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Abstract—Single individual haplotyping is an NP-hard prob-
lem that emerges when attempting to reconstruct an organism’s
inherited genetic variations using data typically generated by
high-throughput DNA sequencing platforms. Genomes of diploid
organisms, including humans, are organized into homologous
pairs of chromosomes that differ from each other in a relatively
small number of variant positions. Haplotypes are ordered
sequences of the nucleotides in the variant positions of the
chromosomes in a homologous pair; for diploids, haplotypes
associated with a pair of chromosomes may be conveniently
represented by means of complementary binary sequences. In
this paper, we consider a binary matrix factorization formulation
of the single individual haplotyping problem and efficiently
solve it by means of alternating minimization. We analyze the
convergence properties of the alternating minimization algorithm
and establish theoretical bounds for the achievable haplotype
reconstruction error. The proposed technique is shown to out-
perform existing methods when applied to synthetic as well as
real-world Fosmid-based HapMap NA12878 datasets.

Index Terms—matrix completion, single individual haplotyp-
ing, chromosomes, sparsity, alternating minimization.

I. INTRODUCTION

DNA of diploid organisms, including humans, is orga-
nized into pairs of homologous chromosomes. The two

chromosomes in a pair differ from each other due to point
mutations, i.e., they contain so-called single nucleotide poly-
morphisms (SNPs) in a fraction of locations. SNPs are rela-
tively rare; for humans, the SNP rate between two homologous
chromosomes is roughly 1 in 300 base-pairs [1]. The ordered
sequence of SNPs located on a chromosome in a homologous
pair is referred to as a haplotype. Haplotype information is
of critical importance for personalized medical applications,
including the discovery of an individual’s susceptibility to dis-
eases [2], whole genome association studies [3], gene detection
under positive selection and discovery of recombination pat-
terns [4]. High-throughput DNA sequencing platforms rely on
so-called shotgun sequencing strategy to randomly oversample
the pairs of chromosomes and generate a library of overlapping
paired-end reads (fragments). Parts of the reads that do not
cover variant positions are typically discarded; the remaining
data is conveniently organized in a read-fragment matrix where
the rows correspond to reads and columns correspond to SNPs.
Since the SNPs are relatively rare and reads are relatively
short, the read-fragment matrix is typically very sparse. If
the reads were free of sequencing errors, haplotype assembly
would be straightforward and would require partitioning the
reads into two clusters, one for each chromosome in a pair.
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Fig. 1: An illustration of the single individual haplotyping problem. The
nucleotides marked in red denote the SNPs on a pair of chromosomes. During
sequencing, paired-end reads containing the SNPs are generated from multiple
copies of the chromosomal sequences; one can think of each read as being
obtained by sampling (with replacement) one of the chromosomes. We assume
that the relative ordering of reads can be determined by mapping them to a
reference genome. The goal of single individual haplotyping is to determine
the order of SNPs associated with each chromosome in the pair.

However, presence of sequencing errors (of the order 10−3

to 10−2) gives rise to ambiguities about the origin of reads
and renders the single individual haplotyping (SIH) problem
computationally very challenging.

Approaches to SIH attempt to perform optimization of var-
ious criteria including minimum fragment removal, minimum
SNP removal and most widely used minimum error correction
(MEC) objectives [5]. Finding the optimal MEC solution to
the SIH problem is known to be NP-hard [5], [6]. A branch-
and-bound approach in [7] solves the problem optimally but
the complexity of the scheme grows exponentially with the
haplotype length. Similar approach was adopted in [8] where
statistical information about sequencing errors was exploited to
solve the MEC problem using sphere decoding. However, the
complexity of this scheme grows exponentially with haplotype
length and quickly becomes prohibitive. Suboptimal yet effi-
cient methods for SIH include greedy approach [9], max-cut
based solution [10], Bayesian methods based on MCMC [11],
greedy cut based [12] and flow-graph based approaches [13].
More recent heuristic haplotype assembly approaches include
a convex optimization program for minimizing the MEC
score [14], a communication-theoretic approach solved using
belief propagation [15], dynamic programming based approach
using graphical models [16] and probabilistic mixture model
based approach [17]. Generally, these heuristic methods come
without performance guarantees.
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Motivated by recent developments in the research on matrix
completion (overviewed in Section II-A), in this paper we
formulate SIH as a rank-one matrix completion problem and
propose a binary-constrained variant of alternating minimiza-
tion algorithm to solve it. We analyze the performance and
convergence properties of the proposed algorithm, and provide
theoretical guarantees for haplotype reconstruction expressed
in the form of an upper bound on the MEC score. Furthermore,
we determine the sample complexity (essentially, sequencing
coverage) that is sufficient for the algorithm to converge.
Experiments performed on both synthetic and HapMap sample
NA12878 datasets demonstrate superiority of the proposed
framework over competing methods. Note that a matrix fac-
torization framework was previously leveraged to solve SIH
via gradient descent in [18]; however, [18] does not provide
theoretical performance guarantees that are established for the
alternating minimization algorithm proposed in the current
paper. Preliminary version of our work was presented in [19].

A. Notation

Matrices are represented by uppercase bold letters and
vectors by lowercase bold letters. For a matrix M, M(i)

and Mi represent its ith row and ith column, respectively.
Mij denotes the (i, j)th entry of matrix M and ui denotes
the ith entry of vector u. M†, ‖M‖2, ‖M‖F and ‖M‖1
represent respectively the transpose, the spectral norm (or
2-norm), the Frobenius norm and entry-wise `1 norm (i.e.,∑
ij |Mij |) of the matrix M, whereas the 2-norm of a vector

u ∈ Rm is denoted by ‖u‖2 =
(∑m

i=1 |ui|2
)1/2

. Each
vector is assumed to be a column vector unless otherwise
specified. A range of integers from 1 to m is denoted by
[m] = {1, 2, . . . ,m}. I stands for the identity matrix of an
appropriate dimension. Sign of an entry ui is sign(ui) = 1 if
ui ≥ 0, −1 otherwise, and sign(u) is the vector of entry-wise
signs of u. A standard basis vector with 1 in the ith entry
and 0 everywhere else is denoted by ei. The singular value
decomposition (SVD) of a matrix M ∈ Rm×n of rank k is
given by M = UΣVT , where U ∈ Rm×k and V ∈ Rn×k
are matrices of the left and right singular vectors, respectively,
of M, with UTU = I and VTV = I, and Σ ∈ Rk×k is
a diagonal matrix whose entries are {σ1, σ2, . . . , σk}, where
σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 are the singular values of M. Projec-
tion of a matrix M on the subspace spanned by the columns
of another matrix U is denoted by PU(M) = ‖UUTM‖2
and the projection to the orthogonal subspace is denoted by
PU⊥(M) = ‖(I −UUT )M‖2. Subspace spanned by vectors
ui is denoted by span{ui}. Lastly, 1A denotes the indicator
function for the event A, i.e.,1A = 1, if A is true, 0 otherwise.

II. MATRIX COMPLETION FORMULATION OF SINGLE
INDIVIDUAL HAPLOTYPING

A. Brief background on matrix completion

Matrix completion is concerned with finding a low rank
approximation to a partially observed matrix, and has been
an active area of research in recent years. Finding a rank-k
approximation M ∈ Rm×n, k < min{m,n}, to a partially

observed matrix is often reduced to the search for factors
U ∈ Rm×k and V ∈ Rn×k such that M = UVT [20]–
[25]. Formally, the low rank matrix completion problem for
M with noisy entries over a partial set Ω ∈ [m]× [n] is stated
as

(Û, V̂) = arg min
U∈Rm×k

V∈Rn×k

∑
(i,j)∈Ω

(Rij −U(i)Vj)
2, (1)

where R is the partially observed noisy version of M. The task
of inferring missing entries of M by the above factorization
is generally ill-posed unless additional assumptions are made
about the structure of M [22], e.g., M satisfies the incoherence
property (see definition (II.1)) and the entries of Ω are sampled
uniformly at random.

Definition II.1. [22] A rank-k matrix M ∈ Rm×n with SVD
given by M = UΣVT is said to be incoherent with parameter
µ if

‖PU(ei)‖2 ≤
µ
√
k√
m
∀ i ∈ [m], and

‖PV(ej)‖2 ≤
µ
√
k√
n
∀ j ∈ [n].

