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On the Benefits of Multiple Gossip Steps in
Communication-Constrained Decentralized

Federated Learning
Abolfazl Hashemi†, Anish Acharya*, Rudrajit Das*, Haris Vikalo, Sujay Sanghavi, and Inderjit Dhillon

Abstract—Federated learning (FL) is an emerging collaborative machine learning (ML) framework that enables training of predictive
models in a distributed fashion where the communication among the participating nodes are facilitated by a central server. To deal with
the communication bottleneck at the server, decentralized FL (DFL) methods advocate rely on local communication of nodes with their
neighbors according to a specific communication network. In DFL, it is common algorithmic practice to have nodes interleave (local)
gradient descent iterations with gossip (i.e. averaging over the network) steps. As the size of the ML models grows, the limited
communication bandwidth among the nodes does not permit communication of full-precision messages; hence, it is becoming
increasingly common to require that messages be lossy, compressed versions of the local parameters. The requirement of
communicating compressed messages gives rise to the important question: given a fixed communication budget, what should be our
communication strategy to minimize the (training) loss as much as possible? In this paper, we explore this direction, and show that in
such compressed DFL settings, there are benefits to having multiple gossip steps between subsequent gradient iterations, even when the
cost of doing so is appropriately accounted for, e.g. by means of reducing the precision of compressed information. In particular, we show
that having O(log 1

ε
) gradient iterations with constant step size - and O(log 1

ε
) gossip steps between every pair of these iterations -

enables convergence to within ε of the optimal value for a class of non-convex problems that arise in the training of deep learning models,
namely, smooth non-convex objectives satisfying Polyak-Łojasiewicz condition. Empirically, we show that our proposed scheme bridges
the gap between centralized gradient descent and DFL on various machine learning tasks across different network topologies and
compression operators.

Index Terms—federated learning, decentralized learning, communication-constrained distributed optimization, compressed
communication, nonconvex optimization.
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1 INTRODUCTION

COLLABORATIVE machine learning (ML) methods such
as federated learning (FL) [1] are among the fastest

growing technological advances that find applications in
numerous parallel and distributed systems. In such scenarios,
there are a large number of clients (e.g. mobile phones or
sensors) each with their own data and resources, and there is
typically a central server (i.e., cloud) whose goal is to manage
the training of a centralized model using the decentralized
client data. Given the ever-increasing number of nodes in
distributed systems, decentralized FL (DFL) schemes which
allow each client to exchange messages only with their
neighbors without exchanging their local data, show great
potential in terms of scalability FL.

DFL can be thought of as an optimization task over a
network with n client nodes where the objective function is
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possibly nonconvex [2]. Formally,

min
x∈Rd

[
f(x) :=

n∑
i=1

fi(x)

]
, (1)

where fi : Rd → R for i ∈ [n] := {1, ..., n} is the
local objective function of the ith client. The goal of the
clients in the network is to collaboratively solve the above
optimization problem by passing messages over a graph that
connects them [1], [3]. The optimization task in (1) arises in
many collaborative ML tasks such as object and pedestrian
detection in connected autonomous cars.

DFL is often facilitated by communication of clients’
local model parameters over a network that governs their
communication capabilities. Compared to a centralized meth-
ods, FL and DFL enable locality of data storage and model
updates which in turn offers computational advantages by
delegating computations to multiple clients, and further
promotes preservation of privacy of user information [1].

As the size of ML models grows, exchanging information
across the network becomes a major challenge in DFL and dis-
tributed optimization in general. It is therefore imperative to
design communication-efficient strategies which reduce the
amount of communicated data by performing compressed
communication while at the same time, despite the use of
compressed communication, achieve a convergence proper-
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ties that are on par with the performance of centralized and
distributed methods utilizing uncompressed information.

1.1 Contribution

In this paper, we consider the task of DFL with nonconvex
objective (i.e., training loss) functions in communication-
constrained settings. In such scenarios, the clients may need
to compress their local updates (using, e.g., quantization
and/or sparsification) before transmitting them to their
neighbors. In particular, our main goal is to answer the
following question

Given a fixed communication budget, what should be our
communication strategy to minimize the (training) loss as much
as possible?

To this end, we demonstrate that in DFL, given a fixed
communication budget per round, performing multiple
gossiping/consensus steps – a common practice in decen-
tralized optimization [2], [3] – in addition to aggressive
compression, can yield a faster convergence rate (almost
linear) compared to the standard approach of performing
just one high-precision gossiping step. We argue that this
faster convergence rate may result in a smaller loss/error
as a function of the total number of communicated bits.
Specifically, we will demonstrate that given a fixed commu-
nication budget per iteration, having multiple consensus (aka
gossiping) steps with lower precision is a better alternative
compared to having just one consensus step with higher
precision. Motivated by this result, we theoretically study
the effect of the number of gossiping steps on the rate of
convergence of DFL in a communication-constrained setting.
Specific contributions of this work can be summarized as
follows:

• We propose Decentralized Linear Learning with
Communication Compression (DeLi-CoCo), an iter-
ative DFL algorithm with arbitrary communication
compression (both biased and unbiased compression
operators) that performs multiple gossip steps in each
iteration for faster convergence.

• By employing Q > 1 steps of compressed com-
munication after each local gradient update, DeLi-
CoCo achieves a linear rate of convergence to a near-
optimal solution for smooth nonconvex objectives
satisfying the Polyak-Łojasiewicz condition (see The-
orem 1). This rate matches the convergence rate of
decentralized gradient descent (DGD) [4] – a DFL
approach – with no communication compression
under much milder conditions. The proposed Q-step
gossiping further helps to arbitrarily decrease the
sub-optimality radius of the near-optimal solution,
thereby improving upon the results of DGD [4] (see
Corollary 1.1).

• Our novel theoretical contributions enables us to
demonstrate that given a fixed communication bud-
get, increasing Q and decreasing the precision of
compression theoretically improves the convergence
properties of DeLi-CoCo (see Section 5.1).

