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Abstract

This paper studies the haplotype assembly problem from an information-theoretic perspective. In the

human genome, a haplotype is a sequence of nucleotide bases on a chromosome that differ from the bases

in the corresponding positions on the other chromosome in a homologous pair. Haplotype sequences

can conveniently be represented by binary strings, which enables us to transform the bioinformatics

problem of haplotype assembly into an equivalent information-theoretic problem. Information about the

order of bases in a genome is readily inferred using short reads provided by high-throughput DNA

sequencing technologies. Performing haplotype assembly is challenging due to limited lengths of the

reads and presence of sequencing errors. In this paper, the recovery of the target pair of haplotype

sequences using short reads is transformed into an equivalent joint source-channel coding problem. Two

binary messages, representing haplotypes and chromosome memberships of reads, are encoded and

transmitted over a channel with erasures and errors, where the channel model reflects salient features

of high-throughput sequencing. The focus of this paper is on determining the required number of reads

for reliable haplotype reconstruction.

For the error-free reading case, erasure decoding is shown to be one of the optimal algorithms

enabling reliable haplotype assembly. For the erroneous reading case, spectral partitioning is proven to

be an efficient algorithm with order-wise optimal bounds.

The material in this paper was presented in part at the 2014 Information Theory Workshop, Hobart, Australia, Nov. 2014.
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I. INTRODUCTION

Diploid organisms, including humans, have homologous pairs of chromosomes where one

chromosome in a pair is inherited from mother and the other from father. The two chromosomes

in a pair are structurally similar and basically carry the same type of information but are not

identical. More specifically, chromosomes in a pair differ at a small fraction of positions (i.e.,

loci). Such variations are referred to as single nucleotide polymorphisms (SNPs); in humans,

frequency of SNPs is approximately 1 base in 1000. A haplotype is the string of SNPs on a

single chromosome in a homologous pair. Haplotype information is essential for understanding

genetic causes of various diseases and for advancement of personalized medicine. However,

direct analysis and identification of a haplotype is generally challenging, costly, and time and

labor intensive. Alternatively, single individual haplotypes can be assembled from short reads

provided by high-throughput sequencing systems. These systems rely on the so-called shotgun

sequencing to oversample the genome and generate a redundant library of short reads. The

reads are mapped to a reference and the individual genome is assembled following consensus of

information provided by the reads. The length of each read (i.e., DNA fragment) in state-of-the-art

sequencing systems is typically 100−1000 base pairs [1]. Note that this length is comparable

to the average distance between SNPs on chromosomes. Therefore, single reads rarely cover

more than one variant site which is needed to enable haplotype assembly. Moreover, the origin

of a read (i.e., to which chromosome in a pair the read belongs) is unknown and needs to

be inferred [2]. Paired-end sequencing [3], also known as mate-paired sequencing [4], helps

overcome these problems. This process generates pairs of short reads that are spaced along

the target genome, where the spacing (so-called insert size) between the two reads in a pair

is (approximately) known. The mate-pairs allow acquisition of the information about distant

SNPs on the same chromosome, and thus help assemble the haplotype. Fig. 1 illustrates how

paired-end reads may cover two or more variant sites along a homologous chromosome pair. The

goal of haplotype assembly is to identify the chromosome from which fragments are sampled,

and to reconstruct the haplotype sequences. When there are no sequencing errors, a fragment

conflict graph framework [5] converts the original problem into partitioning of the set of reads

into two subsets, each collecting the reads that belong to the same chromosome in a pair. For

erroneous data, it poses haplotyping as an optimization problem of minimizing the number of
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Fig. 1: Paired-end reads sampling two chromosomes in a homologous pair. Rectangles linked

by the lines above and below the target chromosome pair represent paired-end reads, and their

relative positions indicate their location along the chromosomes.

transformation steps needed to generate a bipartite graph [6]. This leads to various formulations

of the haplotype assembly problem including minimum fragment removal (MFR), minimum SNP

removal (MSR), and minimum error correction (MEC) [5]. The last one, MEC, has been the most

widely used criterion for haplotype assembly, and is characterized by an inherent connection with

the independent error model.

In this paper, we analyze the haplotype assembly problem from information-theoretic per-

spective, with emphasis on the necessary and sufficient conditions for reliable assembly. The

contributions of the paper include: 1) an information-theoretic framework for haplotype assem-

bly problem is proposed, i.e., two binary messages, representing haplotypes and chromosome

memberships of reads, are encoded and transmitted over a channel with erasures and errors, where

the channel model reflects salient features of high-throughput sequencing; 2) in the absence of

reading errors, erasure decoding algorithm is shown to match the necessary condition on the

number of reads required for recovery; 3) for the case where reading errors happen, spectral

partitioning is proved to be an order-wise optimal algorithm enabling successful assembly; 4)

algorithms proposed in the paper, although primarily meant to support theoretical results, also

have practical significance.

The paper is organized as follows. Section II formalizes the haplotype assembly problem.

