5154) 5662 5661 51 84 11 33 29
15 46254 73559 166860 8191 5244 5137 5120 (4660) 5102 5100 45 77 9 25 18
16 51786 86684 201865 9043 6400 6231 6205 (5708) 6177 6175 54 83 15 36 51
17 38839 58363 134103 6696 4631 4550 4537 (4201) 4506 4506 37 84 17 69 20
18 49873 77291 175107 8821 5531 5371 5363 (4868) 5342 5340 47 75 8 34 23
19 31760 46397 105525 5602 3571 3421 3403 (3086) 3392 3392 29 54 10 15 11
20 38044 58879 134089 6831 4213 4122 4103 (3754) 4087 4086 38 61 7 19 14
21 24342 40107 92582 4379 3021 2987 2972 (2695) 2953 2953 26 40 6 14 13
22 22801 33671 77122 4076 2395 2324 2316 (2112) 2301 2301 24 37 5 11 7

TABLE 3

MEC scores and time of execution for HapCUT, bit-flipping and belief propagation algorithms on the Fosmid dataset
for NA12878 individual.

Properties MEC score Execution time (s)

[Chr. #SNP #Read #Allele #blocks | HapCUT RefHap BF BP HapCUT RefHap BF BP
1 122960 22736 393201 1316 9555 9644 (8051) 9589 9552 2423 2.3 319 268
2 129732 22602 413205 1519 9668 9728 (7910) 9734 9661 3089 2.22 254 282
3 108204 18722 330763 1285 7566 7635 (6111) 7606 7554 2124 2.01 220 213
4 107430 16027 306639 1372 6267 6317 (4880) 6262 6267 2431 1.81 159 234
5 103442 17013 317206 1196 6922 6963 (5558) 6960 6946 2202 1.91 238 213
6 107882 16451 332388 1072 7957 8038 (6341) 8002 7965 11260 2.02 286 283
7 87563 14936 275308 1011 6071 6098 (4961) 6107 6078 2242 1.79 274 208
8 86708 13733 275302 959 6260 6289 (5092) 6282 6250 2670 1.78 332 158
9 66996 11528 224982 678 5464 5505 (4591) 5460 5462 2309 1.56 286 163
10 79978 14064 265142 779 6446 6489 (5357) 6475 6475 2006 1.62 180 199
11 75235 13519 246499 802 5560 5602 (4620) 5575 5567 1752 1.64 177 182
12 72917 13377 238070 793 5666 5691 (4686) 5692 5670 1610 1.71 183 189
13 57287 8800 168625 671 3968 4030 (3155) 3961 3967 1276 1.28 108 92
14 50219 9030 165775 523 3979 4017 (3244) 4016 3989 1302 1.26 168 186
15 43578 8306 149536 481 4009 4053 (3341) 4030 4003 1083 1.17 120 150
16 49736 9655 191480 400 5087 5102 (4438) 5128 5099 2481 1.58 220 260
17 37820 8776 146019 426 4744 4819 (4159) 4773 4740 1069 1.21 151 191
18 46313 7704 146353 497 3448 3473 (2801) 3475 3441 1021 1.17 83 88
19 30777 7431 119629 266 3900 3940 (3406) 4037 3902 773 1.07 137 136
20 36398 7447 135745 317 3811 3863 (3295) 3883 3810 951 1.2 164 115
21 22756 3760 73711 222 1953 1967 (1601) 1958 1953 587 0.72 48 33
22 22083 5567 92889 141 3261 3343 (2876) 3375 3278 752 1.24 218 188

how haplotype assembly depends upon the errors in the SNP
fragment matrix. To this end, we consider haplotype block
lengths of 1000 and 5000, with the coverage of 10, 15, 20,
25 and 30. Fore each pair of parameters (block length and
coverage), we simulate error rates of 1%, 2% and 5% in the
SNP fragment matrix. The error rate of 2% is the closest
to what we observed in experimental data sets (both 1000
Genomes Project and Fosmid). Each experiment is repeated
10 times. The mean values of SWER for the BP algorithm are
reported in Fig. 7. As can be seen from the figure, increase

in the block length leads to the increase in the SWER value
for the same value of the erroneous data rate and coverage.
Increasing the fraction of errors in the SNP fragment matrix
causes deterioration of the SWER performance, while increas-
ing the coverage improves the SWER. Note that even in the
worst considered scenario (highest rate of sequencing errors,
largest block size, and smallest coverage), SWER remains
below 2%. For a comparison, we include the SWER of RefHap
and HapCUT for block lengths n = 1000 and error rate 5%.
Except for the coverage ¢ = 20, the BP algorithms leads to