• We verify our theoretical results and show the efficacy
of the proposed communication strategy for DFL via
extensive numerical experiments on both convex and

nonconvex DFL tasks, including the task of decentral-
ized classification using deep learning models.

1.2 Organization

The rest of the paper is organized as follows. Section
2 positions our contribution with respect to the related
work. Section 3 discusses the notation and overviews the
preliminary concepts on distributed optimization. In Section
4, we introduce the communication strategy for DFL based
on multiple gossip steps. The theoretical analysis is discussed
in Section 5. The empirical evaluation is provided in Section
6 while the concluding remarks are stated in Section 7.

2 SIGNIFICANCE AND RELATED WORK

Designing efficient algorithms for federated learning is one of
the most active area of research in the parallel and distributed
system community in recent years [5], [6], [7]. Decentralized
federated learning and optimization have drawn significant
attention in the past few years due to the increasing im-
portance of privacy and high data communication costs
of centralized methods. Decentralized topologies overcome
the aforementioned challenges by allowing each client to
exchange messages only with their neighbors without ex-
changing their local data, showing great potential in terms
of scalability and privacy-preserving capabilities.

2.1 Consensus with Compressed Communication

While DFL is an emerging topic, the study of decentralized
optimization problems dates back to 1980s [8]. The main
focus of early research in this area was on the task of average
consensus where the goal of a network is to find the average
of local variables (i.e., clients’ model vectors) in a decentral-
ized manner. Conditions for asymptotic and non-asymptotic
convergence of the decentralized average consensus in a
variety of settings including directed and undirected time-
varying graphs have been established in the seminal works
[9], [10]. Recently, [11] proposed a communication-efficient
average consensus/gossip algorithm that achieves a linear
convergence rate and improves the performance of existing
quantized gossip methods [12]. In [11] a stochastic decentral-
ized algorithm for strongly convex and smooth objectives is
further developed. Such linearly convergent gossip methods
have also recently been extended to the scenario where the
communication graph of clients is directed and time-varying
[13]. In our work, we aim to study the benefits of performing
multiple quantized gossip steps in DFL to reduce the training
error given a fixed communication budget, and consider
nonconvex learning tasks in our theoretical analysis.

2.2 Decentralized Optimization with Compressed Com-
munication

Distributed optimization is one of the richest topics at the
intersection of machine learning, signal processing and con-
trol. Consensus/gossip algorithms have enabled distributed
optimization of (non)convex objectives (e.g., empirical risk
minimization) by modeling the task of decentralized opti-
mization as noisy consensus. Examples include the celebrated
distributed (sub)gradient descent algorithms (DGD) [2], [4].
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These schemes consider small-scale problems where the
clients can communicate uncompressed messages to their
neighbors. Designing communication-efficient distributed
optimization algorithms is an active area of research moti-
vated by the desire to reduce the communication burden of
multi-core and parallel optimization of ML models. Majority
of the existing works consider distributed optimization tasks
with master-slave architectures where the compression of
communication is accomplished by using methods based
on sparsification or quantization of gradients [14], [15],
[16]. Divergent from these master-slave architectures, FL’s
properties such as high heterogeneity, partial participation,
and periodic communication between the clients and the
server, make FL a practically appealing, hard-to-analyze
method [1]. Recent FL schemes that promote communication
efficiency either focus on compressing the size of the client-to-
cloud messages or decreasing the number of communication
rounds [13], [16], [17]. In contrast to that line of work,
we consider the more general and challenging setting of
communication-constrained decentralized federated learning
and exploit the error feedback mechanism of [14], [15], [16]
as part of our proposed communication strategy to enable
compressed message-passing while maintaining a linear
convergence rate. More importantly, our focus in this paper
is the importance of organizing the communication resources.
That is, given a fixed communication budget in DFL, what is
the best strategy for the number of consensus steps and the
precision of compression in order to achieve a smaller error
in terms of the number of communicated bits.

It is worth noting that unlike a majority of decentral-
ized optimization and FL schemes including those with
uncompressed communication that require strong convexity
to a achieve linear rate, e.g. [3], [4], we only assume the
Polyak-Łojasiewicz condition which enables us to analyze
nonconvex learning tasks. Our proposed communication
strategy results in a linear convergence rate for DFL with
compressed communication under the Polyak-Łojasiewicz
condition.

3 PRELIMINARIES AND BACKGROUND

In this section, we briefly overview a few important concepts
and definitions with regard to the communication network
and characteristics of the loss function.

We consider the standard DFL setup [2] where n clients,
each having a local function fi(.), aim to collaboratively
reach x∗ ∈ X ∗ ⊂ Rd, an optimizer of (1). Problem (1) can be
written equivalently as [2], [4], [11], [18]

min
x1=···=xn

[
F (X) :=

n∑
i=1

fi(xi)

]
, (2)

where xi ∈ Rd is the vector collecting the local parameters
of client i, and X ∈ Rd×n is a matrix having xi as its ith

column. Therefore, the goal of the clients in the network is to
achieve consensus such that xi = x∗ for some x∗ ∈ X ∗; in
matrix notation, X = X∗, where all the columns of X∗ are
equal to x∗, i.e. X∗ = x∗1>.

To solve (2), each client can communicate only with
its neighbors, where the communication in the network is
modeled by a graph. Specifically, we assume each node i

associates a non-negative weight wij to any node j in the
network, and wij > 0 if and only if node j can communicate
with node i, and wii > 0 for all i. Let W = [wij ] ∈ [0, 1]n×n

be the matrix that collects these weights. We call W the
mixing or gossip matrix and state some its properties
(following [10]) below.

Assumption 1 (Mixing Matrix). The gossip matrix W =
[wij ] ∈ [0, 1]n×n associated with a connected graph is non-
negative, symmetric and doubly stochastic, i.e.

W = W>, W1 = 1. (3)

Under this condition, eigenvalues of W can be shown to satisfy
1 = |λ1(W )| > |λ2(W )| ≥ · · · ≥ |λn(W )| [10]. Furthermore,
δ := 1− |λ2(W )| ∈ (0, 1] is the so-called spectral gap of W .