In Section III, we present an information-theoretic view of haplotype assembly in the absence
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of sampling errors, while the erroneous case is discussed in Section IV. Simulation results and

analyses are shown in Section V. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

As detailed in the introduction, a single nucleotide polymorphism (SNP) is a variation in

a DNA sequence where two corresponding bases at a specific location on the homologous

chromosomes differ from each other. Typically, diploid organisms have only two possible variants

at a SNP site, i.e., their SNPs are typically biallelic. For the sake of convenience, we denote

one of the two variants as +1 while the other one we denote as −1. With this notation, a

haplotype sequence hhh comprising information about all SNP sites on one of the chromosomes in

a homologous pair can be represented by a string with elements in {+1,−1}, while the haplotype

associated with the other chromosome in the pair is its additive inverse −hhh, where we denote

hhh = (h1,h2, . . . ,hn),

and n is the length of haplotypes (i.e., the number of SNPs within each chromosome in a pair).

Each paired-end read acquired in a shotgun sequencing experiment contains partial information

about either of these two haplotypes. Consider a set of discrete random variables ci, where

i ∈ {1, . . . ,m} and m denotes the number of reads. Let ci identify the origin of read i, i.e., ci

carries information about the chromosome membership for read i. More precisely,

ci =

 +1, if read i is sampled from hhh,

−1, if read i is sampled from −hhh.
(1)

Due to the limitation of read lengths and relatively rare occurrence of SNPs, only a small fraction

of variant sites is covered by a read. Formally, the information about a haplotype provided by a

paired-end read rrri can be represented by a sequence that consists of symbols from the alphabet

{+1,−1,×}, where “×” indicates lack of information about a variant site. Let us collect the

relevant information provided by the reads in an m× n matrix RRR having rows corresponding

to paired-end reads and columns corresponding to SNP sites. The ith row of RRR (i.e., read i)

is denoted as rrri, and the jth element of rrri is denoted as ri j. Typically, since the length of a

haplotype is much larger than the number of SNPs covered by a read, only few entries in each

row are numerical (ignoring the occurrence of bursty variations).
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Note that, in the absence of sampling noise, every observed element ri j can be represented as

the product of the jth SNP and the variable indicating membership of the ith read [7]. Formally,

this can be written as

ri j = ci ·h j. (2)

From (2), matrix RRR could be interpreted as being obtained from a rank 1 matrix SSS whose row

sssi is either hhh or −hhh based on the value of ci, while most of its entries are erased in the reading

process. In particular, we have

RRR = PΩΩΩ(SSS), and SSS = cccT ·hhh, (3)

where ΩΩΩ is the collection of all observed locations, and the projection P is defined by

PΩΩΩ(SSS)i j =

 si j, if (i, j) ∈ ΩΩΩ,

×, if (i, j) /∈ ΩΩΩ.
(4)

Hence, the task of haplotype assembly is to recover haplotype hhh and chromosome membership

vector ccc, or, equivalently, to find matrix SSS from matrix RRR.

An example, illustrated by Fig. 1, corresponds to the scenario where 6 SNP sites are covered

by 8 paired-end reads. The first 4 reads are assumed to be (shotgun) sequenced from chromosome

1 and thus the chromosome membership vector is ccc = (+1,+1,+1,+1,−1,−1,−1,−1). The

true haplotype associated with chromosome 1 is assumed to be hhh = (+1,+1,−1,+1,−1,−1).

In the absence of errors, the acquired SNP fragment matrix is given by

RRR = PΩΩΩ(ccc
T ·hhh) =



× × −1 × −1 ×

× +1 × × −1 ×

+1 × × +1 × ×

× × −1 +1 × ×

−1 × +1 × × ×

× −1 × × +1 ×

−1 × × −1 × ×

× × × × +1 +1



. (5)
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III. ERROR-FREE CASE

We first analyze haplotype assembly in the ideal scenario where the information provided by

the sequencing reads is error-free. From a joint source-channel coding perspective, haplotype

assembly aims to recover two sources being communicated through an erasure channel (see

Fig. 2). The first source is haplotype information, hhh, and the second source is the chromosome

Ŝ
Encoder

h

c

DecoderChannel
S R

Fig. 2: Information theoretic view of the haplotype assembly problem.

membership vector ccc. Both of these vectors are assumed to originate from a uniform distribution,

i.e., their entries have 1/2 probability to take values from {+1,−1}. These two sources are

encoded jointly using the function f : {+1,−1}n ×{+1,−1}m → {+1,−1}m×n, and hence the

encoded codeword SSS = f (hhh,ccc). In particular, each entry in SSS is given by si j = ci · h j, which

implies the encoder is a bijection.

After receiving the output from channel, RRR, the decoder uses the decoding function to map

its observations into an estimate of the message. Specifically, we consider the decoder (i.e.,

an algorithm for haplotype assembly) given by g : {+1,−1,×}m×n → {+1,−1}m×n, such that

ŜSS = g(RRR), where ŜSS represents the estimate. Note that since the encoding function is a bijection,

decoding SSS is equivalent to decoding both hhh and ccc. We define the error probability of decoding

as

Pe , Pr{ŜSS ̸= SSS|RRR}. (6)

As in the conventional information-theoretic analysis of a communication channel, we consider

all possible choices of matrix SSS and denote the resulting ensemble by S. Let m and n be

sufficiently large so that there exists at least one decoding function g with small probability of

error (similar type of analysis as in [8]). The channel model reflects particular reading technique.

For the paired-end sequencing technique without sampling errors, let us consider the channel

W : {+1,−1}m×n →{+1,−1,×}m×n described as follows:

#1 Erasures happen independently across rows.
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#2 In each row, only 2 entries remain and their positions are assumed to be uniformly placed.

This can be easily extended to any number of (constant) entries within each row.

#3 Unerased entries are observed correctly.