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

A —— HapCUT, n=1k, pe:S% |
\ —o—BP.n=1k, p=5%
M BP, n=1k, p,=2%
—w— BP, n=1k, pe:1%
\ . == BP. n=5k p,=5%
A3 BP, n=5k, p,=2%
—u = BP, n=5k, pe:1%

Ay —— RefHap, n=1k, pe=5%

SWER

Coverage

Fig. 7. Simulated SWER rates for haplotype assembly
with short reads using the BP algorithm (diploid). Results
are averaged over 10 different fragment matrices, and
reported with respect to varying coverage, block length
and probability of error.

lowest SWERs for the considered set of parameters.

Next, we consider the long reads, small coverage sce-
nario (similar to the Fosmid data). The reads are generated
with lengths distributed following Poisson distribution with
specified average read length. Within each read, a single
SNP is covered independently with probability 0.9. We study
the performance of our algorithm in terms of SWER. The
parameters of the simulation are the number of SNPs, the
sequencing error rate, and the average read length. The number
of SNPs (i.e., haplotype block length) is 5,000 and 25,000.
The error rate in the SNP fragment matrix is set to 0.5%, 1%
and 2%. The average read length was set to 40, 80, and 120.
The coverage was set to 8. Each experiment was repeated 10
times and the mean value and standard deviation of SWER are
shown in the Fig. 8. We again include the comparison with
RefHap for block lengths n = 5000 and error rate 2%. As
can be seen from the figure, the BP algorithms provides better
SWERs for all coverage levels.

We see from Fig. 8 that, as expected, higher data error rates
lead to higher SWER. Interestingly, the blocks of length 5,000
seem to have similar SWER to those for the blocks of length
25,000. Moreover, long reads appear to lead to SWER similar
to those provided by short reads. In order to gain further
insight, we examined the cause of the switches. As it turns
out, majority of the switches are actually single SNPs that got
inverted, implying that most of the reported errors in haplotype
assembly are due to errors in the isolated cuts (discussed in
Section 5).

7.4 Simulation results: the polyploid case

We implemented our belief propagation algorithm for haplo-
type assembly of polyploids in C, and compared its perfor-
mance in terms of MEC, SWER and execution time to the
polyploid version of the HapCompass algorithm [18]. [We

x10”
2
—e— =25k, p_=05%
1.8F -0 = n=5k, pe:O.S%
n=25k, p_ =1%
160 °
n=5k, pe:1%
1.4} —— n=25k, pe=2%
1ol 0= n=5k, pe=2% |
e - —so— RH, n=5k, p_=2%
E
w
o8 A~ .= b
————— 4
0.6 1
0=
0.27—— D) e s
Q- == T =8 ?
0 i
40 80 120

Average read length

Fig. 8. Simulated SWER rates for haplotype assembly
with long reads using the BP algorithm (diploid). Results
are averaged over 10 different fragment matrices, and
reported with respect to varying read length, block length
and probability of error.

—6— BP, n=200, p=0.01
|| —&— HC, n=200, p=0.01
= © = BP, n=200, p=0.02
Ll /@ BP, n=1000, p=0.01 °

MEC score

Coverage

Fig. 9. Simulated MEC scores for haplotype assembly of
a triploid (the belief propagation algorithm and HapCom-
pass).

attempted to compare its performance to HapTree [28] as well,
however, for the considered block sizes HapTree runs out of
memory.] We simulated pair-end reads with the same setup
as in the diploid simulations, for haplotype block lengths 200
and 1000. The coverage was varied and the error rate in the
SNP fragment matrix was 1% and 2%. The plotted lines are
obtained by averaging results of 10 simulation runs.

The MEC scores obtained by applying the algorithms to the
assembly of a triploid are given in Fig. 9. As can be seen there,
the BP algorithm achieves significantly lower MEC scores than
HapCompass. As the data error rates increase, the MEC scores
increase by approximately the same factor.

Next, we study the switch error rate (SWER) and compare
the performance of the algorithms for various polyploid orders.