A large spectral gap implies a faster convergence rate of
decentralized algorithms. When the graph is fully connected
and deg(i) = n, with W = 11>/n, it holds that δ = 1 which
in turn implies consensus can be achieved exactly after one
iteration of message passing.

Designing the communication network and its associated
mixing matrix W with a large spectral gap is an important
task and an active area of research in multi-agent systems
and DFL (see e.g. [2], [10]) which is beyond the scope of this
work. Here, work under the standard consideration that W
and its spectral gap δ are known and can be used as inputs
of our proposed DFL algorithm.

We now define some commonly assumed properties of
the objective function, i.e. the training loss in DFL.1

Assumption 2 (Smoothness). Each local objective function is
Li-smooth, i.e., for all x,y ∈ Rd

fi(x) ≤ fi(y) + (x− y)>∇fi(y) +
Li
2
‖x− y‖2. (4)

Also, define L :=
∑
i Li/n and L̂ := maxi Li.

Assumption 3 (Polyak-Łojasiewicz Condition). The objec-
tive function satisfies the Polyak-Łojasiewicz condition (PLC) with
parameter µ, i.e. for all x ∈ Rd

‖∇f(x)‖2 ≥ 2µ(f(x)− f∗), µ > 0, f∗ = min
x
f(x).

The Polyak-Łojasiewicz condition implies that when mul-
tiple global optima exist, each stationary point of the objective
function is a global optimum [19]. This setting enables studies
of modern large-scale ML tasks such as training of deep
neural networks that are generally nonconvex but are fairly
likely to satisfy PLC [20]. It is worth noting that µ-strongly
convex functions satisfy PLC with parameter µ – thus, PLC
is a weaker assumption than strong convexity.

Convergence of centralized gradient descent under PLC
follows a very simple analysis [19]. However, in decentral-
ized federated learning settings with compression, analysis
of the existing algorithms, e.g. [3], [4], [11], relies on a
key property of strongly convex objectives known as co-
coercivity (see Theorem 2.1.11 in [21]). Unfortunately, the
results of such analysis do not generalize to PLC settings.
In this paper, by performing a novel convergence analysis,
we establish convergence of DeLi-CoCo for decentralized

1. ‖.‖ denotes the Euclidean norm.
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nonconvex problems with compressed communication under
PLC.

Finally, we characterize the compression operator C that
we use in our DFL algorithm. The following assumption is
standard and has been previously made by [11], [16], [22].

Assumption 4 (Contraction Compression). The compression
operator C satisfies

EC
[
‖C(x)− x‖2 | x

]
≤ (1− ω)‖x‖2, (5)

for all x ∈ Rd where 0 < ω ≤ 1 and the expectation is over the
internal randomness of C.

Note that C can be a biased or an unbiased compression
operator including:

• Random selection of k out of d coordinates or k
coordinates with the largest magnitudes. In this case
ω = k/d [16]. We denote these two by rand(ω) and
top(ω), respectively.

• Setting C(x) = x with probability p and C(x) = 0
otherwise. In this case ω = p [11]. We denote this by
rand2(ω).

• b-bit random quantization (i.e., the number of quanti-
zation levels is 2b) from [23]

qsgdb(x) =
sign(x)‖x‖

2bw

⌊
2b
|x|
‖x‖

+ u

⌋
, (6)

where w = 1 + min{
√
d/2b, d/22b}, u ∼ [0, 1]d, and

qsgdb(0) = 0. In this case, ω = 1/w .

4 COMPRESSED DECENTRALIZED LEARNING

In this section, we present our proposed DFL algorithm for
solving (2) iteratively in a decentralized manner where the
clients are restricted to communicate compressed information
(See Fig 1 for the block diagram of the proposed method)
. In particular, we aim to develop a scheme that by relying
on performing multiple low-precision compressed gossiping
steps achieves a smaller error in terms of the number of
communicated bits.

The proposed DFL algorithm, DeLi-CoCo (see Algorithm
1), consists of two main subroutines: (i) update of the
local variable xi via gradient descent, and (ii) exchange
of compressed messages between neighboring clients by
performingQ ≥ 1 compressed gossiping steps via employing
Choco-gossip [11].

Let t = 1, . . . , T denote the tth iteration of Algorithm
1 and let q = 0, . . . .Q − 1 denote the qth compressed
gossiping/consensus step. Each client i maintains three local
variables: x(q)

t,i , z(q)t,i , and s
(q)
t,i . Here, x(q)

t,i denotes the vector
of current local parameters of node i, while z

(q)
t,i , and s

(q)
t,i are

maintained locally to keep track of the compression noise
and be used as an error feedback for subsequent iterations,
respectively [11], [16]. Consider a matrix notation where we
store these quantities as the ith column of matrices X(q)

t , Z(q)
t ,

and S(q)
t , respectively. At iteration t, each client updates its

own parameters by performing a simple gradient descent
update according to step 3, where η > 0 is a constant
learning rate specified in Theorem 1. Following the gradient
update, we propose to perform Q compressed gossiping
steps in to update the local parameters as well as the error

Algorithm 1 The proposed DFL Algorithm (DeLi-CoCo)

1: Input: stepsize η, consensus stepsize γ, number of
gradient iterations T , number of consensus steps per
gradient iteration Q, mixing matrix W ; initialize X(Q)

0 .
2: for t = 1, . . . , T do
3: X

(0)
t = X

(Q)
t−1 − η∇F (X

(Q)
t−1) (local gradient update)

Z
(0)
t = S

(0)
t = X

(0)
t

4: for q = 0, 1, . . . , Q− 1 do
5: S

(q+1)
t = S

(q)
t + C(X(q)

t − Z
(q)
t )W (Exchanging

messages)
6: Z

(q+1)
t = Z

(q)
t + C(X(q)

t −Z
(q)
t ) (Compression error

feedback)
7: X

(q+1)
t = X

(q)
t + γ(S

(q+1)
t − Z(q+1)

t ) (Local gossip
update)

8: end for
9: end for

feedback variables. This Q-step procedure is a crucial part
of Algorithm 1 that enables updated parameters x

(0)
t,i to

converge to their average value.
To perform the (q + 1)st gossiping step, each client

generates the compressed message C(x(q)
t,i − z

(q)
t,i ) which in

turn is communicated to update s
(q)
t,i , and then it is further

used by the transmitting client as an error feedback to update
z
(q)
t,i (steps 5 and 6). Then, at (q + 1)st gossiping step, each

client performs a gossip update [10] in step 7 with a gossip-
ing/consensus learning rate 0 < γ ≤ 1 whose exact value
will be specified in Theorem 1. After performing compressed
gossiping for Q steps, the tth iteration of Algorithm 1 is
complete.