In other words, for the sake of simplicity we assume that precisely 2 entries are observed in each

row of SSS, and that the observations are correct and independent across different rows. Under

these assumptions, the number of numerical entries in each column of RRR approximately obeys

Poisson distribution. Moreover, the expected length of the inserts between 2 sampled entries

within a row is given by (n−2)/3. In practice, the inserts’ length is limited and cannot be made

arbitrarily large – a constraint that we relax in our analysis by making the assumption #2 above.

Note that while we need this assumption to facilitate the theoretical analysis, the algorithms for

haplotype assembly discussed in the paper do not make any assumptions on the insert lengths.

Based on this model, we derive the necessary and sufficient conditions on the number of

error-free reads needed for haplotype assembly.

Theorem 1. Given the SNP fragment matrix RRR with 2 reliable observations at arbitrary positions

in each row, the original haplotype matrix SSS can be reconstructed if and only if the number of

reads satisfies

m = Θ(n lnn),

where n is the length of the target haplotype, and the scaling factor can be chosen as 1/2.

To show the proofs of necessary and sufficient conditions, we provide a random graph

interpretation of the haplotype assembly problem. More precisely, every SNP site is described

by a node in a plane, and each paired-end read covering two SNP sites is described by an

edge connecting two nodes. Then, the paired-end reading process can be depicted by randomly

choosing two nodes and adding an edge between them. Based on this interpretation, a haplotype

can be recovered with high reliability if and only if the graph resulting from the paired-end

reading process is connected with high probability. The intuition of this observation is evident:

if a node is not connected by any edge (i.e., if we have an unconnected graph), the corresponding

SNP cannot be incorporated into the haplotype sequence and the assembly fails; on the other

hand, if the graph is connected, there exist a path between any two nodes and thus a message

passing algorithm can be designed to reconstruct the haplotype. For example, the following
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simple and effective algorithm, called “erasure decoding”, can be utilized for haplotype recovery:

1) Choose the “seed” s as an arbitrary non-erased entry in the first row, i.e., s = r1 j, where

j is randomly chosen such that r1 j ̸=×. Set the chromosome membership variable of the

first row to c1 =+1 (the initial choice can be arbitrary).

2) Find all other rows with position j not erased, i.e., form a set

A= {k|rk j ̸=×, k ̸= 1}. (7)

3) Set the chromosome membership variables of the rows with indices in A to

ck =

 +1, if rk j = r1 j,

−1, otherwise,
(8)

for every k ∈A.

4) Decode SNPs in the first row by evaluating

r1l = ck · rkl, (9)

for every k ∈A and rkl ̸=×.

5) Delete all rows with indices in A.

6) Arbitrarily choose another non-erased entry in the first row as the new seed s = r1 j which

has not been chosen as a seed in any of the previous steps. Repeat Step 2) to 6) until no

row could be further erased.

7) If the first row is the only remaining one and its entries are all decoded, declare hhh = rrr1;

otherwise, declare a failure.

The key idea behind the erasure decoding algorithm is that a node can be decoded (i.e., its

position within the haplotype sequence decided) using the previously decoded node on the other

end of an edge. Note that in the error-free case, having a connected graph guarantees that the

erasure decoding algorithm will successfully assemble the haplotype because all the entries in

the first row can be decoded (otherwise at least one node is not connected). In this sense, erasure

decoding can be considered as one of the optimal algorithms for haplotype assembly. Proceeding

with the random graph interpretation, haplotype assembly under the error-free assumption is

effectively converted to a random graph’s connectivity problem, where the latter is well-studied

and the conditions on the number of edges needed to ensure connectivity are known. The proofs,

i.e., the derivations of the lower and upper bounds, are presented in Appendix A.
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Fig. 3: Erasure decoding of the example illustrated in Fig. 1. In every round (steps 2 to 6), the

seed is marked by a rectangle, with its column index given by j. Rows that share the same

positions as the seed are collected in the set A. A straight line crossing an entire row of the

matrix represents a deletion.

Fig. 3 shows the details of the decoding procedure for the example illustrated in Fig. 1, where

the read matrix is given by (5).

IV. ERRONEOUS CASE

When determining a component of the haplotype sequence at a particular position, we essen-

tially need to perform a hypothesis test and decide between possible symbols in the corresponding
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column of the SNP fragment matrix. If sequencing errors are present, some of the entries in

RRR are erroneously flipped. For the purpose of the following discussion, we assume such errors

are independent and identically distributed (i.i.d.). More precisely, the errors are modeled as

having originated by passing messages (i.e., the numerical entries in RRR) through a collection of

independent symmetric channels characterized by the parameter p, the probability of flipping

the sign of the numerical entries of RRR. Denoting the noise as matrix NNN with entries ni j that are

i.i.d., we can write

RRR = PΩΩΩ(SSS⊕NNN). (10)

Hence, the model describing the erroneous case is as same as the one for the error-free case except

for an additional noise term capturing the effects of “channel” (i.e., the effects of sequencing

and data processing steps that precede haplotype assembly). The equivalent channel model W :

{+1,−1}m×n →{+1,−1,×}m×n considered in this section is described as follows:

#1 Erasures happen independently across rows.

#2 In each row, only 2 entries remain and their positions are uniformly random.

#3 The remaining entries are read incorrectly with probability p and the errors are independent.