The optimization in (1) is NP-hard [26]; a commonly
used heuristic for approximately solving (1) is the alternating
minimization approach that keeps one of U and V fixed and
optimizes over the other factor, and then switches and repeats
the process [24], [27]. Each of the alternating optimization
steps is convex and can be solved efficiently. One of the few
works that provide a theoretical understanding of the con-
vergence properties of alternating minimization based matrix
completion methods is [24], where it was shown that for a
sufficiently large sampling probability of Ω, the reconstruction
error can be minimized to an arbitrary accuracy. The original
noiseless analysis was extended to a noisy case in [28].

In a host of applications, factors U, V or both may
exhibit structural properties such as sparsity, non-negativity or
discreteness. Such applications include blind source separation
[29], gene network inference [30], and clustering with overlap-
ping clusters [31], to name a few. In this work, we consider the
rank-one decomposition of a binary matrix M ∈ {1,−1}m×n
from its partial observations that are perturbed by bit-flipping
noise. This formulation belongs to a broader category of non-
negative matrix factorization [21] or, more specifically, binary
matrix factorization [32]–[35]. Related prior works include
[32], [33], which consider decomposition of a binary matrix
M in terms of non-binary U and V, while [34] explores
a Bayesian approach to factorizing matrices having binary
components. The approach in [35] constrains M, U and V
to all be binary; however, it requires a fully observed input
matrix M. On the other hand, [36] considers a factorization of
a non-binary M into a binary and a non-binary factor, with the
latter having “soft” clustering constraints imposed. As opposed
to these works, we aim for approximate factorization in the
scenario where all of M, U and V are binary, having only
limited and noisy access to the entries of M.

Next, we define the notion of distance between two vectors,
which will be used throughout the rest of this paper.

Definition II.2. [37] Given two vectors ũ ∈ Rm and w̃ ∈
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Rm, the principal angle distance between ũ and w̃ is defined
as

dist(ũ, w̃) = ‖Pu⊥(w)‖2 = ‖(I− uuT )w‖2
=
√

1− (〈u,w〉)2,

where u and w are normalized1 forms of ũ and w̃.

B. System model

The first steps in the haplotype assembly data processing
pipeline include mapping sequencing reads onto a reference
followed by SNP and genotype calling. The former is typically
done using short read mapping tools such as the Burrows-
Wheeler Aligner (BWA) [38] while the latter is performed
by relying on software packages such as FreeBayes [39] and
SAMtools [40]. Following prior work on single individual
haplotyping ( [5] - [18]), we keep only parts of the reads that
provide haplotype information, i.e., cover SNP positions along
the genome. Let the number of reads carrying information
about the haplotypes (after discarding reads which cover no
more than one SNP) be n. If m denotes the haplotype length
(m ≤ n), then the reads can be organized into an m×n SNP
fragment matrix R, whose ith column Ri contains information
carried by the ith read and whose jth row R(j) contains
information about the jth SNP position on the chromosomes
in a pair. Since diploid organisms typically have bi-allelic
chromosomes (i.e., only 2 possible nucleotides at each SNP
position), binary labels +1 or −1 can be ascribed to the infor-
mative entries of R, where the mapping between nucleotides
and the binary labels follows arbitrary convention. Let Ω be
the set of entries of R that carry information about the SNPs;
the number of informative entries in each column of R is
much smaller than m, reflecting the fact that the reads are
much shorter than chromosomes. Let us define the sample
probability as p = |Ω|

mn . Furthermore, let us define the operator
PΩ : Rm×n → Rm×n as

[PΩ(R)]ij =

{
Rij , (i, j) ∈ Ω

0, otherwise.
(2)

Rij represents the information about the ith SNP site
provided by the jth read. Adopting the convention that
0’s in column j correspond to SNP positions not covered
by the jth read, PΩ(R) becomes a matrix with entries in
{−1, 0, 1}. Let H = {h1, h−1} be the set of haplotype
sequences of the diploid organism under consideration, with
hk ∈ {−1, 1}m, k = 1,−1. Note that the binary encoding
of SNPs along the haplotypes implies that the haplotypes are
binary complements of each other, i.e., h1 = −h−1.
PΩ(R) can be thought of as obtained by sampling, with

errors, a rank one matrix M with entries from {1,−1}, given
by

M = û?(v̂?)† = σ?u?(v?)† (3)
where û? and v̂? are vectors of lengths m and n respectively,
with entries from {1,−1}, u? and v? are normalized versions
of û? and v̂?, and σ? > 0 is the singular value of M. û? rep-
resents the haplotype h1 or h−1 (the choice can be arbitrary)

1Normalized version of any vector x is given by x/‖x‖2.

and v̂?j denotes the membership of jth read, i.e., v̂?j = k if
and only if the jth read is sampled from hk, k = 1,−1. If N
denotes the sequencing error noise matrix, then the erroneous
SNP fragment matrix is given by

R = M + N, or
PΩ(R) = PΩ(M) + PΩ(N). (4)

The objective of SIH is to infer û? (and v̂?) from the data
matrix PΩ(R) which is both sparse as well as noisy.

C. Noise model

Let pe denote the sequencing error probability. The noise
matrix N capturing the sequencing errors can be modeled as
an m × n matrix with entries in {−Nmax, 0, Nmax},2 where
each entry is given by

Nij =

{
0, w. p. (1− pe)
−2Mij , w. p. pe.

(5)

N has full rank since the errors occur independently across
the reads and SNPs. The SVD of N is given by N =
UNΣN (VN )†, where UN ∈ Rm×m,VN ∈ Rn×m,ΣN =
diag(σN1 , σ

N
2 , . . . , σ

N
m).

An important observation about the noise model defined in
(5) is that it fits naturally into the worst case noise model
considered in [25], [28]. Under this model, the entries of
N are assumed to be distributed arbitrarily, with the only
restriction that there exists an entry-wise uniform upper bound
on the absolute value i.e., |Nij | ≤ C, where C is a constant.
This is trivially true for the above formulation of SIH, where
C = Nmax, leading to ‖N‖F ≤

√
mnNmax. With the entries

of N modeled as Bernoulli variables with probability pe, the
following lemma provides a bound on the spectral norm of
the partially observed noise matrix PΩ(N) and is proved in
the Appendix A.

Lemma 1. Let N be an m × n sequencing error matrix as
defined in (5). Let Ω be the sample set of observed entries
and let p be the observation probability. If pe denotes the
sequencing error probability, then with high probability we
have

‖PΩ(N)‖2
p

≤ 2Nmaxpem
√
n.

III. SINGLE INDIVIDUAL HAPLOTYPING VIA
ALTERNATING MINIMIZATION

As seen in Section II-B, SIH can be formulated as the
problem of low-rank factorization of the underlying SNP-
fragment matrix M,

M = uvT . (6)
To perform the factorization, we optimize the loss function
given by

f(u,v) = ‖PΩ(R− uvT )‖0 =
∑

(i,j)∈Ω

1Rij 6=uivj , (7)

which is identical to the MEC score associated with the
factorization in (6). However, `0-norm optimization problems

2For the labeling scheme adopted in this paper, Nmax = 2.
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are non-convex and computationally hard; instead, we use a
relaxed `2-norm loss function
f(u,v) = ‖PΩ(R− uvT )‖2F =

∑
(i,j)∈Ω

(Rij − uivj)2.

Then, the optimization problem can be rewritten as finding û
and v̂ such that
(û, v̂) = arg min

u∈{1,−1}m
v∈{1,−1}n

f(u,v) = arg min
u∈{1,−1}m
v∈{1,−1}n

∑
(i,j)∈Ω

(Rij − uivj)2.

The above optimization problem can be further reduced to
a continuous and simpler version by relaxing the binary
constraints on u and v,

(û, v̂) = arg min
u∈Rm,v∈Rn

∑
(i,j)∈Ω

(Rij − uivj)2. (8)

A. Basic alternating minimization for SIH

The minimization (8) is a non-convex problem and often
eludes globally optimal solutions. However, (8) can be solved
in a computationally efficient manner by using heuristics
such as alternating minimization, which essentially alternates
between least-squares solution to u or v. In other words, the
minimization problem boils down to an ordinary least-squares
update at each step of an iterative procedure, summarized as

v̂ ← arg min
v∈Rn

∑
(i,j)∈Ω

(Rij − ûivj)2, and (9)

û ← arg min
u∈Rm

∑
(i,j)∈Ω

(Rij − uiv̂j)2. (10)

The procedure (9)-(10) is initialized by using power iterations
to generate the top singular vector of PΩ(R)/p̂, where p̂
denotes estimated sample probability; the entries of the vector
greater than 2√

m
are set to zero, followed by normalization

to obtain û(0). Once a termination condition is met for the
iterative steps (9)-(10), entries of û are rounded off to ±1 to
satisfy binary constraint on the solution.