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

0.25

T T T T T

—©— BP, n=200, p=0.01, k=3
'=@= BP, n=200, p=0.01, k=4
—&— HC, n=200, p=0.01, k=3

02k =E-_HC, n=200, p=0.01, k=4 |
O-=imimim = Rl T o
0.15} n\-\n
]
= oL
] \,\
01f s,
~.
~.
-
______ °

0.051

i i i
10 15 20 25 30 35 40 45 50 55 60 65
Coverage

Fig. 10. Simulated SWER rates for haplotype assembly of
various polyploids (the belief propagation algorithm and
HapCompass). Haplotype block length is set to 200.

350 T T T T T
—©— BP, n=200, p=0.01, k=3
|| =0~ BP, n=200, p=0.01, k=4
—&— HC, n=200, p=0.01, k=3
=0~ HC, n=200, p=0.01, k=4
r = + = BP, n=200, p=0.02, k=3 & g

(&)

o

o
I

n
3]
o

Running time (s)
- n
[$)) o
o o
T T

o
=]
T

a1
o
T

i i i i i i i
10 15 20 25 30 35 40 45 50 55 60 65
Coverage

Fig. 11. Comparison of running times for haplotype as-
sembly of various polyploids (the belief propagation algo-
rithm and HapCompass). Haplotype block length is set to
200.

The results are shown in Fig. 10. As we can see from the
figure, increasing the coverage reduces the SWER while as
the ploidy increases the SWER deteriorates.

Finally, we study running times of the belief propagation al-
gorithm for haplotype assembly of polyploids and report them
in Fig. 11. As can be seen there, the run time increases with
coverage, ploidy and block size, while it appears independent
of data error rates. Moreover, the belief propagation algorithm
is significantly faster than HapCompass for the same sets of
simulation parameters. Note that the reported run times are
obtained using the UNIX time command (i.e., we are reporting
the user time).

8 CONCLUSION AND FUTURE WORK

We proposed and studied formulation of the haplotype assem-
bly problem that relies on a novel graphical representation

and draws upon parallels between haplotype assembly and
decoding in data communication systems. We proposed two
algorithms, namely the bit-flipping and belief propagation
algorithm, both highly accurate and fast heuristics. The com-
plexity of both algorithms is only linear in the length of
the haplotype block. Their accuracy compares favorably with
HapCUT, HapCompass and RefHap on both simulated and
experimental data. When applied to fosmid data characterized
by long fragments and small ratio between the number of reads
and haplotype length, our proposed methods are often more
than 10 times faster than HapCUT. Moreover, we extended
the belief propagation algorithm to the haplotype assembly of
polyploids, focusing on the bi-allelic case, and demonstrated
significant performance improvements over HapCompass.

As part of the future work, it is of interest to explore
other, more sophisticated, decoding algorithms in the context
of haplotype assembly (e.g., belief propagation with soft
thresholding). There is also a number of potentially interesting
fundamental questions such as performance vs. complexity
tradeoffs and further analysis of the achievable limits of
performance.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grant CCF-1320273.

REFERENCES

[1] M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén,
and P. Nyrén, “Real-time dna sequencing using detection
of pyrophosphate release,” Analytical biochemistry, vol.
242, no. 1, pp. 84-89, 1996.

[2] N. Hall, “Advanced sequencing technologies and their
wider impact in microbiology,” Journal of Experimental
Biology, vol. 210, no. 9, pp. 1518-1525, 2007.

[3] E.R. Mardis, “The impact of next-generation sequencing
technology on genetics,” Trends in genetics, vol. 24,
no. 3, pp. 133-141, 2008.

[4] S. C. Schuster, “Next-generation sequencing transforms
todays biology,” Nature, vol. 200, no. 8, 2007.

[5] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum,
M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle,
W. FitzHugh et al., “Initial sequencing and analysis of
the human genome,” Nature, vol. 409, no. 6822, pp. 860—
921, 2001.

[6] J.C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J.
Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A.
Evans, R. A. Holt et al., “The sequence of the human
genome,” science, vol. 291, no. 5507, pp. 1304-1351,
2001.

[7] E. S. Collins, M. Morgan, and A. Patrinos, “The human
genome project: lessons from large-scale biology,” Sci-
ence, vol. 300, no. 5617, pp. 286-290, 2003.

[8] M. E. Frazier, G. M. Johnson, D. G. Thomassen, C. E.
Oliver, and A. Patrinos, “Realizing the potential of the
genome revolution: the genomes to life program,” Sci-
ence, vol. 300, no. 5617, pp. 290-293, 2003.