We would like to reconstruct SSS from RRR with high probability. However, if no more than two

numerical entries are observed in a row, solving this problem is not always feasible. Assume, for

instance, that the observed numerical entries in rrri are (+1,+1), and that only one sequencing

error happened (i.e., either one of rrri’s numerical entries is erroneous). Then, there is no hope

to discover whether the true numerical entries in sssi are (−1,+1) or (+1,−1). For this reason,

in the erroneous case we aim to recover (with high probability) only the row space, i.e., find

the haplotype hhh from matrix RRR. Let us denote the haplotype estimate found by an assembly

algorithm by ĥhh. We define the probability of error as

Pe = Pr{ĥhh ̸= hhh|RRR},

and use it to characterize the accuracy of assembly. We would like to make this probability

arbitrarily small on average (averaged over all possible hhh).

Based on the previously described model of the haplotype assembly problem, we next state

the necessary and sufficient conditions on the number of reads required for assembly.
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Theorem 2. Given the SNP fragment matrix RRR with 2 unreliable observations at arbitrary

positions in each row, the original haplotype vector hhh can be reconstructed if and only if the

number of reads satisfies

m = Θ(n lnn),

where n denotes the length of the target haplotype.

The preceding theorem shows that although the observations are unreliable due to the sampling

noise, the number of reads required for assembly still scales the same way as in the noise-free

case, with the scaling factor now related to the sampling error probability. The proof for necessary

condition follows the same line of arguments as in the error-free case; we provide a detailed

proof for sufficient conditions as follow.

Recall that for the scenario where RRR is error-free, in Section III we proposed a random

graph interpretation of haplotype assembly. Most state-of-the-art algorithms traces the same

interpretation for the erroneous case and consider optimization formulations focusing on different

objective criteria [5] to convert the erroneous graph into an error-free one. Formulations of the

haplotype assembly problem include minimum fragment removal (MFR), minimum SNP removal

(MSR), and minimum error correction (MEC). MFR [5] formulation aims to identify the smallest

number of fragments (i.e., reads) whose removal renders the graph representing the assembly

problem bipartite. Since the resulting graph is conflict-free, algorithms for error-free case could

be readily applied to assemble the haplotypes. However, solving the MFR formulation of the

assembly problem is challenging since the resulting optimization is generally non-convex. MSR

[5] is an alternative formulation focused on identifying the smallest possible number of SNP

sites such that the graph representing remaining SNPs could be partitioned in two subgraphs

corresponding to the haplotypes. In graph-theoretic terms, MSR aims to find the maximum

independent set of the original graph. MEC [6] formulation seeks the smallest number of entries

in matrix RRR whose flipping ensures that the rows in RRR are consistent with having originated

from two complementary haplotypes. In this formulation, the problem becomes the one of error-

correction of binary data corrupted by i.i.d. noise. MEC is the most widely used formulation

of the haplotype assembly problem, and a large number of algorithms have been developed for

solving it (perhaps the most widely used one is HapCUT [9]).
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However, in the presence of sampling errors, graphical interpretations of haplotype assembly

do not provide obvious arguments for the fundamental requirements on the number of reads.

To this end, we present an alternative low-rank matrix interpretation of the haplotype assembly

problem. Intuitively, we aim to partition SNPs into two sets, each corresponding to one of the

two haplotypes in a homologous pair. By regarding the adjacency matrix of the original graphical

representation of the problem as a perturbation of a planted model (which is inherently a low

rank matrix), we claim that the partition is perfect as long as the parameters of the model are

chosen appropriately. In what follows, we first describe the “spectral partitioning” algorithm that

relies on the singular value decomposition (SVD) technique to obtain a weaker conclusion that

the fraction of partition errors vanishes as n increases, and then propose a modified algorithm for

near-perfect haplotype assembly. The steps of the spectral partitioning algorithms are as follows:

1) Construct an adjacency matrix AAA ∈ {0,1}n×n based on the observation matrix RRR, such that

for every (u,v) ∈ {1, . . . ,n}×{1, . . . ,n} with u > v,

auv =


1, if

m
∑

i=1
1{riu ̸=×,riv ̸=×,riu=riv} >

m
∑

i=1
1{riu ̸=×,riv ̸=×,riu ̸=riv},

0, otherwise.
(11)

Then, let auv = avu for any u > v to guarantee symmetry, and let auu = 0 to enforce zeros

on the diagonal of AAA.

2) Find the singular value decomposition (SVD) of AAA, i.e., AAA =UUUΛΛΛVVV such that UUU ,VVV ∈Rn×n

are unitary matrices and ΛΛΛ ∈ Rn×n is diagonal.

3) Identify the eigenvector vvv2(AAA) corresponding to the second largest eigenvalue of AAA and

construct sets

C1 = { j : v2 j < 0}, C2 = { j : v2 j ≥ 0}.

The haplotype is then recovered as

h j =

 +1, if j ∈ C1,

−1, if j ∈ C2.

Remark 3. As evident from (11), elements of AAA are evaluated by examining each SNP position

and performing the majority voting operation over read components that cover it. This procedure

is equivalent to the MAP hypothesis testing that assumes uniform SNP prior distribution. If the
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distribution of SNPs is not uniform, or if error distributions are not identical across SNP sites,

one should rely on weighted majority voting instead.

We analyze the performance of spectral partitioning by showing its relation to the classical

partitioning problem on a planted model. This approach originates from the perturbation theory

for eigenvectors and follows steps similar to those in [10], but additionally exploits structural

features of the haplotype assembly problem to arrive at bounds that are much tighter than those

provided in the general case.

