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ABSTRACT. The problem of finding the least-squares solution to a system of
linear equations where the unknown vector is comprised of integers, but the
matrix coefficient and given vector are comprised of real numbers, arises in
many applications: communications, cryptography, GPS, to name a few. The
problem is equivalent to finding the closest lattice point to a given point and
is known to be NP-hard. In communications applications, however, the given
vector is not arbitrary, but rather is an unknown lattice point that has been
perturbed by an additive noise vector whose statistical properties are known.
Therefore in this paper, rather than dwell on the worst-case complexity of the
integer-least-squares problem, we study its expected complexity, averaged over
the noise and over the lattice. For the “sphere decoding” algorithm of Fincke
and Pohst we find a closed-form expression for the expected complexity and
show that, for a wide range of noise variances and dimensions, the expected
complexity is polynomial, in fact often roughly cubic. Since many commu-
nications systems operate at noise levels for which the expected complexity
turns out to be polynomial, this suggests that maximum-likelihood decoding,
which was hitherto thought to be computationally intractable, can in fact be
implemented in real-time—a result with many practical implications.

1. Introduction and Problem Statement

In this paper we shall be concerned with the following so-called integer least-

squares problem

1.1 i - H

(1.1) min ||z — Hsl,,
where z € R", H € R™™, and Z™ denotes the m-dimensional integer lattice,
i.e., s is an m-dimensional vector with integer entries. Often, the search space is a
(finite) subset of the infinite lattice, D C Z™, in which case we have

1.2 min x— Hs|, .

(12) min_ [l — Hsll,

The integer least-squares problem has a simple geometric interpretation. As
the entries of s run over the integers, s spans the “rectangular” m-dimensional
lattice, Z™. However, for any given lattice-generating matriz H, the n-dimensional
vector Hs spans a “skewed” lattice. (When n > m, this skewed lattice lives in an
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m-dimensional subspace of R™.) Therefore, given the skewed lattice Hs, and given
a vector z € R", the integer least-squares problem is to find the “closest” lattice
point (in a Euclidean sense) to z—see Figure 1.

® o .o o

FIGURE 1. Geometrical interpretation of the integer least-squares problem.

Compared to the standard least-squares problem where the unknown vector
s is an arbitrary vector in R™, and the solution is obtained via a simple pseudo-
inverse, it is much more difficult to find the solution to (1.1) or (1.2). The main
reason is that the search space is discrete (whether it is finite or infinite). In fact,
it is well known that problems (1.1) and (1.2) are, for a general H, NP hard, both
in a worst-case sense [1], as well as in an average sense [2].

Integer least-squares problems appear in a host of applications. In communica-
tions, when the channel is linear and the noise i.i.d. Gaussian, maximum-likelihood
decoding leads to a least-squares cost. When the transmitted symbols are from a
finite set, this can be often cast as an integer least-squares problem. Applications
iclude lattice codes [3, 4], CDMA systems [5, 6], multi-antenna systems [7, 8, 9],
etc. In all these applications, the unknown vector s represents the transmitted sig-
nal, the matrix H represents the channel, and the vector x represents the received
signal. For example, in the multi-antenna context of V-BLAST [7] where we have
M transmit and N receive antennas, H is the (m = 2M) x (n = 2N) real channel
matrix, and for linear space-time codes (such as those in [9]) it is the equivalent
channel matrix. The integer least-squares problem also arises when we have a fre-
quency selective FIR channel H(z) = hg + h1z~ ! + ...hrz~ L, in which case the
channel matrix takes the form of a Toeplitz matrix

C ho -
h1  ho
(1.3) H = hr ho
h - m
| hr |

Other applications include global positioning systems (GPS) [10] and cryptog-
raphy. In fact, there is a whole family of public-key cryptosystems based on the
NP-hardness of the integer least-squares problem [11, 12, 13].

The remainder of this paper is organized as follows. In section 2 we give an
overview of some heuristic and exact methods to solve the integer least-squares
problem. We show that the exact methods can offer substantial gains over the
heuristic ones. However, they generally rqeuire an exponential worst-case com-
plexity, whereas the heuristic methods require only cubic, O(m?), computations.
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Section 3 introduces the sphere decoding algorithm of Fincke and Pohst and argues
that, if the received point is arbitrary, then the expected complexity of the algorithm
is exponential. Section 4 introduces a random model for the integer least-squares
problem, where the received point is assumed to be a lattice point perturbed by an
additive Gaussian noise vector with known statistical properties. It then proceeds
to compute the expected complexity of the sphere decoding algorithm, averaged
over both the noise and the lattice, as a function of the noise variance, or SNR.
This is done both for the infinite lattice, as well as some finite lattices encountered
in communications problems. Simulations are presented in section 5, where it is
shown that over a wide range of rates, SNRs and dimensions (in fact, those that
are typically encountered in communications problems), the expected complexity of
the sphere decoding algorithm is polynomial, often cubic. Section 6 mentions some
generalizations of the Fincke-Pohst algorithm and section 7 provides the conclusion.
The appendices give some mathematical background for the problems encountered
in this paper.

2. Overview of Methods

Since the integer least-squares problem arises in many applications and finding
the exact solution is, in general, NP hard, all practical systems employ some ap-
proximations, heuristics or combinations thereof. In communications applications,
these approximations can be broadly categorized into three classes.

1. Solve the unconstrained least-squares problem to obtain § = H'xz, where H'
denotes the pseudo-inverse of H. Since the entries of § will not necessarily
be integers, round them off to the closest integer (a process referred to as
slicing) to obtain

(2.1) $p = [H'z] .

The above §p is often called the Babai estimate [1]. In communications
parlance, this procedure is referred to as zero-forcing equalization.

2. Nulling and cancelling. In this method, the Babai estimate is used for only
one of the entries of s, say the first entry s;. s; is then assumed to be known
and its effect is cancelled out to obtain a reduced-order integer least-squares
problem with m — 1 unknowns. The process is then repeated to find ss, etc.
In communications parlance this is known as decision-feedback equalization.

3. Nulling and cancelling with optimal ordering. Nulling and cancelling can
suffer from “error-propagation”: if s; is estimated incorrectly it can have
an adverse effect on the estimation of the remaining unknowns s», s3, etc.
To minimize the effect of error propagation, it is advantageous to perform
nulling and cancelling from the “strongest” to the “weakest” signal. This is
the method proposed for V-BLAST [7]—see also [14].

The above heuristic methods all require O(m?3) computations, essentially be-
cause they all first solve the unconstrained least-squares problem.

2.1. Lattice Reduction. The aforementioned heuristic methods are exact
only if the columns of H are orthogonal. In this case H can be diagonalized by a
unitary transformation on the left, and so slicing the unconstrained least-squares
solution yields the exact solution.

In practice, however, the columns of H are rarely orthogonal. Orthogonalizing
the columns of H via a QR decomposition, or otherwise, generally destroys the
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lattice structure. (The reason being that, if s has integer entries, Rs need not have
integer entries.) One method that attempts to alleviate this is lattice reduction. In
these methods, one attempts to find an invertible M x M matrix T, such that T
and T~! have integer entries (thereby preserving the lattice structure), and such
that the matrix G = HT is as “orthogonal as possible”. Having found such a T,
rather than solve (1.1), one can solve the integer least-squares problem
(2:2) min |z — Gtf],,
using the earlier meantioned heuristics and set s = T~'t. Of course, lattice re-
duction is itself NP-hard. A common heuristic is the LLL (Lenstra, Lenstra and
Lovasz [15]) algorithm which, permitting a gross oversimplification, can be regarded
as Gram-Schmidt over integers.