Note that the performance of the basic alternating min-
imization procedure (9)-(10) depends on the choice of the
initial vector û(0). The singular vector corresponding to the
topmost singular value of the noisy and partially observed
matrix PΩ(R) serves as a reasonable starting point since, as
shown later in Section IV, this vector has a small distance3

to u?. However, performing singular value decomposition
requires O(mn2) operations; therefore, it is computationally
prohibitive for large-scale problems typically associated with
haplotyping tasks. In practice, the power method is employed
to find the topmost singular vector of the appropriately scaled
matrix PΩ(R) by iteratively computing vectors x(j) and y(j)

as
x(j) = PΩ(R)y(j−1), y(j) = [PΩ(R)]Tx(j), ∀j = 0, 1, . . .

(11)

with the initial y(0) chosen to be a random vector. Let us
assume that the singular values of PΩ(R) are σ′1 ≥ σ′2 ≥ . . . 0.
The power method is guaranteed to converge to the singular
vector (say, û(0)) corresponding to σ′1, provided σ′1 > σ′2 holds
strictly. The convergence is geometric with a ratio (σ′2/σ

′
1)2.

3Please refer to Section II-A for a definition of distance measure.

Through successive iterations, the iterate x(j) gets closer to
the true singular vector; specifically,

dist(x(j), û0)

‖Pû0(x(j))‖2
≤
(
σ′2
σ′1

)2j dist(x(0), û0)

‖Pû0(x(0))‖2
, (12)

with per iteration complexity of O(mn) [18].
It has been shown in [24] that the convergence guarantees

for the procedure described in this section can be established,
provided the incoherence of the iterates û(t) and v̂(t) is
maintained for iterations t ≥ 0 (see Definition II.1). To ensure
incoherence at the initial step, one needs to threshold or “clip”
the absolute values of the entries of û(0) that exceed 2/

√
m.

Although the singular vector obtained by power iterations
minimizes the distance from the true singular vector, it is the
clipping step that makes sure that the information contained
in û(0) is spread across every dimension instead of being
concentrated in only few, much like the true vector u? (see
Lemma 2).

B. Binary-constrained alternating minimization
Updates at each iteration of the procedure (9)-(10) ignore

the fact that the underlying true factors, namely u and v,
have discrete {1,−1} entries; instead, the procedure imposes
binary constraints on u and v at the final step only. This may
adversely impact the convergence of alternating minimization.
Note that when v̂ is updated according to (9), its jth entry is
found as

v̂
(t+1)
j = arg min

v∈R

∑
i|(i,j)∈Ω

(Rij − û(t)
i v)2 =

∑
i|(i,j)∈Ω

Rij û
(t)
i∑

i|(i,j)∈Ω

(û
(t)
i )2

.

(13)

Clearly, if the absolute value of û(t)
j is very large (or very

small) compared to 1 at a given iteration t, then, given that
|Rij | = 1 for (i, j) ∈ Ω, we see from (13) that the absolute
value of v̂(t+1)

j at iteration t+ 1 becomes close to 0 (or much
bigger than 1). We empirically observe that as the iterations
progress, the value of v̂(t+1)

j becomes increasingly bounded
away from ±1, which leads to potential incoherence of the
iterates in subsequent iterations. To maintain incoherence, it
is desirable that the entries of û(t) and v̂(t) remain close to
±1. It is therefore of interest to explore if we can do better
by restricting the update steps in the discrete domain; in other
words, enforce the discreteness condition in each step, rather
than using it at the final step only.

One way of enforcing discreteness is to project the solution
of each update onto the set {1,−1}, i.e., impose the inherent
binary structure of û and v̂ in (10) and (9). This leads us to
the updates

v̂← arg min
v∈{1,−1}n

∑
(i,j)∈Ω

(Rij − ûivj)2, and (14)

û← arg min
u∈{1,−1}m

∑
(i,j)∈Ω

(Rij − uiv̂j)2. (15)

Replacing u and v updates (9)-(10) by (14)-(15) leads to a dis-
cretized version of the alternating minimization algorithm for
single individual haplotyping, given as Algorithm 1. Clearly,
rounding-off of the final iterate is no longer required since the
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individual iterates are constrained to be binary at each step of
the algorithm.

Algorithm 1 SIH via discrete alternating minimization

Require: SNP-fragment matrix R, observed set Ω, estimated
sample probability p̂.
Power Iteration: Use power iteration to generate the top
singular vector of PΩ(R)/p̂ and denote it by u(0)

Clipping: Set entries of u(0) greater than 2√
m

to zero, and
then normalize to get û(0).
for t = 0, 1, 2, . . . , T − 1 do
v̂(t+1) ← arg min

v∈{1,−1}n

∑
(i,j)∈Ω

(Rij − û(t)
i vj)

2

û(t+1) ← arg min
u∈{1,−1}m

∑
(i,j)∈Ω

(Rij − utiv̂
(t+1)
j )2

end for
Output: û(T ) is the estimate û of the haplotype vector

A closer look at the iterative update of v̂ in Algorithm 1
reveals that the update can be written as

v̂
(t+1)
j =

1
∑

i|(i,j)∈Ω

Rij û
(t)
i ≥ 0

−1 otherwise, ∀ j ∈ [n].
(16)

Similar update can be stated for û. The non-differentiability of
the update (16), however, makes the analysis of convergence of
Algorithm 1 intractable. In order to remedy this problem, the
“hard” update in (16) is approximated by a “soft” update using
a logistic function f(x) = (ex − 1)/(ex + 1), thus replacing
the v̂ and û updates at iteration t in Algorithm 1 by

v̂
(t+1)
j = f

 1

m

∑
i|(i,j)∈Ω

Riju
(t)
i

 , ∀ j ∈ [n], (17)

and

û
(t+1)
i = f

 1

n

∑
j|(i,j)∈Ω

Rijv
(t+1)
j

 , ∀ i ∈ [m], (18)

where ut and vt are vectors representing normalized ût

and v̂t. Note that the update steps (17) and (18) can be
represented in terms of the normalized vectors since it holds
that sign

(∑
i|(i,j)∈Ω Riju

t
i

)
= sign

(∑
i|(i,j)∈Ω Rij û

t
i

)
.

Updates (17) and (18) relax integer constraints on û and v̂
while ensuring that their values remain in the interval [−1, 1];
this relaxation allows us to derive an upper bound on the MEC
score through an analysis of convergence of the algorithm
in Section IV. Alternating minimization procedure that relies
on soft update steps given by (17) and (18) is formalized as
Algorithm 2. In experiments that we conducted on real Fosmid
dataset [12], Algorithm 1 and Algorithm 2 achieve similar
MECs (comparison of results omitted for brevity).

It is worth pointing out the main differences between the
approach considered here and the method in [18]. In the
latter, the authors propose an alternating minimization based
haplotype assembly method by imposing structural constraints
on only one of the two factors, namely, the read membership
factor. However, for the diploid case considered in this work,
use of binary labels allow us to impose similar constraints

Algorithm 2 SIH via discrete alternating minimization with
soft updates

Require: SNP-fragment matrix R, observed set Ω, estimated
sample probability p̂.
Power Iterations: Use power iterations to generate the top
singular vector of PΩ(R)/p̂ and denote it by u(0).
Clipping: Set entries of u(0) greater than 2√

m
to zero, and

then normalize to get û(0).
for t = 0, 1, 2, . . . , T − 1 do

v̂
(t+1)
j ←

exp
(

1
m

∑
i|(i,j)∈Ω Riju

(t)
i

)
−1

exp( 1
m

∑
i|(i,j)∈Ω Riju

(t)
i )+1

, ∀ j = 1, . . . , n,

v(t+1) ← v̂(t+1)/‖v̂(t+1)‖2
û

(t+1)
i ←

exp
(

1
n

∑
j|(i,j)∈Ω Rijv

(t+1)
j

)
−1

exp
(

1
n

∑
j|(i,j)∈Ω Rijv

(t+1)
j

)
+1
, ∀ i = 1, . . . ,m,

u(t+1) ← û(t+1)/‖û(t+1)‖2
end for
Output: Round-off entries of û(T ) to ±1 to get estimate û
of the haplotype vector.

on both u and v, thereby leading to computationally efficient
yet accurate (as demonstrated in the results section) method
formalized as Algorithm 1. Furthermore, the alternating min-
imization algorithm in [18] is not amenable to performance
analysis. Our aim is to recover (up to noise terms) the under-
lying true factors and analytically explore relation between the
recovery error and the number of iterations required.