Remark 1. Let Q = 1, γ = 1, and assume there is no
compression, i.e. C(x(q)

t,i − z
(q)
t,i ) = x

(q)
t,i − z

(q)
t,i . Then Algorithm

1 reduces to the DGD [4]. If Q = 1, η = O(1/T ), and clients
perform local stochastic gradient updates, the proposed scheme
reduces to Choco-SGD [11]. We will show in Section 4 that by
performing Q > 1 gossiping steps and reducing the precision
of compression, Algorithm 1 achieves a smaller training error
compared to these schemes, given a fixed communication budged.

4.1 Practical Considerations
In a scenario where there is negligible latency and synchro-
nization among the clients,Algorithm 1 that relies on multiple
compressed gossiping steps achieves a faster convergence
rate and also requires fewer total number of bits for commu-
nication (see Section 6). With latency and synchronization
considerations, decentralized federated learning schemes
based on multiple uncompressed consensus steps are shown
effective in training deep models [24], while the study of their
benefits in terms of savings in communication resources has
remained an open question until the present paper. Hence,
even if synchronization constraints are taken into account,
given that we employ compressed gossiping steps, the
proposed algorithm leads to significant savings in the total
number of communicated bits. In this case, certifying that
our algorithm converges faster (with respect to wall-clock
time) is difficult without knowing the actual time expended
on synchronization and the latency of the communication
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Fig. 1: The diagram of the proposed strategy. After computing the gradient and performing a local gradient update, each
node communicates for Q steps with its neighbors using a compressed gossip mechanism while keeping track of the
accumulated compress error.

structure, and is left for future work. Nonetheless, in order to
simulate a network that may suffer from a high latency
issues, and hence the emergence of straggler nodes, we
consider a scenario where each client can communicate with
its neighbors only 95% of times. That is, with probability
5%, each node may become a straggler at each gossiping
step. This implies while it may receive messages from its
immediate neighbors, it will not be able to transmit. We
consider the linear regression task on SYN-1 using the torus
topology with n = 9 (see Section 6) and show the test and
training errors in Fig. 2. As the figure demonstrates, while
Q = 2 results in a better performance, due to the straggler
effect, increasing the number of gossiping steps to Q = 5
suffers from a slow convergence. Therefore, we conclude that
for low latency networks moderate Q values, say Q = 4, 5
is preferred, while for high latency networks a smaller Q
such as Q = 1, 2 should be chosen. Thus, in communication-
constrained settings, Algorithm 1 with multiple gossiping
steps (Q > 1) is indeed preferable.

5 CONVERGENCE ANALYSIS

In this section we analyze the convergence properties of
DeLi-CoCo. First, We define the following quantities:

∆2 := max
x∗∈X∗

n∑
i=1

‖∇fi(x∗)‖2, R0 := F (XQ
0 )− f∗. (7)

The main results of our convergence analysis are summarized
in the following theorem, whose proof is provided in the
attached supplementary material due to space constraints.

Theorem 1. Suppose Assumptions 1-4 hold. Define

Q0 :=

⌈
log (ρ̄/46)

/
log

(
1− δγ

2

)⌉
, ρ̄ := 1− µ

nL̂
,

γ =
δω

16δ + δ2 − 8δω + (4 + 2δ)λ2max(I −W )
.

(8)

(a) Training loss

(b) Test loss

Fig. 2: Training and test errors for the linear regression task
on SYN-1 data with straggler nodes.

Then, if the nodes are initialized such that X(Q)
0 = 0, for any

Q > Q0 after T iterations the iterates of DeLi-CoCo with η = 1
L̂

satisfy

EC [F (X
(Q)
T )]− f∗ = O

(
∆2e−

γδQ
4

1− ρ̄

+

[
1 +

nL

µρ̄

(
1 + e−

γδQ
4

)]
R0ρ

T

)
. (9)



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Remark 2. Note that Theorem 1 implies that there exists an
implicit limit on the compression level since as ω → 0, the
minimum value of Q (i.e. Q0) tends to infinity. Further, note that
as ω → 0, γ (the consensus learning rate) tends to 0; implying
there is hardly any message-passing and mixing among the nodes.

5.1 Implications
The result of Theorem 1 implies having multiple consensus
(aka gossiping) steps with aggressive compression results
in a smaller error in terms of the number of communicated
bits. In fact, we can observe this via a simple experiment:
Let us consider a decentralized federated learning scenario
where we aim to collaborative solve a nonlinear regression
task over a network of resource-constrained clients (see
Section 6 for more details). We depict the training error
versus the communicated bits in Figure 3. As the figure
shows increasing the number of consensus steps (denoted
by Q) with a lower quantization precision requires fewer
communicated bits to achieve a target accuracy.

To see the verification of this result from Theorem 1,
in Lemma 3 in the supplementary we show for ω >
10−3, which is practical lower bound for the compres-
sion/quantization rate in practice, the convergence rate
depends on

e−
γδQ
4 ≤ e−

δ2Qω3/4

656 .