A. Planted Model

Consider the planted model, i.e., matrix BBB ∈ Rn×n defined as

BBB =

 [α]n1×n1
[β ]n1×n2

[β ]n2×n1
[α]n2×n2

 ,

where α > β > 0, n1+n2 = n, and [α]n1×n1 denotes an n1×n1 sub-matrix with all entries equal

to α . Clearly, such a matrix BBB is low-rank. More precisely, if we perform the SVD on BBB, it

becomes evident that the rank of BBB is 2 and that its first two singular values and the corresponding

singular vectors are given by

λ1(BBB) = n1β µ1 +n2α , (12)

λ2(BBB) = n1β µ2 +n2α , (13)

vvv1(BBB) =


 µ1√

n1µ2
1 +n2


1×n1

,

 1√
n1µ2

1 +n2


1×n2

 , (14)

vvv2(BBB) =


 µ2√

n1µ2
2 +n2


1×n1

,

 1√
n1µ2

2 +n2


1×n2

 , (15)

where

µ1 =
(n1 −n2)α +

√
(n1 −n2)2α2 +4n1n2β 2

2n1β
, (16)

µ2 =
(n1 −n2)α −

√
(n1 −n2)2α2 +4n1n2β 2

2n1β
. (17)

Note that since µ1 > 0 and µ2 < 0 for any n1 and n2, it holds that λ1(BBB) > λ2(BBB). Moreover,

since µ2 < 0, the first n1 entries in vvv2(BBB) have opposite signs from those of the last n2 entries.
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Therefore, if we partition the indices into two sets with respect to their signs in vvv2(BBB), the result

naturally provides a classification corresponding to different blocks of matrix BBB.

B. Adjacency Matrix Generated from the Planted Model

As discussed above, eigenvector corresponding to the second largest eigenvalue of the planted

model BBB enables partitioning, i.e., helps distinguish between different block indices. The next

step is to relate the planted model BBB to the adjacency matrix AAA constructed according to (11).

Note that the entries in the upper-triangular part of AAA are random and independent. In fact, the

distribution of each entry in AAA is Bernoulli with parameters which only depend on whether the

corresponding SNP sites belong to the same block or not (i.e., two parameters are sufficient

to characterize the distribution of AAA). AAA and BBB are related through a series of permutations of

rows and columns (note that permutations do not impact the eigenvectors). In particular, for any

(u,v) ∈ {1, . . . ,n}×{1, . . . ,n} with u > v, we define

Pr{auv = 1}= π(buv),

Pr{auv = 0}= 1−π(buv),

where π is the permutation of rows and columns. Let α denote the probability that two SNP

sites from the same cluster are inferred correctly in the majority voting step, while β denotes

the probability that two SNP sites from different clusters are inferred incorrectly. Clearly, α and

β are closely related to the accuracy and redundancy in the sequencing data – more precisely,

the parameters n, m, and p. In our case of unreliable paired-end sequencing, the probabilities α

and β are given by

α , Pr{majority voting claims auv = 1|hu = hv}

=
m

∑
i=1

Pr{majority voting claims auv = 1, i reads cover SNP sites u and v|hu = hv}

=
m

∑
i=1

{(
m
i

)[
2

n(n−1)

]i[
1− 2

n(n−1)

]m−i i

∑
l=⌊i/2⌋+1

(
i
l

)
[(1− p)2 + p2]l[2p(1− p)]i−l

}
,

where 2/n(n−1) is the probability that a read covers target SNP sites u and v; (1− p)2+ p2 is the

probability that a read covers SNPs that are identical given hu = hv; and the second summation

(ranging from ⌊i/2⌋+1 to i) represents for the majority voting operation evaluated over i voters.
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Similarly, we have

β , Pr{majority voting claims auv = 1|hu ̸= hv}

=
m

∑
i=1

{(
m
i

)[
2

n(n−1)

]i[
1− 2

n(n−1)

]m−i i

∑
l=⌊i/2⌋+1

(
i
l

)
[2p(1− p)]l[(1− p)2 + p2]i−l

}
,

where 2p(1− p) is the probability that a particular read covers SNPs that are identical given

hu ̸= hv. Since neither α nor β is straightforward to compute, we seek more compact and

manageable bounds on these probabilities that will enable analysis of the worst-case scenarios.

Lemma 4. When the number of reads used to assemble a long haplotype of length n scales as

m = Θ(n lnn), there exist positive constants κ1, κ2, and κ3, such that

α ≥ 2κ1κ2[(1− p)2 + p2] lnn
n−1

, (18)

β ≤ 2κ1[2p(1− p)] lnn
(n−1)(1−κ−1

3 )
, (19)

where κ2 < 1 and κ3 > 1.

The lemma shows that both α and β have bounds which scale as Θ(n−1 lnn) (for the proof,

please see Appendix B). Using these bounds, we next show that the signs of the corresponding

entries of the eigenvectors of AAA and BBB are identical with high probability.

C. Matrix Eigenvector Perturbation

After establishing the relationship between the adjacency matrix AAA and the planted model BBB, we

proceed to explore the difference between their eigenvectors by relying on the matrix perturbation

theory. In particular, we show that for our choices of α and β , perturbation of the eigenvector

of AAA associated with the second largest eigenvalue from the corresponding eigenvector of BBB

(i.e., the difference between those two eigenvectors) vanishes as n increases. This result justifies

performing spectral partitioning on AAA, rather than BBB, without a significant loss of performance.