IV. ANALYSIS OF PERFORMANCE

We begin this section by presenting our main result on the
convergence of Algorithm 2. The following theorem provides
a sufficient condition for the convergence of this algorithm.

Theorem 1. Let û? ∈ {1,−1}m and v̂? ∈ {1,−1}n denote
the haplotype and read membership vectors, respectively, and
let R = M + N denote the observed SNP-fragment matrix
where M = û?(v̂?)T = u?σ?(v?)T , N is the noise matrix
with Nmax and pe as defined in (5), u? and v? are normalized
versions of û? and v̂? respectively, and σ? is the singular
value of M. Let α = n/m ≥ 1 and ε > 0 be the desired
accuracy of reconstruction. Assume that each entry of M is
observed uniformly randomly with probability

p > C

√
α

mδ2
2

log n log

(
‖M‖F
ε

)(
pe +

64

3
δ2

)
, (19)

where δ2 ∈
[
0, 1

21 (3.93− C ′Nmaxpe)
]

and C,C ′ > 0 are
global constants. Then, after T = O(log(‖M‖F /ε)) iterations
of Algorithm 2, the estimate M̂(T ) = û(T )[v̂(T )]T with high
probability satisfies

‖M− M̂(T )‖F ≤ ε+ 16
peσ

?

3δ2
(2 + (2 + 3Nmax)δ2). (20)

The following corollary follows directly from Theorem 1.

Corollary 1. Define M̃(T ) = sign
(
M̂(T )

)
. Under the condi-

tions of Theorem 1, the normalized minimum error correction
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Fig. 2: A comparison of the normalized minimum error correction score of
Algorithm 2 and the trace-norm minimization (SVT) method for matrices of
dimensions n = 100 and n = 500, plotted as a function of sample size. α is
2 and error probability pe is set to 5%. The values shown are averaged over
100 simulation runs.

score with respect to R, defined as ˜MEC = 1
mn‖PΩ(R −

M̃(T ))‖0, satisfies

˜MEC(M̃(T )) ≤ ε√
mn

+
16pe
3δ2

(2 + (2 + 3Nmax)δ2)

+
1√
mn
‖PΩ(N)‖F . (21)

Theorem 1 and Corollary 1 are proved in Appendix A.
These two results imply that if the sample probability p
satisfies the condition (19) for a given sequencing error
probability pe, then Algorithm 2 can minimize the MEC
score up to certain noise factors in O(log(‖M‖F /ε)) itera-
tions. The corresponding sample complexity, i.e., the number
of entries of R needed for the recovery of M is |Ω| =

O
(√

α
δ2
2
n log n log

(
‖M‖F
ε

) (
pe + 64

3 δ2
))

. Note that compared
to (20), expression (21) has an additional noise term. This is
due to the fact that unlike the loss function ‖M − M̂(T )‖F
in (20), the MEC score of M̃(T ) is calculated with respect to
the observed matrix PΩ(R).

Factor log(‖M‖F /ε) in the expression for sample com-
plexity (19) is due to using independent Ω samples at each
of T = O(log ‖M‖F /ε) iterations [24]. This circumvents
potentially complex dependencies between successive iterates
which are typically hard to analyze [41]. We implicitly assume
independent samples of Ω in each iteration of Algorithm 2
for the sake of analysis, and consider fixed sample set in our
experiments. As pointed out in [41], practitioners typically
utilize alternating minimization to process the entire sample
set Ω at each iteration, rather than the samples thereof.

An interesting observation in this context is that sequencing
coverage, defined as the number of reads that cover a given
base in the genome, can conveniently be represented as the
product of the sample probability p and the number of reads.
Then, (19) implies that the required sequencing coverage
for convergence is O

(
α
√
α

δ2
2

log n log
(
‖M‖F
ε

) (
pe + 64

3 δ2
))

,
which is roughly logarithmic in n.

In Fig. 2 we compare the MEC error rate performance
of Algorithm 2 (denoted as SAltMinHap in the figure) with
another matrix completion approach, namely singular value
thresholding (SVT) [42]; SVT is a widely used trace-norm
minimization based method. We compare their performance on
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Fig. 3: A comparison of the runtime of Algorithm 2 and the trace-norm
minimization (SVT) method for matrices of dimensions n = 100 and
n = 500, plotted as a function of sample size. α is 2 and error probability
pe is set to 5%. The values shown are averaged over 100 simulation runs.

randomly generated binary rank-one matrices of size 50×100
and 250 × 500, and flip the entries in a uniformly randomly
chosen sample set Ω with probability 0.05. Both methods
are run 100 times for each chosen sample size and error
rates are averaged over those runs. Results of the trace-norm
minimization method are rounded off in the final iterations.
Fig. 2 suggests that alternating minimization based matrix
completion approach performs better than the trace-norm min-
imization for both problem dimensions, and the performance
gap is wider for n = 500 compared to n = 100. Fig. 3 plots the
runtime of the two methods for the same problem instances.
Trace-norm minimization based method, that was reported in
literature as the most accurate version of SVT, is much slower
of the two, primarily due to the computationally expensive
SVD operation at each iteration step.

Note that our analysis of convergence assumes that the sam-
ples of M are observed uniformly at random. This implies that
each read contains SNPs located independently and uniformly
at random along the haplotype. In practice, this assumption
does not hold due to physical properties of reads (short length,
limited insert size). However, note that the MEC score – the
metric that the proposed algorithms attempt to minimize – is
invariant to permutations of the rows of M (SNP locations
on each read). This, combined with the fact that alternating
minimization does not require specific structure of Ω, suggests
the average performance of our algorithm may not be affected
by permutations of the rows of M. This can be readily verified
empirically, which we have done on the experimental Fosmid
data discussed in Section V. Random permutations of the
rows of R whiten its columns and result in an input matrix
with informative entries that are distributed uniformly, thus
conforming to the assumptions under which we performed
convergence analysis.

The remainder of this section presents the necessary com-
ponents for establishing the main result of the paper (Theo-
rem 1, Corollary 1). We start with a discussion of a suitable
initialization for Algorithm 2 in Section IV-A. In Section IV-B,
we present the essential building blocks for the convergence
analysis, namely, characterization of the decay of distance of
iterates from the true vectors (Theorem 2 and Corollary 2) and
the incoherence of iterates (Lemma 3).
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A. Initialization Analysis

In order for Algorithm 2 to converge, a suitable initial
starting point close to the ground truth is necessary. In addition
to the power iteration step, which gives a singular vector that
is close to the true vector u?, the subsequent clipping step
helps retain the incoherence of the same, without sacrificing
the closeness property. The following lemma uses Theorem
3 to establish the incoherence of û(0), and that û(0) remains
close to the true left singular vector u?.

Lemma 2. Let u(0) be obtained after normalizing the output
of the power iteration step in Algorithm 2. Let uC be the vector
obtained after setting entries of u(0) greater than 2 µ√

m
to zero.

If ũ is the normalized uC , then, with high probability, we have
dist(ũ,u?) ≤ 1/2, and ũ is incoherent with parameter 4µ,
where µ is the incoherence parameter of u?.

Proof. The proof follows directly from Lemma C.2 from [24]
and Lemma 2 from [28] after suitably using conditions from
Lemma 1 and Theorem 3 (see Appendix A).