We shall analyze this upper bound to motivate the benefit
of advocating a higher Q by the proposed communication
strategy. Consider two pairs of (Q1, ω1) and (Q1 × c, ω1/c)
where c > 0 is an integer that determines the allocation of
communication resources, and (Q1, ω1) satisfies the condi-
tions stated in Theorem 1. The proposed scheme for both
of these pairs require the same amount of communication
budget. Upon defining

g(c) := e−δ
2cQ(ω/c)3/4 = e−δ

2c1/4Qω3/4

,

in Figure 4 we depict the value of g(c) versus c for various
values of the spectral gap δ. As the figure shows g(c) is
decreasing in c meaning that for a fixed communication
budget, increasing the number of gossiping steps Q and
decreasing the compression parameter ω theoretically results
in improved convergence properties given that both terms in
(9) incur smaller values. Intuitively, this is expected since the
rate depends on the product Qω3/4. This theoretical result
hence shows the advantage of Algorithm 1 that advocates
the use of multiple gossiping steps to achieve a smaller error
in terms of the number of communicated bits.

5.2 Further Discussions
We further highlight the following remarks:

1. Comparison to DGD: We compare our result to the
prior work in [4], [25] that assume exact communication.
First, in contrast to [4], [25], our analysis is carried out under
PLC without assuming (restricted) strong convexity. The
radius of the near-optimal neighborhood in [4] (see Theorem
4 there) is proportional to ∆/δ while in our case, by using
the proposed Q- step compressed gossiping procedure, the
radius is proportional to ∆2(1− δ)

Q
2 ; in fact, we can make

the bound arbitrarily small by performing a sufficiently large
number of gossiping steps Q (see Corollary 1.1).

Fig. 3: Empirical effect of increasing the number of gossiping
steps on a non-convex nonlinear regression task given a fixed
communication budget per iteration.

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4: Variation of g(c) vs. c for different values of δ.

2. Effect of Compression: Our results reveal that com-
pression of messages using contraction operators can be
thought of as weakening the connectivity property of the
communication graph by inducing spectral gap δ′ = δω1/4.
As ω approaches zero, the consensus learning rate decreases.
Hence, as per intuition, a larger Q is required to satisfy the
conditions in the statement of Theorem 1.

3. Almost Linear Convergence: Our analysis further
reveals that at the cost of increased number of rounds of
communication, the suboptimality radius can be arbitrarily
reduced. In particular, EC [F (X

(Q)
t )]− f∗ ≤ ε accuracy can

be achieved after O(log2(1/ε)) rounds of communication by
setting Q = T = log(1/ε). However, in practice it suffices
to use a small Q to achieve a competitive performance
compared to centralized and decentralized schemes with
no compression.

4. Overparameterization: Consider the case that (1) cor-
responds to a decentralized regression or classification task
wherein the model architecture is expressive enough to com-
pletely fit or interpolate the training data distributed among
the clients [26], e.g. in the case of over-parameterized neural
networks or functions satisfying a certain growth condition
[27]. Then any stationary point of f will also be a stationary
point of each of the fi’s and thus ∆2 = 0. Therefore, in
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this setting and under PLC, Deli-CoCo converges exactly at
a linear rate of O(log(1/ε)) by setting Q to be a constant
independent of ε.

Corollary 1.1. Instate the notation and hypotheses of Theorem 1.
In order to achieve EC [F (X

(Q)
T )]− f∗ ≤ ε, Deli-CoCo requires

τ = O(log2(1/ε)) rounds of communication if ∆ 6= 0, and
τ = O(log(1/ε)) if ∆ = 0.

We emphasize that this result is new and to our knowledge,
DeLi-CoCo is the first algorithm attaining a linear convergence rate
for decentralized nonconvex FL with compressed communication
in the interpolation regime. Notice that linear convergence even
in the centralized setting necessitates T = O(log 1/ε). In the
decentralized setting under strong convexity (SC), without
using techniques such as gradient tracking [18], DGD based
FL schemes use either η = O( 1

t ) to have O(1/ε) rounds of
communication (e.g. Choco-GD or DGD [2], [11]), or a fixed
stepsize (independent of T ) to achieve linear convergence
to a near-optimal solution [4]. Corollary 1.1 states without
over-parameterizationQ = O(log 1/ε) enables our algorithm
to converge to an ε-accurate solution under PLC with
O(log2 1/ε) rounds of communication, which is a significant
improvement over O(1/ε) for DGD based schemes with
decaying step-size.

5. Results Under Strong Convexity: Since PLC is implied
by strong convexity, Theorem 2 provides a convergence rate
for strongly convex and smooth objectives. In Theorem 2 by
explicitly exploiting the strong convexity of the individual
fi’s, we provide an alternative result that improves the
dependency of the rates on Q and n.

Theorem 2. Suppose Assumptions 1,2, and 4 hold. Further,
assume each fi is strongly convex with parameter µi, and define
µ =

∑
i µi/n, µ̂ = mini µi and D0 := ‖X(Q)

0 −X∗‖2. Define

Q0 :=

⌈
log (`/46)

/
log

(
1− δγ

2

)⌉
, ` := 1− µ̂

L̂
,

γ =
δω

16δ + δ2 − 8δω + (4 + 2δ)λ2max(I −W )
.

(10)

Then, if the nodes are initialized such that X(Q)
0 = 0, for any

Q > Q0 after T iterations the iterates of DeLi-CoCo with η = 1
L̂

satisfy

EC‖X(Q)
T −X∗‖2 =

O
(

∆2e−
γδQ
2

µ̂2
+

[
1 +

Te−
γδQ
4

`2(L̂− µ̂)

]
D0`

T

)
.

(11)

5.3 Proof Outline
Here, we briefly discuss the technical difficulties and the
main ideas of the proof. Due to space limitations, the details
are in the attached supplementary material.

Technical challenges
To show the advantage of employing multiple gossip steps
with compressed communication in the nonconvex setting
under PLC – a setting that is being analyzed for the first
time (in decentralized FL) – we develop a novel analysis
technique. In this technique – divergent from the existing
works, e.g., [3], [11], [28] – we model the task at hand as

a constrained optimization problem with a specific inexact
projection tailored towards decentralized optimization (i.e.,
approximating PL(.), the projection onto L, the linear sub-
space of d×nmatrices having identical columns, see Section 1
of the supplementary material). Note that because of inexact
projection we cannot rely on the existing convergence proof
of projection-free first-order methods under PLC, or proximal
methods under proximal-PLC stated in [29]. Instead, we
utilize the specific structure of the inexact projection that we
define and its implications, such as PL(∇F (X∗)) = 0 ∈ L,
to carry out the proof.