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

[91 R. Schwartz, “Theory and algorithms for the haplotype
assembly problem,” Communications in Information &
Systems, vol. 10, no. 1, pp. 23-38, 2010.

R. Lippert, R. Schwartz, G. Lancia, and S. Istrail, “Algo-

rithmic strategies for the single nucleotide polymorphism

haplotype assembly problem,” Briefings in bioinformat-

ics, vol. 3, no. 1, pp. 23-31, 2002.

R.-S. Wang, L.-Y. Wu, Z.-P. Li, and X.-S. Zhang, “Hap-

lotype reconstruction from snp fragments by minimum

error correction,” Bioinformatics, vol. 21, no. 10, pp.

2456-2462, 2005.

Z. Chen, B. Fu, R. Schweller, B. Yang, Z. Zhao, and

B. Zhu, “Linear time probabilistic algorithms for the

singular haplotype reconstruction problem from snp frag-

ments,” Journal of Computational Biology, vol. 15, no. 5,

pp- 535-546, 2008.

S.J. Lindsay, J. K. Bonfield, and M. E. Hurles, “Shotgun

haplotyping: a novel method for surveying allelic se-

quence variation,” Nucleic acids research, vol. 33, no. 18,

pp- e152—e152, 2005.

L. M. Li, J. H. Kim, and M. S. Waterman, “Haplotype

reconstruction from snp alignment,” Journal of Compu-

tational Biology, vol. 11, no. 2-3, pp. 505-516, 2004.

J. H. Kim, M. S. Waterman, and L. M. Li, “Accuracy

assessment of diploid consensus sequences,” IEEE/ACM

Transactions on Computational Biology and Bioinfor-

matics (TCBB), vol. 4, no. 1, pp. 88-97, 2007.

——, “Diploid genome reconstruction of ciona intesti-

nalis and comparative analysis with ciona savignyi,”

Genome research, vol. 17, no. 7, pp. 1101-1110, 2007.

S. Levy, G. Sutton, P. C. Ng, L. Feuk, A. L. Halpern, B. P.

Walenz, N. Axelrod, J. Huang, E. F. Kirkness, G. Denisov

et al., “The diploid genome sequence of an individual

human,” PLoS biology, vol. 5, no. 10, p. €254, 2007.

D. Aguiar and S. Istrail, “Haplotype assembly in poly-

ploid genomes and identical by descent shared tracts,”

Bioinformatics, vol. 29, no. 13, pp. i352-i360, 2013.

[19] V. Bansal and V. Bafna, “Hapcut: an efficient and ac-
curate algorithm for the haplotype assembly problem,”
Bioinformatics, vol. 24, no. 16, pp. i153-i1159, 2008.

[20] T. M. Cover and J. Thomas, Elements of Information
Theory. Wiley, 1991.

[21] T. Richardson and U. Ruediger, Modern Coding Theory.
Cambridge University Press, 2008. [Online]. Available:
http://dx.doi.org/10.1017/CBO9780511791338

[22] R. G. Gallager, “Low-density parity-check codes,” Re-

search Monograph Series, 1963.

S. Kudekar, T. J. Richardson, and R. L. Urbanke,

“Threshold saturation via spatial coupling: Why convo-

lutional 1dpc ensembles perform so well over the bec,”

Information Theory, IEEE Transactions on, vol. 57, no. 2,

pp- 803-834, 2011.

S. Kudekar, T. Richardson, and R. Urbanke, “Spatially

coupled ensembles universally achieve capacity under

belief propagation,” in Information Theory Proceedings

(ISIT), 2012 IEEE International Symposium on. 1EEE,

2012, pp. 453-457.

[25] S. Kumar, A. J. Young, N. Macris, and H. D. Pfister,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[23]

[24]

“A proof of threshold saturation for spatially-coupled
ldpc codes on bms channels,” CoRR, vol. abs/1301.6111,
2013.

A. Montanari, “Tight bounds for ldpc and ldgm codes
under map decoding,” Information Theory, IEEE Trans-
actions on, vol. 51, no. 9, pp. 3221-3246, 2005.

J. Duitama, G. K. McEwen, T. Huebsch, S. Palczewski,
S. Schulz, K. Verstrepen, E.-K. Suk, and M. R. Hoehe,
“Fosmid-based whole genome haplotyping of a hapmap
trio child: evaluation of single individual haplotyping
techniques,” Nucleic acids research, vol. 40, no. S, pp.
2041-2053, 2012.