While lattice reduction may lead to some improvement in the solution of (1.1),
the integer least-squares problem over the infinite lattice, it is not useful for (1.2),
which is over a subset of the lattice. The reason is that the lattice transmforming
matrix T often destroys the properties of the subset D C Z™. Since in communica-
tions applications, we are always interested in a finite subset of the integer lattice,
we shall therefore not consider lattice reduction methods in this paper.

2.2. Exact Methods. With the abundance of heursitic methods, it is natural
to ask what their performance is, and how close they come to the optimal solution?
In [8] this question is studied in the context of V-BLAST where it is shown that
the exact solution significantly outperforms even the best heuristics. We also give
an example here in the context of space-time codes from [9], which is shown in
Figure 2. The example is a rate R = 16 space-time code for a system with M = 8
transmit and N = 4 receive antennas,. The resulting integer least-squares problem
corresponds to dimension m = 64 and the entries of s each take on 4 integer values,
say {—3,—1,1,3}. Therefore the number of lattice points in D is 4% = 2128 ~
3.4 x 10%®. As can be seen from Figure 2, the BER performance of the exact is
integer least-squares solution is far superior to that of the best heuristic, which in
this case is nulling and cancelling with optimal ordering.!

The above discussion shows that there is merit in studying exact solutions.
The most obvious one is to form a search over the entire lattice which, although
theoretically feasible for finite lattices, invariably requires an exponential search.
There do, however, exist exact methods that are a bit more sophisticated than the
above full search. These include Kannan’s algorithm [16] (which searches only over
restricted parallelograms), the KZ algorithm [17] (based on the Korkin-Zolotarev
reduced basis [18]) and the sphere decoding algorithm of Fincke and Pohst [19].
Since the work of Fincke and Pohst the sphere decoding algorithm has been redis-
covered in several contexts (see, e.g., [10] in the context of GPS systems) and is
the algorithm we will be considering in this paper.

3. Sphere Decoding

The basic premise in sphere decoding is rather simple: we attempt to search
over only lattice points that lie in a certain hypersphere of radius r around the given
vector z, thereby reducing the search space and hence the required computations
(see Figure 3). Clearly, the closest lattice point inside the hypersphere will also be

1Of course, at this point it may appear surprising that one can even generate Figure 2, since
it requires finding the exact solution among a set of size 1038—more on this later.
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M=8, N=4, R=16, LD Code: N/C vs. ML Decoding
10 ¢ T T

N/C

ML
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FIGURE 2. Bit error performance of a rate 16 linear space-
time code, corresponding to m = 64. FExact ML solution
vs. nulling/cancelling with optimal ordering.  (No. of lattice
points= 2128 ~ 3.4 x 108).

the closest lattice point for the whole lattice. However, close scrutiny of this basic
idea leads to two key questions.

o o o o
FIGURE 3. Idea behind the sphere decoder

1. How to choose r? Clearly, if r is too large, we obtain too many points and
the search remains exponential in size, whereas if r is too small, we obtain
no points inside the hypersphere.

A natural candidate for r is the covering radius of the lattice, defined to
be the smallest radius of spheres centered at the lattice points that cover the
entire space. This is clearly the smallest radius that guarantees the existence
of a point inside the hypersphere for any vector z. The problem with this
choice of r is that determining the covering radius for a given lattice is itself
NP hard [20].
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Another choice is to use r as the distance between the Babai estimate
and the vector z, i.e., r = ||z — H§g||, since this radius guarantees the
existence of at least one lattice point (here the Babai estimate) inside the
hypersphere. However, it is again not clear in general whether this choice of
radius leads to too many lattice point lying inside the hypersphere.

2. How can we tell which lattice points are inside the hypersphere? If this re-
quires testing the distance of each lattice point from z (to determine whether
it is less than ), then there is no point in sphere decoding as we will still
need an exhaustive search.

Sphere decoding does not really address the first question. However, it does
propose an efficient way to answer the second, and more pressing, one. The ba-
sic observation is the following. Although it is difficult to determine the lattice
points inside a general m-dimensional hypersphere, it is trivial to do so in the (one-
dimensional) case of m = 1. The reason is that a one-dimensional hypersphere is
simply an interval and so the desired lattice points will be the integer values that lie
in this interval. We can use this observation to go from dimension & to k+ 1. Sup-
pose we have determined all k-dimensional lattice points that lie in a hypersphere
of radius r. Then for any such k-dimensional point, the set of admissible values of
the &k + 1-th dimensional coordinate that lie in the higher dimensional sphere of the
same radius r forms an interval.

The above means that we can determine all lattice points in a hypersphere of
dimension m and radius r by successively determining all lattice points in hyper-
spheres of lower dimensions 1,2,...,m and the same radius 7. Such an algorithm
for determining the lattice points in an m-dimensional hypersphere essentially con-
structs a tree where the branches in the k-th level of the tree correspond to the
lattice points inside the hypersphere of radius r and dimension k—see Figure 4.
Moreover, the complexity of such an algorithm will depend on the size of the tree,
i.e., on the number of lattice points visited by the algorithm in different dimensions.

NS

FIGURE 4. Sample tree generated to determine lattice points in a
4-dimensional hypersphere.

k
k
k
k

With this brief discussion we can now be more specific about the problem at
hand. To this end, we shall assume that n > m, i.e., that there are at least as many
equations as unknowns in = & Hs (the case n < m is considered further below).
Note that the lattice point Hs lies in a hypersphere of radius r if, and only if,

(3.1) r? > ||z — Hs|>.
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In order to break the problem into the subproblems described above, it is useful to
consider the QR factorization of the matrix H

(3.2) H=0 [ O(n_i)m ] ,

where R is an m X m upper triangular matrix and @ = [ Q1 Q- ] isann xn
orthogonal matrix. The matrices Q1 and ) represent the first m and last n —
m orthonormal columns of @, respectively. The condition (3.1) can therefore be

written as
2
_ || @1 R
-\l&]--[5]

2

ﬁ
M
\Y

R
‘x_[Ql Qz][o ]S
= [|Qiz — Rs|* + |Q3I” -
Or in other words,
(3.3) r* = 1Qs=l* > 11Qfx — Rs|.

Defining y = Qiz and r'2 = 72 — ||Q3z||* allows us to rewrite this as

2
m m
(34) T 2 Z z Yi — ZT,'J'S]'
i=1 j=i

Here is where the upper triangular property of R comes in handy. The RHS of the
above inequality can be expanded as

(35) r 2 Z (ym - Tmmsm)z + (ymfl - rmfl,msm - Tmfl,mflsmfl)Z +...
where the first term depends only on s,,, the second term on {s,,,sm_1} and so

on. Therefore a necessary condition for Hs to lie inside the hypersphere is that
72> (Ym — TmmSm)?- This condition is equivalent to s,, belonging to the interval

(3.6) ’Vw-‘ < s, < \‘M—ime i

T'mm Tmm

Of course, (3.6) is by no means sufficient. For every s, satisfying (3.6), defining
T’n%q =72 —(ym - T'mmé’m)2 and Ym—1/m = Ym—1—Tm—1,mSm, & stronger necessary
condition can be found by looking at the first two terms in (3.5), which leads to

Sm—1 belonging to the interval

(37) ’V_r;n—l + ymlm-‘ < Sm_1 < \‘T’Im,—l + ymllmJ ]

Tm—1,m-1 "m—1,m—1

One can continue in a similar fashion for s,,_2, and so on until s, thereby obtaining
all lattice points belonging to (3.1).