We now discuss the main steps of the proof.

Perturbed iterate analysis

Our proof relies on analyzing the (virtual) average iterates

X̄t+1 = PL(X̄t − η∇F (X̄t)), X̄t = [x̄t, . . . , x̄t],

PL(∇F (X̄t)) :=
1

n
[∇f(x̄t), . . . ,∇f(x̄t)].

(12)

where x̄t = 1
n

∑n
i=1 x

(Q)
t,i is the average parameters at

iteration t. Then, we show the iterates of DeLi-CoCo satisfy

X
(q)
t+1 = PL(X̄t − η∇F (X̄t)) + E

(q)
t (13)

for some error matrix E(q)
t ∈ Rd×n.

Using a new result (Lemma 1) we show that the average
iterates converge linearly under PLC, i.e.,

F (X̄t)− f∗ ≤ [F (X̄0)− f∗]
(

1− 2
µ

n
η(1− Lη

2
)

)t
. (14)

despite the projection and the fact that the global objective is
nonconvex. Evidently, given this result, we further need to
derive an upper bound on the error term E

(q)
t .

Bounding the error: We first bound the error term of the tth

iteration according to

EC‖E(Q)
t ‖2 ≤ e2t := EC‖X(Q)

t − X̄t‖2 + EC‖X(Q)
t − Z(Q)

t ‖2.
(15)

To analyze e2t in Lemma 4 we leverage the linear convergence
of {X̄t} and the gossiping steps with error feedback [10],
[11] to establish in Lemma 3 that with γ as in Theorem 1,

e2t ≤ e−
δγQ
2

(
EC‖X(0)

t − X̄t‖2 + EC‖X(0)
t − Z

(0)
t ‖2

)
≤ e−

δ2ωQ
82

(
EC‖X(0)

t − X̄t‖2 + EC‖X(0)
t − Z

(0)
t ‖2

)
.

Upon establishing this last result we argue that the sequence
e2t and in turn the error term E

(Q)
t converge linearly to

O(η2∆2e−
δγQ
2 ) with the same rate as in (14). Finally, we

employ the smoothness and PLC assumptions on F to es-
tablish a recursive expression on the function sub-optimality
F (X

(Q)
t ) − f∗. However, given the inexact projection in

the iterates X
(Q)
t , this recursive expression is involved.

Nonetheless, we show that using the choice η = 1/L̂
together with specific properties of PL(.), by using the
Young’s inequality and the variational characterization of the
projection [21] we can judiciously bound the additional cross
terms and establish the proof.
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Fig. 5: Effect of different (Q, b) pairs (where b denotes the number of bits in qsgd) such that Qb = 8, on the total number of
bits communicated for SYN-2, with three different consensus learning rates γ. In all three plots, torus topology is used with
n = 16, `2 regularization value = 0.001, and η = 0.1.
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Fig. 6: Effect of different (Q,ω) pairs (where ω denotes the percentage of largest magnitude co-ordinates retained in the top-k
quantization) such that Qω = 100, on the total number of bits communicated for SYN-1. We consider the torus topology
with three different values of n. In all three plots, γ = 0.05, `2 regularization value = 0.001, and η = 0.1.

6 NUMERICAL EXPERIMENTS

We start our extensive empirical analysis by verifying our
theoretical results on common regression and classification
problems. Note that for these tasks Assumptions 1,2, and
4 hold. Afterwards, we show the efficacy of our method
in a federated learning setting with partial participation
and periodic communication, which can be thought of as a
decentralized DL setting with a time-varying communication
graph (see Figure 11).

6.1 Verifying the Theory
Following [11], for all the experiments we plot the sub-
optimality, i.e. f(x̄t) − f∗ against the number of local
gradient computations (or steps). Here, f∗ is the optimal
value obtained by running vanilla gradient descent with
the entire data on a single machine – we shall refer to this
setting as "Centralized GD". We consider the top(k) and
qsgd compression schemes and consider the ring and torus
topologies to represent the communication graph of the
network (see Fig. 11 for an example of a torus graph with
16 nodes). All plots are averaged over 3 independent runs.
Before describing our experimental set-up, we describe the
tasks and the datasets.

6.1.1 Tasks and Datasets
Let {s(i)1 , . . . , s

(i)
ni } denote the samples being processed in the

ith node where ni is the total number of samples in the ith

node. Then, fi(x) = 1
ni

∑ni
j=1 `(x, s

(i)
j ), where `(.) denotes

the loss function of the tasks that we explain next.

Linear Regression: We train a linear regression model on
m = 10000 synthetic data samples {(ai, yi)}mi=1 generated
according to yi = 〈θ∗,ai〉 + ei, where θ∗ ∈ R2000, the ith

input ai ∼ N (0, I2000), and noise ei ∼ N (0, 0.05). We refer
to this dataset as SYN-1. Here, we use the squared loss
function with `2-regularization.

Non-Convex Non-Linear Regression: We train a non-
linear regression model on m = 10000 synthetic data sam-
ples {(ai, yi)}mi=1 generated as yi = relu(〈θ∗,ai〉)+ei, where
θ∗ ∈ R2000, the ith input ai ∼ N (0, I2000), ei ∼ N (0, 0.05)
and relu(z) = max(z, 0) (i.e. the standard ReLU function).
We call this synthetic dataset SYN-2 henceforth. We model
this task as training a one-layer neural network having
ReLU activation with the squared loss function and `2-
regularization.

Logistic Regression: We use a binary version of MNIST
[30] where the first five classes are treated as class 0 and the
rest as class 1. We train a classifier with the binary cross-
entropy loss. We consider a decentralized setting where
the data is evenly distributed among all the nodes in a
challenging sorted setting (sorted based on labels) where at
most one node acquires examples from both classes.