E. Berger, D. Yorukoglu, J. Peng, and B. Berger, “Hap-
tree: A novel bayesian framework for single individ-
ual polyplotyping using ngs data,” PLoS Comput Biol,
vol. 10, no. 3, p. €1003502, 03 2014.

The 1000 Genomes Project Consortium, “A map of
human genome variation from population-scale sequenc-
ing,” Nature, vol. 467, no. 7319, pp. 1061-1073, 10 2010.
J. Duitama, T. Huebsch, G. McEwen, E.-K. Suk, and
M. R. Hoehe, “Refhap: a reliable and fast algorithm
for single individual haplotyping,” in Proceedings of the
First ACM International Conference on Bioinformatics
and Computational Biology. ACM, 2010, pp. 160-169.
A. Panconesi and M. Sozio, “Fast hare: A fast heuristic
for single individual snp haplotype reconstruction,” in
Algorithms in Bioinformatics. Springer, 2004, pp. 266—
277.

Z. Chen, B. Fu, R. Schweller, B. Yang, Z. Zhao, and
B. Zhu, “Linear time probabilistic algorithms for the
singular haplotype reconstruction problem from snp frag-
ments,” Journal of Computational Biology, vol. 15, no. 5,
pp- 535-546, 2008.

L. M. Genovese, F. Geraci, and M. Pellegrini, “Speedhap:
an accurate heuristic for the single individual snp haplo-
typing problem with many gaps, high reading error rate
and low coverage,” IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics (TCBB), vol. 5,
no. 4, pp. 492-502, 2008.

Y. Wang, E. Feng, and R. Wang, “A clustering algorithm
based on two distance functions for mec model,” Compu-
tational biology and chemistry, vol. 31, no. 2, pp. 148—
150, 2007.

S.-H. Kang, L.-S. Jeong, H.-G. Cho, and H.-S. Lim, “Ha-
passembler: A web server for haplotype assembly from
snp fragments using genetic algorithm,” Biochemical and
biophysical research communications, vol. 397, no. 2, pp.
340-344, 2010.

J. Duitama, G. K. McEwen, T. Huebsch, S. Palczewski,
S. Schulz, K. Verstrepen, E.-K. Suk, and M. R. Hoehe,
“Fosmid-based whole genome haplotyping of a hapmap
trio child: evaluation of single individual haplotyping
techniques,” Nucleic acids research, p. gkr1042, 2011.
D. Aguiar and S. Istrail, “Hapcompass: a fast cycle basis
algorithm for accurate haplotype assembly of sequence
data,” Journal of Computational Biology, vol. 19, no. 6,
pp. 577-590, 2012.

[38] R. A. Gibbs, J. W. Belmont, P. Hardenbol, T. D. Willis,

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

IEEE TRANSACTIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 15

F. Yu, H. Yang, L.-Y. Ch’ang, W. Huang, B. Liu, Y. Shen
et al., “The international hapmap project,” Nature, vol.
426, no. 6968, pp. 789-796, 2003.

Haris Vikalo (hvikalo@ece.utexas.edu) Haris
Vikalo received the B.S. degree from the Uni-
versity of Zagreb, Croatia, in 1995, the M.S.
degree from Lehigh University in 1997, and the
Ph.D. degree from Stanford University in 2003,
allin electrical engineering. He held a short-term
appointment at Bell Laboratories, Murray Hill,
NJ, in the summer of 1999. From January 2003
to July 2003 he was a Postdoctoral Researcher,
and from July 2003 to August 2007 he was an
Associate Scientist at the California Institute of
Technology. Since September 2007, he has been with the Department of
Electrical and Computer Engineering, the University of Texas at Austin,
where he is currently an Associate Professor. He is a recipient of the
2009 National Science Foundation Career Award. His research interests
include signal processing, bioinformatics, and communications.

Zrinka Puljiz (zrinka@utexas.edu) Zrinka
Puljiz is a PhD candidate at the University of
Texas at Austin. She holds B.S. degrees in
Electrical Engineering (2003) and in Computing
(2004), and an M.S. degree in Electrical
Engineering (2007) from the University of
Zagreb, Croatia. She is a member of the
Wireless Communications and Networking
Group (WNCG) at the University of Texas
at Austin. Her research interests include
wireless communications, signal processing and

bioinformatics.