3.1. The Sphere Decoding Algorithm. We can now formalize the algo-
rithm.
Input: Q= Q1 Q2 |, R, z,y=Qjiz, r.
L. Set k=m, r2 =7 = |Q5z|°, Ym|m+1 = Um
2. (Bounds for s;) Set UB(sg) = L%J, sk = [%] -1
3. (Increase si) sx = si + 1. If s, < UB(sg) go to 5, else to 4.
4. (Increase k) k = k + 1; if kK = m + 1 terminate algorithm, else go to 3.
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5. (Decrease k) If k=1goto 6. Else k =k — 1, ypjp—1 = Yk + D0 p 1 ThiS)s
rZ =12 — Wkt — Tkpkr18e41)?, and go to 2.
6. Solution found. Save s and go to 3.

We should mention that the original paper of Fincke and Pohst [19] used
slightly different notation to the one we have used. For completeness, we shall
include it here. The paper [19] makes use of the unconstrained least-squares solu-
tion § = Hfz = R~'Q}x. In this case, it follows that ||Q3z||> = ||z||? — ||H3||* and
so inequality (3.3) becomes

(3.8) r? =zl + | H3|* > [|R(s — 3||*.
The expansion (3.5) becomes

2
, . Tm—1,m .
(3.9 r2> r?n—l,m—l <5m1 —8m1+ 71’(8771 — Sm)) +...

"m—1,m—1

and the intervals (3.6) and (3.7)

(3.10) b — —— | <5 < | b+ —
Tmm Tmm
and
ro . P
(3].].) ’V§m1m - mil-‘ S Sm—1 S \‘Smlm + — ! J
"m—1,m—1 "m—1,m—1

Tm_1,m

respectively, where we have defined 5., _1};, = 81 +
now alternatively write the algorithm as

(8m — 8m)- We can

Tm—1,m—1

Input: R, z, 8, r.
i
la. Set k =m, r2 =% — ||z + [|H3|]?, $mjmt+1 = Sm
i

Tk

2a. (Bounds for si) Set z = =, UB(sk) = |2+ 8kjkt1ls sk = [—2 4 8ppqa ] — 1

3a. (Increase s) s = s + 1. If s, < UB(sg) go to 5a, else to 4a.

4a. (Increase k) k = k+ 1; if k = m + 1 terminate algorithm, else go to 3a.

5a. (Decrease k) If k = 1 goto 6a. Elsek = k—1, 8451 = 85+> 12y 1y %(Sj—
i), rd =13, — Tt ki1 (Sk41 — 8pq1jp42)”, and go to 2.

6a. Solution found. Save s and go to 3a.

3.2. A First Look at Complexity. The paper [19] gives a complexity anal-
ysis of the above algorithm. The main result is that the number of arithmetic
operations of the aforementioned algorithms (excluding Steps 1, 2, 3) is at most

i Y vt -smr s a0 (W38 ) 0.

where d = max(r},,...,r2,,.). In practice d grows proportional to n (r?, for
example, is simply the squared norm of the first column of H, which has n entries)
and r? grows proportional to m (for more on this see below) and so the upper bound
on the number of computations in (3.12) can be quite large. Our experience with
numerical implementations of the algorithm shows that the bound is quite loose.
Moreover, although it does depend on the lattice-generating matrix H (through
the quantity d), it offers little insight into the complexity of the algorithm. We will
therefore not further consider it.
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In this paper we propose to study the complexity of the sphere decoding algo-
rithm using the geometric interpretation we have developed so far. As mentioned
earlier, the complexity of the sphere decoding algorithm depends on the size of the
generated tree in Fig. 4, which is equal to the sum of the number of lattice points in
hyperspheres of radius r and dimensions & = 1, ..., m. The size of this tree depends
on the matrix H, as well as on the vector z. Therefore, unlike the complexity of
solving the unconstrained least-squares problem which only depends on m and n
and not on the specific H and x the complexity of the sphere decoding algorithm
is data-dependent.

3.2.1. Ezpected Complexity. Of course since the integer least-squares problem
is NP hard, the worst-case complexity of sphere decoding is exponential. However,
if we assume that the matrix H and vector z are generated randomly (according
to some known distributions), then the complexity of the algorithm will itself be a
random variable. In this case, it is meaningful to study the expected (or average)
complexity of sphere decoding, and perhaps even some of its higher order moments.?

In what follows we will give a rough argument for the expected complexity of
sphere decoding, although it is not too difficult to make it rigorous. (For a rigorous
treatment, albeit using a different approach, see [2].) For an arbitrary point z,
and an arbitrary lattice H, it is not too difficult to show that the expected number
of lattice points inside the k-dimensional sphere of radius r is proportional to its
volume,

k2 .
T(k/2+1)
Therefore the expected total number of points is

“ mh/2 k E * 2%k 2
2:7 2:7 ~e™, forl )
2 F(k/2+l)r >k:1 F(k—l—l)r e’ , ftor large m

To have a nonvanishing probability of finding a point in the m-dimensional sphere,
its volume must be
7.[.m/2
——r™ =0().
DS
But from Stirling’s formula this implies that r?> = O(m) and that the expected
complexity of the algorithm is exponential, e2(™),

4. A Random Model

Although not unexpected, the above is a discouraging result. In communica-
tions applications, however, the vector x is not arbitrary, but rather is a lattice
point perturbed by additive noise with known statistical properties. Thus, we will
assume

(4.1) x=Hs+w,

where the entries of v are independent N(0,0?) random variables.

2In passing, we should mention that there is recent interest in studying the expected, rather
than worst-case, complexity of various algorithms in the computer science literature. The reader
may wish to refer to the survey paper [21] and the references therein, as well as the influential
papers [22, 23]. In these works, a uniform distribution on the underlying problem is often (artifi-
cially) assumed and complexity issues such as NP-completeness, etc., are re-visited. However, as
we shall see below, our problem allows for a very natural stochastic model.
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4.1. Choice of the Radius. The first by-product of this assumption is a
method to determine the desired radius . Note that 5tz - [[v||? = 5 - ||z — Hs||? is
a =% random variable with n/2 degrees of freedom. Thus we may choose the radius
to be a scaled variance of the noise,

r? = ano?,

in such a way that with a high probability ps;, we find a lattice point inside the

sphere,
an/2 \n/2—1 \
“Ag) =
L e o=

where py, is set to a value close to 1, say, ps, = 0.99. [If the point is not found, we
can increase the probability pg,, adjust the radius, and search again.]

The important point is that the radius r is chosen based on the statistics of
the noise, and not based on the lattice H. Making the choice based on H quickly
leads us to NP hard problems (such as determing the covering radius). Moreover,
choosing the radius based on the noise has a benificial effect on the computational
complexity.

4.2. Implications for Complexity. Clearly, when o2 = 0, i.e., when there
is no noise, the exact solution can be found in O(m?) time. (The pseudo-inverse
does the trick). On the other hand, when 02 — oo, the received vector x becomes
arbitrary, for which we argued in section 3.2 that the expected complexity is expo-
nential. What we are interested in is what happens at intermediate noise levels. In
other words, how do we transition from cubic-time to exponential complexity?

In our analysis we shall compute the expected complexity averaged over both
the noise v, as well as over the lattice-generating matrix H. Thus, we need a
random model for H and will assume that it is comprised of independent N (0,1)
entries. This assumption is made for two reasons:

1. It makes the problem analytically tractable.

2. It is also a very reasonable assumption for large, unstructured, matrices H.
(There exist many results in random matrix theory, such as Wigner’s semi-
circle law, mixing conditions, etc. that are not very sensitive to Gaussian
assumptions—see e.g., [24].)