The matrix perturbation theory allows one to determine sensitivity of matrix eigenvalues and

eigenvectors with respect to slight perturbations. This area was pioneered in [11] where a general

bound for the matrix eigenvalue perturbation effects was provided. More recently, [12] improved

this bound under further assumptions on the matrix structure. Meanwhile, the famous Davis-

Kahan sin-theta theorem [13] characterizes the rotation of eigenvectors after perturbation, and
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[14] focuses on random matrices to propose a probabilistic sin-theta theorem. Note that the

observed matrices in the haplotype assembly problem are always characterized by a particular

structures, for instance, independent and binary distributed entries, low rank, etc. To exploit the

special structure, we follow the result from a recent perturbation study [15] which provides

a much tighter bound for the perturbation effects with respect to binary random matrices,

summarized in the following lemma.

Lemma 5 (Lemma 2 and 3 in [15]). Consider a square n× n symmetric 0-diagonal random

matrix MMM such that its elements muv = mvu are independent Bernoulli random variables with

parameters E[muv] = ρuvχn−1, where ρuv are constants and χ = Ω(lnn). Then, with probability

at least 1−O(n−1), we have

|λk(MMM)−λk(E[MMM])| ≤ O(χ1/2), (20)

||vvvk(MMM)− vvvk(E[MMM])|| ≤ O(χ−1/2), (21)

for any k not larger than the rank of E[MMM], where λk(MMM) is the k-th largest eigenvalue of MMM,

and vvvk(MMM) is the corresponding k-th eigenvector.

We observe that the adjacency matrix AAA has the same structure as the matrix MMM in the

statement of the lemma. In particular, note that AAA is a 0-diagonal random matrix with each entry

being an independently distributed Bernoulli random variable. The parameters of the Bernoulli

distributions, α and β , satisfy the scale constraints with χ = lnn due to Lemma 4. Moreover, note

that E[AAA] = π(B̃BB), where B̃BB = BBB−αIII, and that permutation π does not change the eigenvectors.

Therefore, we can utilize Lemma 5 to study the haplotype assembly problem. In particular, from

(21) it follows that

||vvv2(AAA)− vvv2(B̃BB)|| ≤ O(ln−1/2 n).

By noting that an addition of the identity matrix does not influence the eigenvectors, we conclude

that vvv2(B̃BB) = vvv2(BBB). Thus, we obtain

||vvv2(AAA)− vvv2(BBB)|| ≤ O(ln−1/2 n). (22)

Recall that vvv2(BBB) has the form of (15), which implies that a particular entry perturbed to change

its sign contributes at least Ω(n−1/2) to ||vvv2(AAA)− vvv2(BBB)||. Therefore, if ne is the number of



17

errors, we have √
ne

n
≤ O(ln−1/2 n). (23)

By noting that ne/n is the fraction of partition errors, we conclude that the haplotype can be

recovered reliably with vanishing fraction of errors for sufficiently large number of reads n.

Remark 6. As indicated by the analysis, spectral partitioning using SVD technique could only

guarantee that the fraction of partition errors vanishes with high probability. For a stronger

result, i.e., that the probability of partition error tends to zero, one may rely on another tech-

nique, “combinational projection” [10], instead of performing only the SVD. Essentially, the

combinational projection gives another projection, after the one on the singular space, onto

the span of characteristic vectors generated from a certain threshold. This way, the variances

of target random variables are significantly reduced and the Chernoff-type argument could be

adopted to arrive at a tighter bound on the distance of row spaces after the final projection.

Note that (20) still holds in this case, and that by replacing the corresponding bounds in [10] it

follows that Θ(n lnn) reads are sufficient to exactly recover the haplotype with high probability.

Remark 7. Spectral partitioning is a very simple and computationally efficient algorithm that

employs only the majority voting and the SVD techniques to perform haplotype assembly. In

fact, we do not even require a full SVD calculation since only the second eigenvector is needed

to determine the haplotype, as described in the algorithm. Therefore, by using the power method

to discover the desired eigenvector, the complexity of spectral partitioning can be reduced from

O(n3) in the general case to O(n lnn) for sparse adjacency matrix (since the number of total

entries observed is roughly O(n lnn)).

Remark 8. Although the theoretical analysis presented in Section IV is conducted under the

assumption that there are precisely two entries observed in each row of the SNP fragment matrix,

the results can easily be generalized to the case with multiple entries per row as long as reads

may sample all pairs of SNP positions with non-trivial probability. If, however, the insert size is

fixed or characterized by small variance, an alternative quantification of the minimum number

of entries guaranteeing recovery of a low rank matrix may be needed. To this end, we note that

a related matrix completion problem was studied in in [16] [17] [18], where an optimization

approach was utilized to determine the necessary conditions and the recovery was facilitated
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by solving an appropriately formulated convex program. For our haplotype assembly problem,

the observed fragments matrix RRR could be interpreted as a combination of the true haplotype

matrix SSS and an independent sequencing error matrix NNN. Moreover, the MEC criterion score is

equivalent to the minimum l1-norm of NNN, and the associated optimization problem is given by

min ||SSS||∗+ γ||NNN||1

s.t. PΩ(SSS⊕NNN) = PΩ(RRR),

where ∥SSS∥∗ is the nuclear norm of SSS and γ denotes the balancing weight. [19] [20] report that the

row space of the original matrix could be reliably recovered as long as the number of observed

entries is large enough. Putting it more precisely, the number of reads needed for recovery is at

least Ω(n ·poly(lnn)), which does not outperform the bound we obtained by relying on spectral

partitioning. The kernel technique utilized in general for this type of proofs is the Golfing Scheme

[19] [20], which requires a lower bound on the number of sampled entries to construct the dual

certificate. If a new technique with a better performance guarantee could be used instead of the

Golfing Scheme (at least for the case of the specific problem structure encountered in haplotype

assembly), then the optimality method may also be able to match the necessary condition in

scale. Results utilizing this optimization method will be reported elsewhere in the future.