B. Convergence Analysis

Let us denote λj = 1
m

∑
i|(i,j)∈Ω

Riju
(t)
i . The Taylor series

expansion of v̂(t+1)
j from (17) is given by

v̂
(t+1)
j =

λj
2
− λj

3

24
+
λj

5

240
− . . . , ∀ j = 1, . . . , n. (22)

Now, we have

|λj | =

∣∣∣∣∣∣ 1

m

∑
i|(i,j)∈Ω

Riju
(t)
i

∣∣∣∣∣∣ ≤ 1

m

∑
i|(i,j)∈Ω

|Rij ||u(t)
i |

≤ 1

m

∑
i|(i,j)∈Ω

|Rij |.

Clearly,
∑

i|(i,j)∈Ω

|Rij | ∼ Bin(m, p) for a given j, implying that

the absolute value of λj is close to the entry-wise observation
probability p < 1. This, in turn, implies that in (22) all terms
with higher powers of λj are much smaller than the dominant
linear term, and the Taylor’s series expansion can be written
as v̂(t+1)

j ≈ λj

2 + ε(λj), where the error term ε(λj) can be
bounded as |ε(λj)| ≤ |λj |3/3! � 1 using the Lagrange error
bound. Therefore, we approximate the update in (17) as

v̂
(t+1)
j =

1

2m

∑
i|(i,j)∈Ω

Riju
(t)
i

=
1

2m

∑
i|(i,j)∈Ω

(Mij +Nij)u
(t)
i

=
1

2m

∑
i|(i,j)∈Ω

(
σ?u?i v

?
j + [U

(i)
N ]TΣNV

(j)
N

)
u

(t)
i

=
1

2m

(
σ?〈u(t),u?〉v?j −

[
σ?〈u(t),u?〉v?j

−σ?v?j
∑

i|(i,j)∈Ω

u
(t)
i u?i

+
∑

i|(i,j)∈Ω

u
(t)
i [U

(i)
N ]TΣNV

(j)
N


(23)

for j = 1, . . . , n.

Let us introduce an error vector F ∈ Rn as F =
σ?B−1

(
〈u(t),u?〉B−C

)
v?, where B = 1

p In and C ∈
Rn×n is diagonal with Cjj = 1

p

∑
i|(i,j)∈Ω

u
(t)
i u?i , ∀j =

1, . . . , n. Furthermore, let us define a noise vector Nres ∈
Rn×1 as Nres = B−1CNSNvN , where the quantities are as
follows:

- CN = [CN
1 CN

2 · · ·CN
m] ∈ Rn×nm where (CN

q )jj =
1
p

∑
i|(i,j)∈Ω

u
(t)
i UN

iq , ∀q ∈ [m],∀j ∈ [n];

- SN ∈ Rnm×nm is a diagonal matrix given by SN =
diag

(
σN1 In, . . . , σNmIn

)
;

- vN =
[
(vN1 )T (vN2 )T . . . (vNm)T

]T ∈ Rnm×1 where
vNj ∈ Rn is the jth column of VN .

We also define CNjj =
[
(CN

1 )jj (CN
2 )jj . . . (CN

m)jj
]

for any
given j ∈ [n]. Using the above definitions, (23) can be written
as

v̂
(t+1)
j =

1

2m

[
σ?〈u(t),u?〉v?j − Fj +

1

Bjj
CNjjΣNV

(j)
N

]
. (24)

Therefore, using vector-matrix notation, the update of v̂ can
be written as

v̂(t+1) =
1

2m

[
σ?〈u(t),u?〉v? − F +Nres

]
(25)

=
1

2m

[
MTu(t) − F +Nres

]
.

Recalling (11), one can identify that MTu(t) in the above
expression is the update term in the power iteration applied to
the true matrix M. Therefore, the update described in (25) is
essentially power iteration of M that would have led to the true
singular vector u? except that it is perturbed by error terms
due to incomplete observations and sequencing noise (F and
Nres in the above expression, respectively). This observation
leads to the analysis approach where appropriate upper bounds
to the aforementioned errors terms are derived. The proof of
convergence presented in this work follows the framework
in [24], [28] and consists of an inductive analysis meant to
establish guarantees that, given an incoherent u(t) that is close
in terms of principal angle to u?, the subsequent iterate v(t+1)

is also incoherent with identical parameter and is closer to
v? by at least a constant factor. This statement is formally
expressed using Theorem 2 and Lemma 3 for the distance
and incoherence conditions, respectively. Note that Theorem 2,
which is a starting point for proving Theorem 1, demon-
strates geometric decay of the distance between the subspaces
spanned by û(t), v̂(t) and u?, v?, respectively; furthermore,
Lemma 3 establishes the incoherence condition satisfied by
the iterates. Proofs of both are deferred to Appendix A.

Theorem 2. Under the assumptions of Theorem 1, the (t+1)th

iterates û(t+1) and v̂(t+1) of Algorithm 2 satisfy with high
probability

dist(v̂(t+1),v?) ≤ 1

4
dist(û(t),u?) +

µ1pe
δ2

, and

dist(û(t+1),u?) ≤ 1

4
dist(v̂(t+1),v?) +

µ1pe
δ2

, 0 ≤ t ≤ T − 1,
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where µ1 is the incoherence parameter of the intermediate
iterates û(t) and v̂(t).

The following corollary is based on the findings of The-
orem 2 and is used to complete the proof of Theorem 1 in
Appendix A.

Corollary 2. Under the assumptions of Theorem 2, at the end
of T = O(log ‖M‖Fε ) iterations, it holds that

dist(v̂(T+1),v?) ≤ 1

2

ε

‖M‖F
+

4µ1pe
3δ2

, and

dist(û(T+1),u?) ≤ 1

2

ε

‖M‖F
+

4µ1pe
3δ2

.

Lemma 3. Let M,N, p, Ω be defined as in Theorem 1.
Let u(t) be the unit vector obtained at the tth iteration
of Algorithm 2 with incoherence parameter µ1. Then, with
probability greater than 1 − 1/n3, the next iterate v(t+1) is
also µ1 incoherent.

In our analysis of the matrix factorization approach to single
individual haplotyping, we adopted techniques proposed by
[24], [28]; note, however, that the scope of analysis in the
current paper goes beyond the prior works. In particular,
the authors of [24] considered a noiseless case of matrix
factorization and did not impose structural constraints on the
iterates. Their work was extended to a noisy case in [28]
for a similar unconstrained setting. Additionally, [28] did not
exploit statistical properties of the noise, except the entry-
wise upper bound, whereas the present work uses the bit-
flipping model as discussed in Section II-C, allowing us to
characterize dependence of the performance on the sequencing
error probability pe.

V. RESULTS AND DISCUSSIONS

We begin this section by stating the metrics for evaluating
performance of our single individual hapolotyping algorithm.

A. Performance Metrics

A widely used metric for characterizing the quality of single
individual haplotyping is the minimum error correction (MEC)
score. This metric captures the smallest number of entries of
PΩ(R) which need to be changed from 1 to −1 and vice versa
so that PΩ(R) can be interpreted as a noiseless version of
PΩ(M). Essentially, it is the most likely number of sequencing
errors, defined for diploids as

MEC =

n∑
i=1

min
(
D(ri, ĥ1), D(ri, ĥ−1)

)
, (26)

where D(ri, ĥj) denotes the generalized Hamming distance
between read ri (regarded as m length vector in {1,−1, ‘-’ })
and the estimated parent haplotypes ĥk, k = 1,−1. This, in
turn, is defined as D(ri, ĥj) =

∑m
j=1 d(ri,j , ĥk,j), where

d(x, y) =

{
1, if x 6= ‘-’ and y 6= ‘-’ and x 6= y

0, otherwise,
(27)

and ri,j and ĥk,j denote the jth entries of ri and ĥk,
respectively.

The MEC score is a relevant and most commonly studied
performance metric for single individual haplotyping [43], and
critically important for experimental data where the ground
truth is not known in advance. It is also a proxy for the
most meaningful haplotype assembly metric referred to as
reconstruction rate. Recall that H = {h1, h−1} denotes
the set of true haplotypes. Then the reconstruction rate of
Ĥ = {ĥ1, ĥ−1} with respect to H is defined as [44]

R
H,Ĥ =

1−min{D(h1, ĥ1 +D(h−1, ĥ−1), D(h1, ĥ−1) +D(h−1, ĥ1)}
2m

,

(28)
where D(hi, hj) denotes the generalized Hamming distance
between the haplotype pair hi and hj .