Of course, if H possesses special structure, such as the Toeplitz structure (1.3),
then this is not a reasonable assumption and the structure must be explicitly taken
into account. However, this merits a separate analysis and is beyond the scope of
the current paper.

Now, as argued in the previous section, the complexity of sphere decoding
algorithm is proportional to the number of nodes visited on the tree in Figure 4
and, consequently, to the number of points visited in the spheres of radius r and
dimensions k£ = 1,2,...,m. Hence the expected complexity is proportional to the
number of points in such spheres that the algorithm visits on average. Thus the
expected complexity of sphere decoding algorithm is given by

m
(4.2) C(m,0?) = Z(gxpected # of points in k-sphere of radius t)-(ﬂops/point).
k=1 e

éEp(k,r2=ama'2) 2k+17

The summation in (4.2) goes over the dimensions k = 1 through k£ = m. The
coefficient 2k + 17 is the number of elementary operations (additions, subtractions,
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and multiplications) that the Fincke-Pohst algorithm performs per each visited
point in dimension k.

We need to compute E,(k,r?), the expected number of points inside the k-
dimensional hypersphere of radius r. Let us first begin with the highest dimension,
ie., k=m.

.
4 N
o o @ o
4 \
! \
®  ©o e 0
1
S I
® >0 @
\ /
\ /
S/
o () ® 0
,
N .
N -

FIGURE 5. s; transmitted and x received. We are interested
whether an arbitrary point s, lies in a hypersphere of radius r
centered around x.

4.2.1. k = m. If the lattice point s; was transmitted and the vector x = Hs;+v
received, we are interested in the number of arbitrary lattice points s, such that
ll — Hs,||” <.
(See Figure 5.) But, since z = Hs; + v, this is just
(4.3) llv+ H(s; — 50)[I> < 72

Now the vector w = v+ H(sy — s,) is clearly a zero-mean Gaussian random vector,
since its entries are the sums of zero-mean Gaussian random variables. Now the
covariance matrix has (i, j) entry

E (Ui + Z hi(st,6 — 3a,k)> (Uj + Z hji(seq — Sa,1)>

k=1 =1

Ew,-wj

Il

o285 + Z Z 0ijOni(8t,k — Sa,k)(St1 — Saj)

k=11=1
= 0i(0” + lIse — sall®), where ||| = 37}, 5%

Thus, w = v + H(s; — s4) is an n-dimensional vector of zero-mean iid Gaussian

2
random variables with variance o2 +||s; — s4||?. This implies that ]

20 H[st—sal®)
% is a x? random variable with n/2 degrees of freedom. Thus, the

probability that the lattice point s, lies in a hypersphere of radius r around z is

2
r? n) /2<cr2+||:a—st||2) An/2-1
4.4 ,= | = e N\
(44 7(2(aﬂ+||sa—st||2) 2) =, T(n/2)

Now that we have computed this probability, the expected number of points in
the m-dimensional hypersphere can be evaluated. However, before doing so, let us
turn to the k < m case.
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4.2.2. k < m. Referring back to (3.5), we are interested in all k-dimensional
lattice points s such that
2

m m
(4.5) r?> >0 yi— ) ris;
i=m—k+1 Jj=i

To better understand this set, let us again consider the QR decomposition of (3.2)
to write
2

llo — Hsall” = llv+ H(s — s4)|I”

'U+Q|:§:|(St_5a)

2

HQ*U+ [ ]g ] (8¢ — 5a)

Now if we partition the upper triangular matrix R and the vector u = Q*v as

um—k
(4.6) R= | ftmkm—n Bmik ] and u = u®
0 Rk,k un—m

where the block matrices Ry—k.m—k, Rm—kk and Ry are (m — k) x (m — k),
(m —k) x k and k x k, respectively, and the vectors u™ %, u* and u"~™ are m — k,
k and n — m dimensional, respectively, then we can write

le = Hsol> = [[u™ "+ R ym(s7" " =50 7") + R rp (7 — s8)|I” +
[[u® + Ry (sf — si)I” + [[u" |2
It is now straightforward to see that 72 = 72 — ||u"~™||> and that ||u* + Ry x(s¥ —
sF)||? is simply the last k terms in the sum (3.4). Thus, we may rewrite the
inequality (4.5) as
2
0 a
Thus, to compute the expected number of k-dimensional lattice points that

satisfy (4.5), we need to determine the probability distribution of the RHS of (4.7).
For this we need the following result.

(47) 7 2 ot Rt s PP = | [ [ Tt |k - ot

LEMMA 4.1. Let H be ann x m (with n > m) random matriz with iid columns
such that each column has a distribution that is rotationally-invariant from the left.
In other words, for any n xn unitary matriz ©, the distribution h;, the i-the column
of H, satisfies

Pn(h;) = pn(Oh;).
Consider now the QR decomposition

i-alt]

with Q n x n and unitary, and R m X m and upper triangular with non-negative
diagonal entries. Then Q) and R are independent random matrices, where

1. @ has an isotropic distribution, i.e., one that is invariant under pre-multiplication

by any n X n unitary matriz:

pq(Q) = pq(0Q), Y00* =0*0 =1.
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2. Consider the partitioning of R according to (4.6) and further partition H as

7= Hy pm—k Hy ik
Hn—m+k,m—k Hn—m—i—k,k ’

where the subscripts indicate the dimensions of the sub-matrices. Then Ry

has the same distribution as the R obtained from the QR decomposition of

the (n —m + k) x k matriz Hy— k-

Proof: See Appendix A.

O

Remarks:
1. What is interesting about the above Lemma is that even though the (n —
m+ k) x k submatrix Rg’k is not the R of the QR decomposition of the

(n —m + k) x k submatrix H,,_,,k it has the same distribution.

2. Lemma 4.1 clearly holds for an H with iid zero-mean unit-variance Gaussian
entries. In this case, one can be explicit about the distribution of R: the
entries are all independent with the i-th diagonal having a x? distribution
with (n—i+1)/2 degrees of freedom and the strictly upper triangular entries
having iid zero-mean unit-variance Gaussian distributions.

Let us now apply Lemma 4.1 to the problem at hand. First, since v has iid zero-
mean o2-variance Gaussian entries and @ is unitary, the same is true of v = Q*v
and also of the sub-vectors u™ ¥, u¥ and u"~™. Moreover, since @Q is indepedent
of R, the same is true of u. Returning to the inequality (4.7) let us multiply the
vector inside the norm by an isotropically-random unitary matrix ©. Since this
does not change norms, we have

k 2
r2>H@[uff_m]+@[Rk’k ](Sf—S'Z

> ¢ )

k

Now clearly, the n — m + k-dimensional vector v = © [ ] has iid zero-mean

unfm

o%-variance Gaussian entries. Also, from Lemma 4.1 part 2, the (n —m + k) x k
.5 R .. . . . .

matrix H = © [ S’k ] has iid zero-mean unit-variance Gaussian entries. Thus,

we may write (4.7) as
(4.8) r? > |0+ H(st — si)l,

which is precisely (4.3), except that the dimensions have changed from n and m
to n —m + k and k. Thus, using the same argument as presented after (4.3),
we conclude that the probability that the k-dimensional lattice point s lies in a
hypersphere of radius r around z is

(4.9)

( r? n—m+ k) _ /2(u2+u:§—sfu2) Nn—mtk)/2-1 N
T\202 (st —sF2) T 2 ~ o T((n—m+ k)/2) :

Given this probability and the one in (4.4), one could in principle proceed by
finding the argument of the gamma function in (4.4) and (4.9) for each pair of
points (sg, s¢), and sum their contributions; however, even for a finite lattice this
would clearly be a computationally formidable task (and not doable at all in the
infinite lattice case). Therefore, we shall find it useful to enumerate the lattice, i.e.,
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count the number of points with the same argument of the gamma function in (4.4)
and (4.9). Enumeration of infinite and finite lattices is treated separately.