Using the above tasks, next we study the effect of the
following considerations.
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6.1.2 Setup: Fixed Communication Budget Per Iteration
In order to illustrate the value of having more gossiping
steps (i.e. larger Q), we consider a simple setting where
our communication budget in every iteration (involving one
gradient computation step and Q gossiping steps) is fixed.
So for top-k/rand-k, we keep Qk constant, whereas for b-bit
qsgd, Qb is kept constant. Since Qk/Qb is kept constant, the
total number of bits communicated will be proportional to
the number of iterations T (which is the horizontal axis of
the plots in Figures 5 and 6). In Figure 5, we consider a DFL
setting with n = 16 clients forming a torus topology, and
plot the training loss on the vertical axis (in log-scale) vs. the
number of bits (order wise) on the horizontal axis for SYN-2
(non-convex non-linear regression) with qsgd. We maintain
Qb = 8 and consider 3 different consensus learning rates
γ = {0.05, 0.1, 0.15} (keeping everything else the same).

In Figure 6, we show similar plots for SYN-1 (strongly
convex linear regression task) with top-k. Let ω = (k/d)∗100
(d being the dimension of the vectors). We keep Qω = 100
(note that this is the same as maintaining Qk constant) and
consider 3 different values of the number of nodes n =
{9, 16, 25} (keeping everything else the same).

In Figure 8, we show results for the logistic regression
task on MNIST with rand(ω). Let ω = (k/d)∗100 (d being the
dimension of the vectors). We keep Qω = 100 (note that this
is the same as maintainingQk constant) and consider the two
most commonly used topologies, ring and torus with n = 9.
Everything else is kept the same. Significance of large Q.
In both Figure 5 and Figure 6, observe that higher Q at
the expense of more aggressive compression leads to fewer
gross total number of bits communicated – as predicted
by the results established in the beginning of Section 5.1.
Consistent with the results of Figure 5 and Figure 6, observe
that in Figure 8, using a higher Q at the expense of more
aggressive compression leads to fewer gross total number of
bits communicated – for both ring and torus topologies.

Note that if latency/synchronization time between the
nodes is negligible, then having higher Q also leads to faster
convergence (since the total number of bits is proportional to
T in our setting). Further, in Figure 6 (for SYN-1, which has
a strongly convex objective), observe that higher Q results
in almost straight line curves (recall that the training loss is
plotted in log-scale) – implying linear convergence. Further
note that for Q = 1 the curves are not straight lines. This
verifies in turn Corollary 1.1.

Extreme compression effect. As we discussed in Section
5.1, as long as the compression rate is not too severe, our
theoretical results establishes that increasing Q is beneficial.
Too verify this result, we consider the SYN-1 dataset for
the linear regression task and show the results of training
and test performance in Fig. 10. In this scenario we used
the torus topology with n = 9 and kept the learning rates
η and γ fixed for all curves. As the figure demonstrates,
increasing Q helps improving the performance, but up to
a point (i.e. a compression rate higher than 2%). When the
compression rate is too small, i.e. 1%, the algorithm diverges.
This observation is consistent with our preceding argument
that a higher Q helps as long as the compression rate is
not too small. Note that the smallest compression rate may
depend on how difficult learning the parameters of the model
are for a given task.
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Fig. 7: (a) Runtime v.s. network size for the linear regression
task on SYN-1 dataset with the torus topology. All schemes
experience a slower convergence as the size of the network
increases. (b) Training loss vs network size given 30 sec
runtime budget for the linear regression task on SYN-1
dataset with the torus topology. The figure shows the benefit
of the proposed approach.

Slightly convex curves. Note that the curves in Figure 5,
Figure 6, and Figure 8 are slightly convex. This phenomenon
stems from the fact that the tested Q might be smaller than
Q0 specified in Theorem 1. To further investigate this we ran
a test on SYN-1 in Figure 9. As we see, given a fixed ω, with
increasing Q the convergence curves approach that of the
centralized algorithm (which attains a linear rate).

Runtime comparison. Finally, we aim to determine the
effect of the network size and a fixed runtime budget on
the accuracy. Fig. 7 summarizes the result of this study for
the linear regression task on SYN-1 dataset with the torus
topology. Fig. 7(a) shows all schemes experience a slower
convergence as the size of the network increases. Fig. 7(b)
shows given a fixed runtime budget of 30 sec the proposed
approach finds higher quality models.

6.2 Deep Learning Experiments
Having verified our theoretical contribution via linear, nonlin-
ear, and logistic regression tasks in the previous section, we
now resort to large-scale experiments with deep learning
models to identify parameters of a predictive model in
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Fig. 8: Effect of different (Q,ω) pairs (where ω denotes
the percentage of random co-ordinates picked in the rand
quantization) such that Qω = 100, on the total number of
bits communicated for MNIST logistic regression task. We
consider the ring and torus topology with n = 9. In both
plots, γ = 0.05, `2 regularization value = 0.001, and η = 0.2.

Fig. 9: As Q increases the convergence curves approach to a
linear curve.

a federated learning scenario, thereby demonstrating the
efficacy of the proposed communication strategy.

6.2.1 Classification on CIFAR-10
To show the benefit of the multi-step gossiping in large-
scale non-convex optimization tasks, we consider the task
of distributed classification of the CIFAR-10 dataset. We
assume a DFL scenario where n = 10 clients form a time-
varying undirected communication graph (see Figure 11 for

(a) Training loss

(b) Test loss

Fig. 10: Training and test errors for linear regression task on
SYN-1 data. Increasing Q helps improving the performance
as long as the compression rate is not too small.

a simple illustration). Specifically, at each time step a random
subset of r = 0.5n (= 5 for this case) nodes form a fully
connected component and perform compressed gossiping
among themselves. Note that the overall graph at each time
step is disconnected. However, the union of these graphs over
all time steps is going to be connected with high probability
and therefore decentralized learning methods are expected to
converge [31], [32]. The described setting models a federated
learning task with periodic communications [1] (see [33]),
where in each communication round only r out of n clients
share their local models with the server.