B. Experiments

In this section, for convenience we refer to our algorithm
for single individual haplotyping as SAltMinHap. All of the
methods described here were run on a Linux OS desktop with
3.07 GHz CPU and 8 GB RAM on an Intel Core i7 880
Processor.

We first tested our algorithm on the experimental dataset
containing Fosmid pool-based NGS data for HapMap trio child
NA12878 [12]. The Fosmid dataset is characterized by very
long fragments, high SNP to read ratio, and low sequencing
coverage of about 3X, consisting of around 1, 342, 091 SNPs
spread across 22 chromosomes. We compare the performance
of SAltMinHap with the structurally-constrained gradient de-
scent (SCGD) algorithm of [18] and one more recent SIH
software ProbHap [16], which was shown to be superior
to several prior methods on this dataset [10], [12], [17].
Table I shows the MEC rate (average number of mismatches
per SNP position across the reads) and runtimes for all 22
chromosomes. As seen there, our SAltMinHap outperforms
other methods for majority of the chromosomes shown; it is
second best in terms of runtime (behind SCGD).

Next, we focus on the evaluation of performance on simu-
lated dataset using reconstruction rate metric. For this purpose,
we use a widely popular standard benchmarking dataset from
[44] which also provides the true haplotypes used to generate
the read data. The dataset contains reads at a sequencing error
rate with values in the set {0.0, 0.1, 0.2, 0.3}, and a depth of
coverage in the set {3X, 5X, 8X, 10X}. Reconstruction rate
of our algorithm is compared with that of SCGD [18] and
two more recent SIH methods known as HGHap [45] and
MixSIH [17]. In particular, [45] is chosen for performance
comparison since it has been shown to outperform a number
of existing SIH methods such as [9], [10], [46]–[48]. A
comparison with ProbHap is not shown for this data since
it reconstructed haplotypes with a large fraction of SNPs
missing (and therefore has inferior performance compared to
the methods used in the comparisons). The results, shown in
Table II, are obtained by averaging over 100 simulation runs
for each combination of sequencing error rate and sequencing
coverage, for a haplotype length of 700 base pairs and pairwise
hamming distance 0.7. As evident from the results, our method
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TABLE I: MEC rates and runtimes on HapMap sample NA12878 dataset.

Chr SAltMinHap SCGD ProbHap

MEC time(s) MEC time(s) MEC time(s)
1 0.034 65.0 0.04 44.2 0.058 87.7
2 0.035 71.6 0.035 49.5 0.055 88.9
3 0.034 61.1 0.036 41.5 0.057 84.3
4 0.029 60.7 0.034 41.8 0.053 67.1
5 0.032 52.9 0.036 39.9 0.054 64.6
6 0.038 34.7 0.037 27.9 0.050 53.4
7 0.038 26.4 0.035 25.05 0.055 40.8
8 0.033 24.3 0.034 23.9 0.05 42.8
9 0.036 21.9 0.037 17.6 0.052 45.2

10 0.036 24.7 0.037 21.0 0.053 44.4
11 0.034 24.7 0.038 20.8 0.055 39.5
12 0.037 23.5 0.037 20.2 0.057 38.9
13 0.039 14.6 0.035 15.6 0.053 26.4
14 0.035 16.6 0.039 13.7 0.055 27.4
15 0.038 14.1 0.041 11.9 0.056 26.5
16 0.046 20.3 0.0405 12.2 0.051 36.5
17 0.048 15.3 0.046 11.1 0.061 27.4
18 0.033 12.2 0.037 11.8 0.053 24.4
19 0.052 12.8 0.046 9.0 0.063 19.8
20 0.044 18.1 0.044 13.0 0.055 30.9
21 0.035 11.5 0.041 8.5 0.051 15.6
22 0.054 11.7 0.055 8.6 0.061 31.4

TABLE II: Reconstruction rate comparison on simulated data. Boldface values
indicate best performance.

Error
Rate Cov. SAlt-

MinHap SCGD HGHap MixSIH

0.0 3X 1 0.983 0.934 0.776
0.0 5X 1 0.976 0.989 0.923
0.0 8X 1 0.999 0.994 0.995
0.0 10X 1 0.999 0.999 1
0.1 3X 0.935 0.869 0.934 0.775
0.1 5X 0.979 0.951 0.990 0.942
0.1 8X 0.996 0.996 0.987 0.972
0.1 10X 0.999 0.999 0.997 0.993
0.2 3X 0.735 0.677 0.677 0.68
0.2 5X 0.864 0.785 0.91 0.774
0.2 8X 0.943 0.899 0.884 0.932
0.2 10X 0.966 0.934 0.894 0.969
0.3 3X 0.555 0.527 0.592 0.65
0.3 5X 0.595 0.524 0.621 0.667
0.3 8X 0.68 0.518 0.646 0.714
0.3 10X 0.723 0.58 0.696 0.751

is either the best or the second best in all of the scenarios.
SAltMinHap performs particularly well in the more realistic
error range of 0.0− 0.2 and is marginally inferior to MixSIH
only for higher sequencing error values.

To illustrate the performance guarantees in Section IV,
we synthesized a dataset with 300bp-long reads that sample
randomly generated reference genomes of length 2000bp,
2500bp, 3000bp and 3500bp, each with an average SNP rate of
10−2. Sequencing error rate and coverage are set to 0.1% and
20X , respectively. Fig. 4 shows the MEC rate and the MEC
bound stated in Corollary 1. As the genome length increases,
dimension of the SNP fragment matrix grows as well; since the
bound scales with problem dimension slower than empirical
MEC, the bound becomes less tight for longer genomes.

2000 2500 3000 3500
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Fig. 4: A comparison of the MEC bound in Corollary 1 and empirical MEC
rates (averaged over 50 simulation runs) for a short-read dataset with 300bp-
long reads at 20X coverage with sequencing error as 0.1% and SNP rate of
1/100. Parameters used to compute the bound are found via grid search.

VI. CONCLUSION

Motivated by the single individual haplotyping problem
from computational biology, we proposed and analyzed a
binary-constrained variant of the alternating minimization al-
gorithm for solving the rank-one matrix factorization problem.
We provided theoretical guarantees on the performance of the
algorithm and analyzed its required sample probability; the
latter has important implications on experimental specifica-
tions, namely, sequencing coverage. Performance of haplotype
reconstruction is often expressed in terms of the minimum
error correction score; we establish theoretical guarantees on
the achievable MEC score for the proposed binary-constrained
alternating minimization. Experiments with a HapMap sam-
ple NA12878 dataset as well as those with a widely used
benchmarking simulated dataset demonstrated efficacy of our
algorithm.

APPENDIX A
PROOFS OF LEMMAS AND THEOREMS

A. Preliminaries

The following property and lemma are well-known classical
results that will be useful in the forthcoming proofs.

Property 1. For a given matrix M ∈ Rm×n of rank k, the
following relations hold between the 2-norm, the Frobenius
norm and the entry-wise `1 norm of M:

• ‖M‖2 ≤ ‖M‖F ≤
√
k‖M‖2

• ‖M‖F ≤ ‖M‖1 ≤
√
mn‖M‖F
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Lemma 4 (Bernstein’s inequality). Let X1, X2, . . . , Xn be
independent random variables. Also, let |Xi| ≤ L ∈ R ∀i w.p.
1. Then it holds that

Pr

(∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E[Xi]

∣∣∣∣∣ > t

)
≤

2 exp

− t2/2

Lt/3 +
n∑
i=1

Var(Xi)

 .

The following theorem from [25] provides an upper bound
on the error between the true matrix M and the best rank-k
approximation of the noisy and partially observed version of
M, and is used in the proof of Lemma 2.

Theorem 3. [25] Let R = M + N, where M is an m × n
µ-incoherent matrix with rank k (m ≤ n) and the indices
in the sampling set Ω ∈ [m] × [n] are chosen uniformly at
random. Let α = n/m, |Mij | ≤Mmax and p be the sampling
probability. Furthermore, from the SVD of 1

pPΩ(R), we get
a rank-k approximation given by [PΩ(R)]k = U0Σ0(V0)T .
Then there exists numerical constants C and C ′ such that,
with probability greater than 1− 1

n3 , we have

1√
mn
‖M− [PΩ(R)]k‖2 ≤ CMmax

(
mα3/2

|Ω|

)1/2

+
C ′m
√
α

|Ω|
‖PΩ(N)‖2.