4.3. The Infinite Lattice Case. The above probability (4.9) depends only
on the Euclidean distance between the points sf and s¥, that is, on ||s, — s¢[|%.||s% —
sF||? = ||s||*>. Now, since in an infinite integer lattlce Sa — St = § is just another
lattice point, we conclude that the probability in (4.9) depends only on the squared
norm of an arbitrary lattice point in the k-dimensional lattice. It is thus straight-
forward to see that the expected number of of lattice points inside a k-dimensional
hypersphere of radius r is given by:
(4.10)

Ep(kar2) =

r? n—m-+k

2o 1) 5 )-(# of k-dim lattice points s.t. ||s*||> =1).

NE

v(

~
Il
©

Since ||s||? = s? + ... + s2, we basically need to figure out how many ways a non-

negative integer [ can be represented as the sum of k squared integers. This is a
classic problem in number theory and the solution is denoted by r(l) [25]. There
exist a plethora of results on how to compute r(l). We only mention one here due
to Euler: r(l) is given by the coefficient of 2" in the expansion

oo k o
(4.11) (1+2 meQ) =1+ (e
m=1 =1

(For more on the problem of representing integers as the sum of squares see Ap-
pendix B.)
The above arguments lead to the following result.

THEOREM 4.2 (Expected complexity of sphere decoding over infinite lattice).
Consider the model
z=Hs+wv,
where v € R™*! is comprised of i.i.d. N(0,0?) entries, H € R™ ™ is comprised
of i.i.d. N'(0,1) entries, and s € Z™ is an m-dimensional vector whose entries are
integer numbers. Then the expected complezity of the sphere decoding algorithm of
section 3.1 with a search radius r for solving the integer least-squares problem,

min ||z — Hs||?,
s€EZ™

s given by

m

o > n—m+k
(4.12) C(m,o%,r) = (2k+17) ;v( T A )Tk(l)-

k=1

Proof: Follows from the earlier discussions.
O
We should remark that, for any given search radius r, there always exists a
probability that no lattice point is found. Therefore, to obtain the optimal solution,
it is necessary to increase the search radius. One plasuible way of doing this is to
start with a radius for which the probability of finding a point is 1 — €, then if no
point is found to increase the search radius to a value such that the probability of
finding no point is 1 — €2, and so on. For such a strategy, we have the following
result.
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CoRrOLLARY 1 (Expected complexity for finding the optimal solution). Con-
sider the setting of Theorem 4.2. Given any 0 < € K 1, consider a strategy where
we first choose a radius such that we find a lattice point with probability 1 — e, and
then increase it to a probability of 1 — €2, and so on, if no point is found. Then the
expected complexity of the sphere decoding algorithm to find the optimal solution is
given by

(4.13)
Clm, 0% =Y (1-ed 'Y 2k +17)3 (2‘()‘02”1 5 n- ’2” + ’“) re(l),
=1 k=1 =0

where a; 1s chosen such that

o;n n
4.14 (L n
(4.14) (53

) —1-¢, i=1,2,...
4.3.1. The Complex Case. In many applications, one is confronted with a com-

plex version of the integer least-squares problem. In this case, we may assume that
the model is

(4.15) x=Hs+v,

where now v € C"*! is comprised of i.i.d. CN(0,0?) (circularly-symmetric complex
normal) entries, H € C™*™ is comprised of i.i.d. CN(0,1) entries, and s € CZ™ is
an m-dimensional complex vector whose entries have real and imaginary parts that
are integers. As before, we are interested in the problem:

(4.16) min ||z — Hs|*.
seCcz™

The sphere decoding algorithm of section 3.1 can again be applied, provided we use
the complex QR decomposition, and replace with real operations with appropriate
complex ones. In this case, it can be shown (we are omitting the details for brevity
and because they closely parallel the real case) that (4.12) is now replaced by
4.17 C(m,o%,r) = 8k + 17 —,n—m+k>r D).

(17) (mo*sr) = 3 )gw(mz 210
Moreover, (4.13) is replaced by

(e} m e} 2
4.1 2 )= § (1 —e)ei! 1 qmo A
(4.18) C(m,0?,€) ;( €)e ;(sm 7);7<(02+l,n m+k ) rar (),

where «; is chosen such that
(4.19) y(ain,n)=1—¢€, i=1,2,...

4.3.2. Simulation Results. As a measure of complexity, instead of the complex-

ity itself, it is often useful to look at the complezity exponent, defined as
log C(m, o
(4.20) . = 08Cm.)
logm

When plotted, e, is more visually appealing since complexity exponent approaches
a constant if the expected complexity is polynomial, and grows like & if C(m, o?)
is exponential.

The complexity exponent is plotted as a function of m for different values
of 0% in Figure 6. As can be seen from the figure, for small enough noise the



174 BABAK HASSIBI AND HARIS VIKALO

expected complexity is polynomial, indicated by the constant e. over a wide range

m

of m. On the other hand, for large noise e, clearly exhibits the g behavior and

the computational complexity of the algorithm is exponential. We thus see the
transition from polynomial-time to exponential complexity that we were seeking.

16

14H

12

[N
o
T

complexity exponent

FIGURE 6. The complexity exponent as a function of m for 0% =
0.01,0.1,1,10 with € = .1 chosen for the sphere decoder.

4.4. Finite Lattice Case. In communications problems, rather than being
unbounded integers, the entries in the unknown m-dimensional vector s are often
points that belong to an L-PAM constellations,

(4.21) DLZ{—L_I—L_3... L=3 L_l}.

2’ 2 7T 2 7 2
In fact, L is often taken as power of 2. We say that the point s then belongs to the

lattice DT,
'DF ZPLXDLX---XDB,

m-times
where x-operation denotes the Cartesian product.
Furthermore, in this case, rather than the noise variance o
in the signal-to-noise ratio p,

2. one is interested

m(L? — 1)
1202
The probability expression (4.9) for finding an arbitrary lattice point s¥ inside
a sphere around the given point z when the point lattice sf was transmitted , holds
for the finite lattice case as well. However, counting lattice points which have the
same argument of the gamma incomplete function in (4.9) is not as easy. The reason

(4.22) p=
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is that unlike in the infinite lattice case, the difference between two lattice points,
sk — s¥ is not necessarily another lattice point. Thus, the lattice enumeration that
we used in the previous section needs to be performed over pairs of points, (s¥, sF).

More formally, the number of subset lattice points in the k-dimensional sphere

is given by
1 amo? n-m+k
rY Y gt

sf,sﬁED’f{,Hsffs’ﬂP:l

and enumerating the set

{(sk, k)| sf,sk € D, llsk = skI* =1},

a

appears to be complicated.

For this, we propose a modification of Euler’s generating function technique.
In particular, for various finite lattices we will define generating polynomials that,
when combined appropriately, perform the counting operations for us.

Let us do the case study for various values of L:

1. D%: The constellation D% consists of the corners of a k-dim hypercube, as

illustrated in Figure 7. Due to symmetry, all points in the hypercube are

v

FIGURE 7. Counting for D¥

essentially equivalent. Therefore, without loss of generality, we can assume

that the “lower-left-corner” point sf = [-1,-1,..., —%]T has been trans-

mitted. Then, depending on whether the corresponding entry of s is —%
or 1, the vector s¥ — s} is comprised of zero and one entries. The number

of such vectors whose squared norm is [ is clearly given by the number of

vectors that have [ entries at one, which is ( ]; ) This gives the number

of points in D¥ at distance [ from s¥.