The model in each client is a two-layer neural network
with ReLU activation with 500 neurons in each hidden layer.
Furthermore, the clients employ stochastic gradients with
local batch size of 256 (as opposed to full gradients consid-
ered in our theoretical results). We consider a heterogeneous
setting where each client can have data from at most five
(out of 10) classes.

We now describe the procedure that we have used to
generate heterogeneous data. The entire training data is first
sorted based on labels and then divided into 50 equal data-
shards in the sorted order, i.e. for CIFAR-10 each data shard is
assigned 1000 samples. Further, this way of splitting ensures
that each shard can have data belonging to just one class.
Each client is then assigned 5 shards chosen uniformly at
random without replacement to cover the whole dataset.
Thus, each client can have data from at most five classes.
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Fig. 11: Left: DFL on a ring topology with n = 16 clients used in SYN-1 and SYN-2 experiments. The nonzero weights
in the mixing matrix are equal to 1/(degree + 1) = 1/3. The plus one is to account for a “self-loop” as each node always
communicates with itself. Middle: DFL on a Torus graph with n = 16 used in SYN-1 and SYN-2 experiments. The nonzero
weights in the mixing matrix are equal to 1/(degree + 1) = 1/5. Note that we use different colors for edges only for clarity.
Right: An example of DFL with a time-varying undirected communication graph with uniformly at random client selection
used in distributed classification with neural networks on CIFAR-10 and Fashion MNIST. While n = 10 in the experiments,
for the ease of demonstration we only show six clients in the figure.

We train the models using the categorical cross-entropy
loss with `2-regularization. The weight decay value in
PyTorch for applying `2-regularization is set to be 1e-4. The
experiments are run on one NVIDIA TITAN Xp GPU.

We follow the same experimental setting as that in the
previous section, i.e., keeping the communication budget in
every iteration fixed to Qb = 16, where b denotes the number
of bits in qsgd (i.e., we use the QSGD operator with b bits
to compress the communication in the network). The initial
learning rate for all pairs of (Q, b) is set to 10−2.

The results are shown in Figure 12a. As the figure
shows, similar to the results on regression tasks, the proposed
approach benefits from increasing Q while reducing b, and
given a fixed communication budget the achievable error
reduces by adopting the proposed multiple-step approach.
We note that due to the fact that the data distribution
is heterogeneous, a phenomenon known as client drift
[34] slows the convergence of the average model. This is
captured in Theorem 1 by the quantity ∆2 which is a notion
quantifying to what extent the clients’ data distribution is
different. As Theorem 1 shows, by increasing Q, we can
reduce the effect of a high ∆2, thereby reducing the effect of
client drift.

Note that as predicted by Theorem 1, the convergence
curves are relatively linear, even though we use stochastic
gradients for each client.

6.2.2 Classification on Fashion-MNIST
We consider the same task as the one in Section 6.2.1, now
using the Fashion-MNIST dataset [35] instead. We use two-
layer neural network in each node with ReLU activation and
300 neurons in each hidden layer. Here, we use n = 20 clients
each having data from at most two classes – note that this is
a high degree of heterogeneity. We use a similar procedure
as described in Section 6.2.1 for generating heterogeneous
data here. The only change we make here is that the number
of shards is set to 40 due to which each client gets the data
of two shards (each of which has data from just one class as
before). The graph topology is the same as that described in
Section 6.2.1. We also use the same weight-decay value and
initial learning rate as Section 6.2.1.

Keeping the communication budget in every iteration
fixed (Qb = 16) by using qsgd with b bits, we show the
training loss curves corresponding to different pairs of (Q, b)
in Figure 12b. The result shows yet again the benefit of
the proposed multiple-step approach in reducing the the
client drift phenomenon in FL and thereby lowering the
the training error under a fixed communication budget per
(stochastic) gradient computation.

7 CONCLUSION

In this work, we considered the problem of communication-
constrained decentralized federated learning to learn param-
eters of a deep predictive model in a collaborative fashion.
We proposed a communication strategy that under a fixed
communication budget aims to minimize the (training) loss
as much as possible. The key insight behind the proposed
strategy is using multiple gossip steps – given a fixed commu-
nication budget per iteration, having multiple gossip steps
with lower precision communication is preferable to having
just one gossip step with higher precision communication, in
terms of the total number of bits communicated.

In particular, we showed that having O(log 1
ε ) gradient

iterations with constant step size - and O(log 1
ε ) gossip steps

between every pair of these iterations - enables convergence
to within ε of the optimal value for smooth non-convex
objectives satisfying Polyak-Łojasiewicz condition that arise
in the training of deep learning models. Our extensive
empirical study on a range of machine learning tasks such as
regression, and collaborative classification via deep learning
models across different network topologies and compression
operators validates our theoretical contribution and shows
the efficacy of the proposed scheme.

As part of the future work, it would be of interest
to consider other practical extensions and considerations
including communication strategies for directed and time-
varying networks, dealing with communication-dropout and
noisy communication channels, and use of stochastic local
gradients and momentum. Another extension would be
incorporating momentum to have an accelerated version
of the proposed method.
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Fig. 12: Training loss and Test accuracy for distributed classification with neural networks via the considered DFL setting with
a time-varying graph on CIFAR-10 (left) and Fashion MNIST (right). The x-axis is the normalized number of communicated
bits where the normalization factor is 0.5nd (d being the dimension of the parameters). Note that for CIFAR-10, (Q = 4,
b = 4) does not do better than (Q = 1, b = 16) due to which we have not shown it in the plot. We suspect that with just 4
bits, the learned model parameters are not “precise” enough to classify CIFAR-10 very well – even with multiple gossip
steps. Note that for the CIFAR-10 experiment Q = 4, b = 4 is not shown since given the large number of parameters in this
experiments, b = 4 will be a sever quantization level that results in slow convergence.
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