B. Induction Proofs
Lemma 5. Let M,N,Ω and u(t) be defined as in Algorithm
2. Then, with high probability we have

‖F‖2 ≤ σ?δ2
√

1− 〈u(t),u?〉2.

Proof. From the definition of F stated in Section IV-B, we
have

‖F‖2 ≤ σ?‖B−1‖2‖
(
C− 〈u(t),u?〉B

)
v?‖2. (29)

Since B is a diagonal matrix, ‖B−1‖2 = 1
mini Bii

= p ≤ 1.
Let x ∈ Rn be such that ‖x‖2 = 1. Then, for all such x,

xT
(
C− 〈u(t),u?〉I

)
v?

=
1

p

∑
j

xjv
?
j

 ∑
i|ij∈Ω

u
(t)
i u?i − 〈u(t),u?〉


≤ 1

p

∑
ij∈Ω

xjv
?
j

(
u

(t)
i u?i − 〈u(t),u?〉(u(t)

i )2
)

ζ1
≤ C

p

√
np

√∑
j

x2
j (v

?
j )2

√∑
i

(
u

(t)
i u?i − 〈u(t),u?〉(u(t)

i )2
)2

ζ2
≤ C

p

√
np

√√√√µ2
1

n

∑
j

x2
j

√∑
i

(u
(t)
i )2

(
u?i − 〈u(t),u?〉u(t)

i

)2

ζ3
≤ C

p

√
npµ2

1√
mn

√
1− 〈u(t),u?〉2

≤ δ2
√

1− 〈u(t),u?〉2, if p ≥ C ′ µ
4
1

mδ2
2

,

where C ′ = C2 > 0 is a global constant and ζ1 follows from
Lemma 6 (which imposes the condition p ≥ C logn

m ) and ζ2
follows from the incoherence of v?, and ζ3 from that of u(t).
Then,

‖
(
C− 〈u(t),u?〉B

)
v?‖2 = max

‖x‖2=1
xT
(
C− 〈u(t),u?〉B

)
v?

≤ δ2
√

1− 〈u(t),u?〉2.

Hence, the lemma follows from (29) if p ≥ C ′ µ
4
1 logn

mδ2
2

.

Lemma 6. ( [24]) Let Ω ∈ [m] × [n] be a set of indices
sampled uniformly at random with sampling probability p that
satisfies p ≥ C logn

m . Then with probability ≥ 1 − 1
n3 ∀x ∈

Rm,∀y ∈ Rn such that x satisfies
∑
i xi = 0, it holds that∑

ij∈Ω

xiyj ≤ C
√√

mnp‖x‖2‖y‖2, where C > 0 is a global

constant.

Lemma 7. Let M,N,Ω and pe be defined as before. Then
with high probability it holds that

‖Nres‖2 ≤ 2Nmaxµ1pe
√
mn.

Proof. The proof follows from Lemma B.3, [28] for
the case k = 1, and by noting the fact that
‖B−1‖2 ≤ 1, and from the observation that ‖PΩ(N)‖2

p ≤
2Nmaxpe

√
mn, with high probability (see Lemma 1).

Lemma 8. Let F, Nres and u(t) be defined as in (25). Then
we have

‖v̂(t+1)‖2 ≥
1

2m

(
σ?
√

1− dist2(u?,u(t))− ‖F‖2 − ‖Nres‖2
)
.

Proof.

2m‖v̂(t+1)‖2 = ‖σ?〈u(t),u?〉v? − F +Nres‖2
ζ1
≥ ‖σ?〈u(t),u?〉v?‖2 − ‖F−Nres‖2
ζ2
≥ ‖σ?〈u(t),u?〉v?‖2 − ‖F‖2 − ‖Nres‖2

= σ?
√

1− dist2(u?,u(t))2 − ‖F‖2 − ‖Nres‖2,
where both ζ1 and ζ2 follow from the reverse triangle inequal-
ity for vectors.

Lemma 9. Under the conditions of Theorem 1, with proba-
bility greater than 1− 1/n3 it holds that for a given j ∈ [n],∣∣∣∣ 1

Bjj
CNjjΣNV

(j)
N

∣∣∣∣ ≤ Nmaxµ1

√
m(pe + δ2).

Proof. Let a Bernoulli random variable δij characterize the
event that the (i, j) entry in R is observed and is in error.
Therefore, δij = 1 w.p. ppe and 0 otherwise. Also, let us
define Zi = 1

pδiju
(t)
i Nmax and Z =

∑m
i=1 Zi. Then,

E[Z] = E

[
m∑
i=1

Zi

]
= pe

m∑
i=1

u
(t)
i Nmax

ζ1
≤ Nmaxpeµ1

√
m,

where ζ1 follows from the incoherence of u(t)
i . Moreover,

Var(Z) =
pe
p

(1− ppe)N2
max

m∑
i=1

|u(t)
i |

2

≤ N2
max

pe
p

(1− ppe) ≤ N2
max

pe
p
,
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and maxi |Zi| = 1
p maxi |u(t)

i Nij | ≤ µ1Nmax

p
√
m

. Using
Bernstein’s inequality, we have

Pr
(
Z − E[Z] > Nmaxµ1

√
mδ2

)
≤ exp

(
− N2

maxµ
2
1mδ

2
2/2

N2
max

pe
p + Nmaxµ1

3p
√
m
Nmaxµ1

√
mδ2

)

= exp

(
−pµ

2
1mδ

2
2/2

pe +
µ2

1δ2
3

)
ζ2
≤ exp (−3 log n) =

1

n3
,

where ζ2 follows by using the condition from Theorem 1 that
p > 6 logn

µ2
1mδ

2
2
(pe +

µ2
1δ2
3 ).

Therefore, using the definition from (24), with probability
greater than 1− 1/n3 it holds that∣∣∣∣ 1

Bjj
CNjjΣNV

(j)
N

∣∣∣∣ =

∣∣∣∣∣∣1p
∑
i|ij∈Ω

u
(t)
i [U

(i)
N ]TΣNV

(j)
N

∣∣∣∣∣∣
=

∣∣∣∣∣∣1p
∑
i|ij∈Ω

u
(t)
i Nij

∣∣∣∣∣∣ ≤ Nmaxµ1

√
m(pe + δ2).

Proof of Lemma 3. We bound the largest magnitude of the
entries of v̂(t+1) as follows. For every j ∈ [n], using (24) we
have

2m
∣∣∣v̂(t+1)
j

∣∣∣ ≤ |σ?〈u(t),u?〉v?j |

+

∣∣∣∣ σ?Bjj (〈u(t),u?〉Bjj − Cjj)v?j
∣∣∣∣+

∣∣∣∣ 1

Bjj
CNjjΣNV

(j)
N

∣∣∣∣
ζ1
≤ σ?〈u(t),u?〉 µ√

n
+ σ?〈u(t),u?〉 µ√

n

+ σ?(〈u(t),u?〉+ δ2)
µ√
n

+Nmaxµ1

√
m(pe + δ2)

ζ2
≤ σ?(3 + δ2)

µ√
n

+Nmaxσ
? µ1√

n
(pe + δ2)

ζ3
≤ σ? µ√

n
(3 + δ2 + 8Nmax(pe + δ2))

(30)

where ζ1 follows from the fact that |Cjj | ≤ (|〈u(t),u?〉| +
δ2) (Lemma C.3, [24]), and Lemma 9, ζ2 follows from
〈u(t),u?〉 ≤ 1, and ζ3 follows by setting µ1 = 8µ.

Furthermore, from Lemma 8 and using Lemma 5 and
Lemma 7, we have

2m‖v̂(t+1)‖

≥ σ?〈u(t),u?〉 − σ?δ2
√

1− (〈u(t),u?〉)2 − ‖Nres‖2
ζ1
≥ σ?〈u0,u?〉 − σ?δ2

√
1− (〈u0,u?〉)2

− 2Nmaxµ1pe
√
mn

ζ2
≥ σ?

(√
3

2
− δ2

2
− 2Nmaxµ1pe

)
,

(31)

where ζ1 follows from dist(u(t),u?) ≤ dist(u0,u?) and
Lemma 7, ζ2 follows from dist(u0,u?) ≤ 1/2 and σ? =√
mn.