2. D%: In this case, all points in the constellation are not the same. For each
entry of s¥, we can distinguish between the “corner” and the “center” points,
as illustrated in Figure 8. Extending Euler’s idea, for the corner points we
identify the generating polynomial

(4.23) bo(z) =1+ +2* +2°,
and for the center points the polynomial
(4.24) 61(z) =1+ 2z + z*.

Essentially, the powers in the polynomials 6y(z) and 6, (z) contain informa-
tion about possible squared distances between an arbitrary point s* and the



176

(4.25)

(4.26)

(4.27)

(4.28)

4.

I
N
I
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”corner” points: s; — s, € {0, £1,+2, +3}

N[
(v}
N

"center” points: s; — s, € {F1,0,£1,+2}

FIGURE 8. Counting for D¥

transmitted point s¥. For instance, if an entry in the transmitted vector s},
say S¢1, is a corner point, then s, 1 — s¢,1 € {0,£1,+2,+3}, depending on
Sa,1 € Dy. Thus the squared norm of their difference [sq,1 — s,g,1|2 can be
either 0, 1, 4, or 9, as described by the powers of 8y(z). On the other hand,
if 541, is a center point, then s,1 — s¢,1 € {0,%1,F1,+2} (which explains
coefficient 2 in front of term z in 6y (z)). Now, if among the k entries of s¥,
we choose a corner point j times, the number of ways ||s¥ — s¥||? can add
up to [ is given by the coefficient of z! in the polynomial

(%) st @.

DE: Note that

7T 5 3 11357
E_g (9 9 1 1 90 9 1y
Di=t—3—3 223333
Let us define the following subsets of Dsg:
81:{_1,1} 82:{_§’§}
S={-43 s=(-L4

Similar to the L = 4 case, we can identify the following polynomials for
counting s, — s; in D¥ lattice:

Pi(z) = 1+2z+2*+ 2% + 216 4 225 4 36
Pa(x) = 1+2z+22 +2° + 26 + 225,
P3(x) = 1+ 2z +22* +22° + 216,

Therefore, if among k entries of sF, we choose j; points from S;, i €
{1,2,3,4}, then the number of ways ||sf — s¥||? can add up to [ is given
by the coefficient of z! in the polynomial

(it i )R @ @0 @l @),
. ) . . k
where ji +j2 + Js + ja = k and ( J1,J2,J3,J4 ) - m

Counting for Dfs and higher order lattices is done similarly.

We can now summarize the above results for the expected computational com-
plexity of the Fincke-Pohst algorithm for finite lattices in the following theorem.
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THEOREM 4.3. [Expected complexity of the sphere decoding over a
finite lattice] Consider the model

z=Hs+wv,

where v € R™¥! is comprised of i.i.d. N'(0,1) entries, H € R™*™ is comprised of
i.i.d. N(0,p/m) entries, and s € DT is an m-dimensional vector whose entries are
elements of an L-PAM constellation. Then the expected complexity of the sphere
decoding algorithm of section (3.1) with a search radius of r for solving the integer
least-squares problem

min ||z — Hs||?,
seDy

1. For a 2-PAM constellation is

_ m k k am n—m+k
(4.29) C(m,p,r) —Z(2k+17)g( I )7(2(1+ L2l ) 9 )

k=1 m(LQ—l)

2. For a 4-PAM constellation is
(4.30)

m k
1 am n—m+k
C(m,p,r Z2k+17 Z_kZ( )gkl (2(1+ 120q__)’ 2 )’
k 1=0

=1 m(L?-1)

where gri(q) is the coefficient of ©9 in the polynomial
1+ 2z +z* + 22 (1 + 22 + 2tk
3. For a 8-PAM constellation is

(4.31)
Ui 1< am n—m+k
C(m,p,r) =D 2k +17) Y =D Gkjusnisis (@)Y 12 ;
k=1 q 4 1=0 2(1 + m(L2—1)) 2

where grj, jojaja (q) is the coefficient of 7 in the polynomial (4.28).
4. Similar expressions can be obtained for 16-PAM, etc., constellations.

Proof: Follows from the above discussions.
O

We remark that to obtain the optimal solution to the integer least-squares
problem we will occasionally need to increase the search radius r, and so we can
obtain a result similar to that of Corollary 1, which we omit for brevity.

4.4.1. The Complex Case. When confronted with a complex integer least-squares
problem, results similar to Theorem 4.3 hold. For complex 2-PAM (i.e., 4-QAM)
constellations we have

m 2k
2k om
k=1 =0 m(L2—-1)

for complex 4-PAM (i.e., 16-QAM),
(4.33)

m 2k
1 2k am
C(m,p,r ;819—%17)227,6;( I >gzkz((1)7<w,n—m+k>,
— 7 —

m(L2-1)
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and for complex 8-PAM (i.e., 64-QAM) we have

(4.34)
m 1 2k am
C(m,p,r) = Z(Sk +17) Z 2k ZQij1j2jsj4 (@) <W,n -m+ k) .
k=1 q 1=0 m(L?*-1)

5. Simulation Results

We shall illustrate the complexity calculations with a communications exam-
ple. Figure 9 shows the multiple antenna system with M-transmit and N-receive

antennas.
(%1
S1 hia 1
_/

hl,g V2

S2
SM é é/:( TN

X=Hs+v

FIGURE 9. Multiple antenna system

The received signal z is related to the transmitted symbol s via

(5.1) wz,lﬁHs—}—v,

where H € CV*M ig the known channel matrix, and v € CV*! is the additive noise
vector, both comprised of independent, identically distributed complex-Gaussian
entries C(0,1). Furthermore, entries in the symbol vector s are chosen from a
complex-valued QAM constellation. If we assume that the entries of s and H have,
on the average, unit variance, then p is the expected received signal-to-noise ratio
(SNR) at each receive antenna. To find a real-valued equivalent to the model (9),
we let m = 2M, n = 2N, and let s denote an m-dimensional real vector obtained
from the M-dimensional complex vector s,

s=[R(s)T 1(s)7]" .
Furthermore, let £ € R™*! denotes

z = [R(z)" I(m)T]T,
let v € R™*! denotes .

v=[R@T I,
and let H € R™*™ be given by

g [P [ R(Hg I(H)
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Then the real-valued equivalent of (9) is given by
z=Hs+w.

We consider the expected complexity of sphere decoding algorithm for signal detec-
tion in the system shown in Figure 9 for various QAM modulation schemes. The
expected complexity C(p,m) is a function of both the symbol vector size m and
the SNR p.? We shall consider “snapshots” in each dimension, i.e., we keep either
m or p variable fixed and plot the complexity as a function of the other variable.

SNR=20dB, c=m°®

R =m log(L)

1R,=40

) . Note: CS(SNR:ZOdB,mzlo) =27

[l el el
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FI1GURE 10. The complexity exponent as a function of m for p =
20db and L = 2,4, 8, 16.