V. SIMULATION RESULTS AND ANALYSIS

A. Results on a Synthetic Data Set

We first test the performance of the two proposed algorithms – erasure decoding and spectral

partitioning – on a synthetic data set. To this end, haplotypes are randomly generated according

to a uniform distribution, followed by sampling paired-end fragments from haplotypes randomly

and uniformly with i.i.d. sampling errors. For the moment, we enforce that 2 SNPs are observed

in each fragment. The target of this simulation study is to empirically explore the relations

among three key parameters featured in the algorithms, i.e., the length of the haplotype n, the

probability of sampling errors p, and, most importantly, the number of sampled reads m. We

show that the simulation results verify the conclusions of the theorems presented in the earlier

sections of this paper, and also provide intuition for selecting appropriate parameters from the

practical point of view.
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To start, we set the probability of sampling error p = 0.1 (significantly larger than the typical

value in practice), and study how the accuracy of haplotype assembly depends on relationship

between the number of reads m and the haplotype length n. The results, shown in Fig. 4, provide

the following observations:

• The erasure decoding algorithm fails to assemble the haplotype for all choices of m, which is

basically due to large sampling noise. As indicated in Section III, this algorithm is intuitively

designed for the error-free case and it has no performance guarantees when adopted and

applied for the erroneous case.

• For spectral partitioning, choosing m = Θ(n) is not sufficient to ensure reliable recovery,

while choosing m = Θ(n lnn) is sufficient to guarantee that the error fraction vanishes for

large n. This result is consistent with the conclusion of Theorem 2.

• Spectral partitioning, when implemented with sufficiently large number of reads (i.e., m =

Θ(n lnn)), provides better error rate for large haplotype lengths. This is predicted by the

theoretical result provided by equation (23).

Next, motivated by the results of the theoretical analysis and the previously described initial

simulation results, we scale the number of sampled reads as m = 2n lnn and empirically study

how the performance of both algorithms depends upon sampling errors and haplotype lengths.

The results of simulation are illustrated in Fig. 5, leading to the following observations:

• The erasure decoding algorithm performs extremely well in the error-free case when the

number of fragments is sufficiently large. However, in the erroneous case, this algorithm

fails to recover the original haplotypes with high reliability.

• The convergence rate for spectral partitioning highly depends on p. More specifically,

spectral partitioning is well-suited for the low-noise scenario, e.g., p ≤ 0.1, which is typical

of practical applications.

These results on synthetic data verify the results of our theoretical analysis in Section III and

Section IV, and the overall conclusions may be summarized as follows:

1) Erasure decoding is applicable only in the noise-free setting and it requires m = Θ(n lnn)

reads for a reliable assembly of a haplotype of length n.

2) Spectral partitioning proves useful in the low-noise scenario (e.g., p≤ 0.1). It, too, requires

m = Θ(n lnn) reads for a reliable assembly of a haplotype of length n. When these two
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Fig. 4: Plot of average error rates from 100 random simulations where the probability of sampling

errors is set to p = 0.1. In this simulation, we illustrate how the accuracy of haplotype assembly

depends on relationship between the number of reads m and the haplotype length n for both

erasure decoding (ED) and spectral partitioning (SP).

conditions are met, spectral partitioning is capable of recovering the original haplotype

with high accuracy, and the recovery rate is inversely proportional to the length of the

haplotype.

B. Test on a Benchmark Database

Here we present the study of the performance of both algorithms on the database created in

[21], generated from the Phase I of the HapMap project [22] and widely adopted for bench-

marking the effectiveness of haplotype assembly algorithms. This database consists of all 22

chromosomes from 209 unrelated individuals; shotgun sequencing process has been simulated

to obtain the SNP observation matrix. Note that only heterogeneous SNP sites are considered

in our study and that the recovery rate is computed based on the haplotype block lengths after

filtering out the homozygous sites. Moreover, note that here the number of SNPs covered by reads

varies and is no longer fixed to 2 as was the case in Section IV. Nevertheless, our algorithms
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Fig. 5: Plot of the average error rates evaluated based on 100 random simulations where the

number of reads is m = 2n lnn. Here we illustrate how the performance depends on sampling

errors for both erasure decoding (ED) and spectral partitioning (SP).

can be directly applied since the assumption on having precisely 2 observations per read was

only needed to allow theoretical analysis.

TABLE I shows the average recovery rate computed using 100 data sets from [21], where the

free parameters include: 1) the haplotype length n = 100,350,700; 2) the coverage c = 3,5,8,10;

and 3) the sampling error rate p= 0%,10%,20%. From the simulation results, we find that erasure

decoding successfully assembles the haplotype with high probability when p = 0, but fails to do

so when p > 0. Moreover, sparse partitioning performs well in comparison with several recently

proposed algorithms when the number of reads is sufficiently large. Therefore, our proposed

algorithms, primarily meant to support theoretical results, also have practical significance.