Using the two inequalities from (30) and (31), we have

‖v(t+1)‖∞ =
‖v̂(t+1)‖∞
‖v̂(t+1)‖2

=
σ? µ√

n
(3 + δ2 + 8Nmax(pe + δ2))

σ?
(√

3
2 −

δ2
2 − 2Nmaxµ1pe

) .

From the condition on δ2 as specified in Theorem 1, and since
µ1 = 8µ, we simplify the above equation as

‖v(t+1)‖∞ ≤
8µ√
n

=
µ1√
n
.

C. MEC proofs

Lemma 10. Let M,N,R and Ω be defined as in Theorem 1.
Let M̂(T ) denote the estimate of matrix M after T iterations
of Algorithm 2; furthermore, let M̃(T ) = sign(M̂(T )). Then
M̃(T ) satisfies

1√
mn
‖PΩ(R− M̃(T ))‖0 ≤ ‖PΩ(N)‖F + ‖PΩ(M− M̂(T ))‖F .

Proof. Clearly, ∀i, j ∈ Ω ⊆ [m]× [n] it holds that

Rij

{
= M̃

(T )
ij if |Rij − M̂ (T )

ij | ≤ 1,

6= M̃
(T )
ij otherwise.

Now, ‖PΩ(R − M̃(T ))‖0 denotes the number of non-zero
entries among the observed entries of the difference matrix
R− M̃(T ). In other words,

‖PΩ(R− M̃(T ))‖0 =
∣∣∣{i, j ∈ Ω s.t. Rij 6= M̃

(T )
ij

}∣∣∣
≤
∣∣∣{i, j ∈ Ω s.t. |Rij − M̂ (T )

ij | > 1
}∣∣∣

≤
∑
ij∈Ω

∣∣∣Rij − M̂ (T )
ij

∣∣∣ ,
where the last quantity is the entry-wise `1-norm of the matrix
PΩ(R− M̂ (T )), denoted by ‖PΩ(R− M̂ (T )‖1. Therefore,

1√
mn
‖PΩ(R− M̃(T ))‖0

≤ 1√
mn
‖PΩ(R−M + M− M̂(T ))‖1

≤ 1√
mn

(
‖PΩ(R−M)‖1 + ‖PΩ(M− M̂(T ))‖1

)
≤ ‖PΩ(N)‖F + ‖PΩ(M− M̂(T ))‖F .

Proof of Theorem 2.
dist(v(t+1),v?)

= ‖Pv?
⊥
(v̂t+1)‖2/‖v̂(t+1)‖2

=
1

2m
‖Pv?

⊥
(σ?〈u(t),u?〉v? − F+Nres)‖2/‖v̂(t+1)‖2

ζ1=
1

2m
‖Pv?

⊥
(−F+Nres)‖2/‖v̂(t+1)‖2

ζ2
≤ 1

2m
‖F+Nres‖2/‖v̂(t+1)‖2

ζ3
≤ 1

2m
(‖F‖2 + ‖Nres‖2) /‖v̂(t+1)‖2

ζ4
≤ σ?δ2

√
1− (〈u(t),u?〉)2 + 2Nmaxpeµ1

√
mn

σ?
√

1− dist2(u(t),u?)− δ2dist(u(t),u?)− 2Nmaxpeµ1
√
mn
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ζ5
≤
σ?
(
δ2dist(u(t),u?) + 2Nmaxpeµ1

)
σ?
(√

3
2
− δ2

2
− 2Nmaxpeµ1

)
ζ6
≤ 1

4
dist(u(t),u?) +

µ1pe
δ2

,

where ζ1 follows since the first term in the numerator is
orthogonal to v?, ζ2 follows since ∀x,y, ‖Py(x)‖2 ≤ ‖x‖2,
ζ3 follows from the triangle inequality, ζ4 follows by using
Lemma 5 and Lemma 7, ζ5 follows from the fact that σ? =√
mn and dist(u(t),u?) ≤ dist(u0,u?) ≤ 1/2, and finally

ζ6 follows by using the condition on δ2 from Theorem 1.
Using similar arguments, we show that dist(u(t+1),u?) ≤
1
4 dist(v(t+1),v?) + µ1pe

δ2
.

Proof of Corollary 2. It follows from Theorem 2 that, after T
iterations,

dist(û(T ),u?) ≤ 1

4

(
1

4
dist(û(T−1),u?) +

µ1pe
δ2

)
+
µ1pe
δ2

=
1

16
dist(û(T−1),u?) +

5µ1pe
4δ2

...

≤ 1

16T
dist(û(0),u?) +

5µ1pe
4δ2

(
1 +

1

16

1

162
+

+ · · · (T terms))
ζ1
≤ 1

2

1

16T
+

4µ1pe
3δ2

≤ 1

2

ε

‖M‖F
+

4µ1pe
3δ2

, as T = O

(
log
‖M‖F
ε

)
where ζ1 follows from the fact that dist(û(0),u?) ≤ 1/2 (see
Lemma 2).

Proof of Theorem 1. In order to prove this theorem, firstly we
need to bound the error between the true matrix M and the
output of Algorithm 2 prior to the rounding step. Let us denote
the latter as the scaled estimate M̂(T ), where we have M̃(T ) =
sign(M̂(T )). By using (25), the difference between M and
(appropriately scaled) M̂(T ) is

M− M̂(T ) = M− u(T )
[
σ?〈u(T ),u?〉v? − F +Nres

]T
= M− u(T )(u(T ))Tu?σ?(v?)T + u(T )FT

− u(T )NT
res

=
(
I− u(T )(u(T ))T

)
M + u(T )FT − u(T )NT

res.

Using the fact that ‖v?‖2 = 1, ‖u(T )‖2 = 1, and using
Lemma 5, Lemma 7, and Corollary 2, we have
‖M− M̂(T )‖F
≤ ‖

(
I− u(T )(u(T ))T

)
u?σ?‖2 + ‖F‖2 + ‖Nres‖2

≤ σ?dist(u(T ),u?) + σ?δ2dist(u(T ),u?) + 2σ?Nmaxpeµ1

= σ?(1 + δ2)

(
ε

2‖M‖F
+

4µ1pe
3δ2

)
+ 2σ?Nmaxpeµ1

≤ ε(1 + δ2)

2
+ 2σ?peµ1

(
(3Nmax + 2)δ2 + 2

3δ2

)
.

The theorem then follows by setting ε′ = ε(1+δ2)
2 and substi-

tuting the value of µ1.

Proof of Corollary 1. Using Lemma 10 and Theorem 1,
and noting that σ? =

√
mn, the normalized minimum error

correction score ˜MEC = 1
mn‖PΩ(R − M̃(T ))‖0 can be

bounded as
˜MEC ≤ 1√

mn

(
‖PΩ(M− M̂(T ))‖F + ‖PΩ(N)‖F

)
≤ ε′ + 2peµ1σ

?

3δ2
√
mn

(2 + (2 + 3Nmax)δ2) +
1√
mn
‖PΩ(N)‖F

= ε′ +
2peµ1

3δ2
(2 + (2 + 3Nmax)δ2) +

1√
mn
‖PΩ(N)‖F .

D. Characterizing the noise matrix

Proof of Lemma 1. Noise matrix N clearly follows the worst
case noise model as described in [25] since ∀i, j ∈ [m] ×
[n], |Nij | ≤ Nmax. Let Ω′ ⊆ Ω be the set of indices where
a sequencing error has occurred, i.e., ∀(i, j) ∈ Ω′, Nij 6= 0.
Define δij to be a random variable indicating the membership
of the index (i, j) in Ω′, i.e., δij = 1 if (i, j) ∈ Ω′, 0 otherwise.
Since sampling and error occur independently, the probability
that δij = 1 is ppe. Therefore, |Ω′| ≈ E

[∑
ij δij

]
= mnppe

w.h.p. Using Theorem 4 below, we conclude that
‖PΩ(N)‖2

p
≤ 2
|Ω′|
√
m

pm
√
n
Nmax = 2Nmaxpe

√
mn.

Theorem 4 ( [25]). If N ∈ Rm×n (m ≤ n) is a matrix
with entries chosen from the worst case model, i.e., |Nij | ≤
Nmax ∀(i, j) for some constant Nmax, then for a sample set
Ω drawn uniformly at random, it holds that

‖PΩ(N)‖2 ≤
2|Ω|
√
m

m
√
n

Nmax.
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