Figure 10 shows the complexity exponent as a function of m for a fixed SNR
p = 20db and L-PAM constellations with L = 2,4, 8,16. For low rates (i.e., small
constellations) the expected complexity is polynomial, whereas for high rates (i.e.,
large constellations) it is exponential. Simulation results suggest that the complex-
ity is polynomial as long as the rate is sufficiently, but not necessarily all that much,
below the Shannon capacity corresponding to the SNR. Since this is the regime at
which most communication systems operate, it suggests that ML decoding can be
feasible. For instance, the complexity exponents curves in Figure 10 that correspond
to L = 8 and L = 16 modulation schemes appear to be in the exponential regime.
However, as is illustrated in Figure 10 for m = 10, the data rates corresponding to
the points on those two curves are larger than the corresponding ergodic capacity,

C,=E [1og det (Im + ﬁHHT)] :
M
3In all the simulations presented, the complexities are for € = .1. In other words, our initial

radius is determined so that we find a lattice point with probability .9. If no lattice point is found,
we increase the radius so that this probability increases to .99, and so on.
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For instance, when m = 10 (and SNR 20dB), ergodic capacity is Ce,, = 27. For
the same system parameters, only the rates provided by the modulation schemes
corresponding to L = 2 and L = 4 (R = 10 and R = 20, respectively) can be
supported by the channel. The other two modulation schemes cannot be employed
(we assume uncoded transmission). Note that expected complexity exponent in the
data transmission regime that is supportable by the channel complexity is roughly
cubic — which, in fact, is the complexity of the heuristic techniques.

11

L=16 (R=40)

L Ul
=0 AN
o

|
|
¢
[l el el

10

c=m°®, m=10 f

R =m log(L)

ar S .

JL=2 (R=10) -

2 Il Il Il Il Il

10 15 20 25 30 35 40

FIGURE 11. The complezity exponent as a function of p for m = 10
and L =2,4,8,16.

Figure 11 shows the complexity as a function of SNR for a fixed m = 10
(i.e., M = N = 5 transmit and receive antennas) and L-PAM constellations with
L = 2,4,8,16. A particular modulation scheme can be used only in the range
of SNRs that supports transmission at the rate corresponding to that modulation
scheme. We note that in such a range, the complexity exponent is roughly cubic.
For instance, although the complexity for L = 16 appears to be high over a wide
range of SNR, it is only for p > pso that this modulation scheme can be employed
(pao is the SNR for which the capacity Ce, = 40 = R(L = 16)). The complexity
exponent at pso and L = 16 is ¢, ~ 4. The other SNRs marked on Figure 11, p30,
and pag, have similar meanings (only for L = 8 and L = 4, respectively).

Figures 10-11 show the expected complexity, that is, the first-order statistics.
In Figure 12, the empirical distribution of the complexity exponent is shown for
M = N = 5 transmit and receive antennas, 16-QAM modulation scheme, and for
4 different SNR values. From Figure 11, we see that the lowest SNR in Figure 12
(16dB) roughly corresponds to the minimum SNR required for transmission on
the particular system with the modulation scheme of choice. The outer dashed
lines in each graph of Figure 12 correspond to three standard deviations of the
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FIGURE 12. The complezity exponent distribution for M = N = 5,
L=4, and SNR = 16,18, 20, 22dB.

corresponding distribution. The middle dashed line denotes the mean, i.e., the
expected complexity that we previously obtained analytically. We can make the
following observations in relation to the distributions as a function of the SNR:

e The expected complexity decreases, which was already anticipated from the
results illustrated in Figure 11.

e The variance of the complexity decreases, as illustrated with tightening of
the standard deviation.

e As the SNR increases, some “point-mass” like segments occur in the distri-
bution. This is expected: for large SNRs, the radius of the sphere will be
small and only a small (discrete) number of lattice points are found inside.

For comparison, exhaustive search in M = N = 5, 16-QAM system requires exam-
ining k = 410 ~ 10® points, which is of the O(m!°8101°°) = O(m®) order.



182 BABAK HASSIBI AND HARIS VIKALO
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FIGURE 13. Sphere decoder vs. nulling and cancelling, M = N =
5, L =4.

Figure 13 shows the improvement in performance of sphere decoding over
nulling and cancelling for a multi-antenna system employing M = N = 5 trans-
mit and receive antennas and 16-QAM modulation scheme. The complexity of ML
decoding via sphere decoding here is comparable to that of nulling and cancelling,
whereas the performance improvement is significant. The range of signal-to-noise
ratios in Figure 13 is typical for indoor applications ([7]).

Figure 14 compares the performance of sphere decoding and nulling and can-
celling for a multi-antenna system with M = N = 2 antennas, employing 16-QAM.
The expected complexity exponent is also shown in Figure 14. In the SNR range
of interest, the expected complexity of sphere decoding is again comparable to that
of nulling and cancelling.

Comparing Figure 13 and Figure 14 we note that the performance gap between
ML detection (provided by sphere decoding) and nulling and cancelling increases
as the system employs more antennas. The analytical expression for the average
probability of error appears difficult to derive. As an alternative, a pairwise error
probability, as in [26], may be considered instead. The pairwise error probability
that the vector s(9) was detected while s(Y) was transmitted can be upper bounded
at high SNRs as [26]

(5.2) P sy L

(47) " lldisll%
where d; ; = s() —s(). The bound (5.2) indicates that BER decreases exponentially
with receive diversity — the number of receive antennas. ML decoder, as evident
from Figure 13, fully exploits the receive diversity — the slope of the BER curve
implies improvement by N = 4 orders of magnitude per SNR decade. On the
other hand, nulling and cancelling (assuming no error propagation) converts the
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FIGURE 14. Sphere decoder vs. nulling and cancelling, M = N =
2, L =4.

channel into a set of parallel channels with increasing diversity [27]. However, due
to the error propagation, the performance is dominated by the first stream decoded
by the receiver. Thus to improve the performance of nulling and cancelling, the
decoding is often ordered according to the signal-to-interference-and-noise ratio of
the incoming data streams.

Finally, Figure 15 illustrates the symbol error rate performance comparison
of the sphere decoding and nulling and cancelling for the system employing M =
8 transmit and N = 12 receive antennas and 16-QAM modulation, the system
specifications of V-BLAST [7]. The corresponding expected complexity is sub-
cubic over the entire SNR range of interest.

6. Some Remarks

The expected complexity that we discussed in this paper accounts for finding
all the lattice points in the sphere. The point among those found ones that is closest
to z is the solution to the maximum-likelihood problem. There are some variations
on the basic sphere decoding algorithm which we briefly mention here.

o Sphere decoding with radius update.
Every time a point s; in the sphere is found, we set the new radius of the
sphere r? = ||z — H s;||*> and restart the algorithm. The radius update may be
particularly useful at lower SNRs, where the number of points in the initial
sphere is relatively large. However, it may not be benificial at high SNR,
since restarting the sphere decoder may be costly. In any event, computing
the expected complexity for this algorithm appears to be complicated, since
it requires the calculation of the distribution of the radii that are updated.

o Schnorr-Euchner version of the sphere decoding.
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This strategy was proposed in [28]. The likelihood that the point will be
found early is maximized if the search at each dimension k is performed in
the order

(4], [8a) — 1,[84] + 1,[8a] — 2, ..

and if radius update (as described above) is used. The expected complexity
of the Schnorr-Euchner version of the sphere decoding algorithm is no greater
than the expected complexity of the basic algorithm that we derived in this
chapter. However, computing the expected complexity of this algorithm
appears to be formidable.

7. Conclusion

In many communication problems, maximum-likelihood detection reduces to
solving an integer least-squares problem. In such applications ML detection is
rarely performed, on the grounds that it requires exponential complexity and is
therefore computationally intractable. In this paper we obtained a closed-form
expression for the expected complexity of sphere decoding in terms of the noise
variance, the dimension of the lattice, and (for subsets of lattices) the constellation.
It turns out that over a wide range of noise variances and dimensions the expected
complexity is often cubic or sub-cubic. Since many communications systems operate
at noise levels for which this is the case, this suggests that maximum-likelihood
decoding, which was hitherto thought to be computationally intractable, can in fact
be implemented with complexity similar to heuristic methods, but with siginificant
performance gains—a result with many practical implications.
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Appendix A. Proof of Lemma 4.1

Let us start with part 1. Since H is rotationally-invariant from the left, the
matrix ©®H has the same distribution as H, for any unitary matrix ©. Since
this distribution is independent of ©, we conclude that the same is true for any
random unitary © that is independent of H (since the distribution of © is readily
integrated out as p(©H) does not depend on ©). In other words, for any random
unitary matrix ©, the matrix © H has the same distribution as H. This is true, in
particular, for an isotropically random random unitary ©.* Now, for such a ©, we
have

OH = OQR,

from which, due to the uniqueness of the QR decomposition when R has positive
diagonal entries (see, e.g., [31, 32]), we conclude that ©Q is the Q and R remains
the R in the QR decompositon of @ H. Now, since © is isotropically random, ©Q
is also isotropically random and, moreover, it is independent of ). Therefore ©Q
must be independent of R, as well. Since ©H and H have the same distribution,
the Q’s in their QR decompositions must have the same distribution, from which
we conclude that ) must be an isotropically random unitary matrix, independent
of R.

This concludes the proof of part 1.

We remark that the prrof of part 1 only required that H be rotationally-
invariant. We did not require the independence of the columns of H. This in-
dependence is required for the proof of part 2, to which we now turn our attention.

Consider the partitioning

_ Hy pm—k Hy ki
H =
Hn—m+k,m—k Hn—m—i—k,k

where the subscripts indicate the dimensions of the sub-matrices. Now consider the
QR decomposition of of the leading m — k columns of H, i.e.,

[ Hmfk,mfk ] — Ql [ Rmfk:,mfk ]
anm+k,mfk 0 ’

where @1 is unitary and Ry, ,m—r is upper triangular with non-negative diagonal
entries. Now since Ry, ok Rm—k,m—k = Hpy g o g Hm—k,m—k +Hy gt Hin—k ks
which is the leading (m — k) x (m — k) submatrix of H*H, we conclude that, as the
notation suggests, Rpy—k,m—k is indeed the leading (m — k) x (m — k) submatrix of
R in the partitioning (4.6).

Applying the unitary matrix Q7 to the full H (and not just its leading m — k
columns) we have

X Rim—tym—t  Hm—kk
Al H= m=rm m=r
( ) Ql 0 Hn—m+k,k

Now, since ()1 depends only on the first m — k columns of H and these are inde-
pendent of the remaining k columns, by the rotational-invariance of the columns
of H, we conclude that Hy 4k, has the same distribution as Hn,m+k,k.5 Now

4For some of the properties of isotropically random unitary matrices the reader may refer to
[29, 30].
5This is also true of Hy,_g,x and H,,_1, 1, though we shall not need this fact.
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if we consider the QR decomposition of Hy, x:
. Ry
Hn—m—i—k,k = Q2 [ 0’ ;

combining this with (A.1), we have

I 0 Ry km—t Hm—kk
QTH = [ 0 Q ] 0 Ry g ,
> 0 (N
and so
I 0 [ Ry komt Hmokg |
(A.2) H=Q1[0 0 ] 0 Ry
> 0 0 |
. I 0 . . . . .
Since 0 Q is unitary and since the diagonal entries of R, g m—r and
2

Ry, 1 are non-negative, we conclude that this is indeed the QR decomposition of H
(which justifies our use of the notation Ry for the R in the QR of Hy x).% Since
H'n,m+k,k and H,_yk,r have the same distribution, we conclude that Ry has
the same distribution as the R obtained from the QR decomposition of Hy,_ ik, k-

This concludes the proof of part 2.

Appendix B. Representing Integers as a Sum of Squares

The problem of representing a positive integer as the sum of squares has a
long history in mathematics and number theory. The problem of determining the
number of ways that a non-negative integer [ can be represented as k squares was
first posed by Waring in 1770 and is denoted by r(I). 7 The first known result in
this direction is due to Diophantus of Alexandria (325-409 A.D.) who showed that
no integer of the form 4m + 3 can be represented as the sum of two squares. In
other words, r2(4m + 3) = 0. In 1632, Girard conjectured that [ is the sum of two
squares if the prime divisors of [ of the form 4m + 3 occur in [ in an even power.
(For example, [ = 3% -5 = 32+ 62, while / = 3%- 5 cannot be represented as the sum
of two squares.) Euler proved this conjecture in 1749. However, he did not give an
explicit formula for ro(!). This was done by Legendre in 1798 and Gauss in 1801,
who showed that

(B.1) ra(l) = 4d1 (1) — ds(1)),

where d; (1) and d3(l) are the number of divisors of  congruent to 1 and 3 mod 4,
respectively.

In 1770, Lagrange proved his famous Four Squares Theorem, which states that
every positive integer can be represented as the sum of four squares. This essentially
establishes that r4(I) > 0 for all positive integers [; however, Lagrange did not give
an explicit formula for 74(1).

8Thus, for example, Hm—k,k =Ry gk

"In fact, Waring considered the much more general problem of determining the number of
ways am integer can be represented as the sum of k integers raised to the power ¢. In this sense,
the number of ways an integer can be represented as the sum of k squares is essentially the ¢ = 2
Waring problem.
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In terms of computing the value of ri(l), the first result is due to Euler who
introduced (what is now known as) the Jacobi theta function

(B.2) 0(z) = i 2™ =142 i ™
m=—00 m=1

and established the following.

THEOREM B.1. Let §(z) be given by (B.2). Then
(B.3) 6%(z) =1+ Z re(D)zt.
=1

In other words, the number of ways a non-negative integer I can be represented as
the sum of k squares is given by the coefficient of x' in the expansion of 0% (x).

This can be illustrated as follows: 8*(z) is clearly a series in which each term
has an exponent that is obtained as the sum of k£ squares; since the summation in
(B.2) goes over all integers, the coefficients in front of each term in the series % (z)
must be equal to the number of ways that the exponent in that same term can be
represented as a sum of two squares.

Using the connection between the above theta function and elliptic functions,
Jacobi in 1829 obtained closed-form expressions for ri(l) when k = 2,4,6,8 (see
[25], chapter 9). His formula for k£ = 4 immediately yields Lagrange’s Four Squares
Theorem. Solutions for ¥ = 10 and k = 12 were found by Liouville and Eisenstein.
Later, Ramanujan, Hardy, and Littlewood obtained formulas for even k < 24. For
odd k, the only results are due to Dirichlet, who found r3(1), and Eisenstein, Smith,
and Minkowski, who found 75 (1) and r7(1).

For a long time, these were the only known explicit formulas for r(l). Indeed,
results by Glaisher, and by R. Rankin (1965), using the theory of modular forms,
discouraged many researchers from obtaining further closed-form expressions. The
subject was therefore presumed to be “dead” until very recently. In 1994, as a con-
sequence of their study of certain affine super-algebras, V. Kac and M. Wakimoto
conjectured formulas for 6% (z) when k = 4m? and k = 4m(m + 1) [33]. In 1996,
these conjectures were proved by S. Milne using Jacobi’s elliptic functions, Hankel
determinants and continued fractions [34]. For an expository review of this, and
subsequent results, the interested reader is referred to [35].

This exhausts known closed-form solutions for r4(l). There exist many asymp-
totic results (in both k and l)—see e.g., [36], chapter 5. In anycase, for any given k
and [, the value of r¢(I) can be numerically computed using Euler’s formula (B.3).
Moreover, 71 is also a built-in function in Mathematica, Sum0fSquaresR[k,1] [37].
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