VI. CONCLUSION

In this paper, we studied the haplotype assembly problem from an information-theoretic

perspective. To determine the chromosome membership of reads provided by high-throughput

sequencing systems and thus enable haplotype assembly, we interpret the problem as the one
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Algorithms
p = 0.0 p = 0.1 p = 0.2

c = 3 c = 5 c = 8 c = 10 c = 3 c = 5 c = 8 c = 10 c = 3 c = 5 c = 8 c = 10

n
=

10
0

SpeedHap 0.999 1.000 1.000 1.000 0.895 0.967 0.989 0.990 0.623 0.799 0.852 0.865

Fast Hare 0.999 0.999 1.000 1.000 0.919 0.965 0.993 0.998 0.715 0.797 0.881 0.915

2d-mec 0.990 0.997 1.000 1.000 0.912 0.951 0.983 0.988 0.738 0.793 0.873 0.894

HapCUT 1.000 1.000 1.000 1.000 0.929 0.920 0.901 0.892 0.782 0.838 0.864 0.871

MLF 0.973 0.992 0.997 0.998 0.889 0.970 0.985 0.995 0.725 0.836 0.918 0.938

SHR-three 0.816 0.861 0.912 0.944 0.696 0.738 0.758 0.762 0.615 0.655 0.681 0.699

DGS 1.000 1.000 1.000 1.000 0.930 0.985 0.989 0.997 0.725 0.813 0.878 0.917

ED 1.000 1.000 1.000 1.000 0.650 0.651 0.627 0.639 0.587 0.581 0.585 0.593

SP 0.958 0.997 0.999 1.000 0.883 0.961 0.990 0.995 0.687 0.809 0.918 0.943

n
=

35
0

SpeedHap 0.999 1.000 1.000 1.000 0.819 0.959 0.984 0.984 0.439 0.729 0.825 0.855

Fast Hare 0.990 0.999 1.000 0.999 0.871 0.945 0.985 0.995 0.684 0.746 0.853 0.877

2d-mec 0.965 0.993 0.998 0.999 0.837 0.913 0.964 0.978 0.675 0.729 0.791 0.817

HapCUT 1.000 1.000 1.000 1.000 0.930 0.913 0.896 0.888 0.771 0.831 0.862 0.867

MLF 0.864 0.929 0.969 0.981 0.752 0.858 0.933 0.962 0.642 0.728 0.798 0.831

SHR-three 0.830 0.829 0.895 0.878 0.682 0.724 0.742 0.728 0.591 0.632 0.670 0.668

DGS 0.999 1.000 1.000 1.000 0.926 0.978 0.996 0.998 0.691 0.769 0.842 0.878

ED 1.000 1.000 1.000 1.000 0.608 0.595 0.587 0.586 0.553 0.549 0.538 0.547

SP 0.903 0.972 0.992 0.997 0.768 0.933 0.983 0.992 0.598 0.679 0.843 0.905

n
=

70
0

SpeedHap 0.999 1.000 1.000 1.000 0.705 0.947 0.985 0.986 0.199 0.681 0.801 0.813

Fast Hare 0.988 0.999 1.000 0.999 0.829 0.949 0.986 0.995 0.652 0.712 0.808 0.872

2d-mec 0.946 0.976 0.992 0.997 0.786 0.880 0.948 0.965 0.647 0.697 0.751 0.778

HapCUT 1.000 1.000 1.000 1.000 0.927 0.916 0.896 0.889 0.753 0.825 0.856 0.861

MLF 0.787 0.854 0.919 0.933 0.698 0.809 0.863 0.884 0.624 0.682 0.747 0.765

SHR-three 0.781 0.832 0.868 0.898 0.668 0.716 0.743 0.726 0.591 0.617 0.653 0.675

DGS 0.999 1.000 1.000 1.000 0.931 0.977 0.987 0.997 0.669 0.741 0.818 0.861

ED 1.000 1.000 1.000 1.000 0.576 0.571 0.572 0.573 0.534 0.532 0.531 0.528

SP 0.887 0.967 0.991 0.997 0.723 0.910 0.977 0.990 0.562 0.610 0.751 0.843

TABLE I: Comparisons of our algorithms, erasure decoding (ED) and spectral partitioning (SP),

with existing algorithms listed in [21]. Each entry in the table represents the average recovery

rate from 100 randomly generated haplotype observation matrices, with respect to different n,

c, and p.
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of decoding data messages that are encoded and transmitted over a particular channel model.

This channel model reflects the salient features of the paired-end sequencing technology and the

haplotype assembly problem.

In the case of error-free sequencing, we find that the required number of reads needed for

reconstruction is at least θ(n lnn), where n denotes the length of the haplotype sequence. To

establish a sufficient condition, we consider a graph interpretation of the original problem and

analyze the erasure decoding algorithm that utilizes the common information across reads to

iteratively recover haplotypes. We find that this algorithm ensures reconstruction with the optimal

scaling of the number of reads.

In the case of erroneous sequencing, where errors are assumed to be generated independently

and identically, we show that the number of reads needed to recover the haplotype is of the

same order as in the error-free case. For the sufficient condition, we rephrase the original

haplotype assembly problem as a low-rank matrix recovery. Using matrix permutation theory,

we illustrate that haplotype sequences could be recovered reliably when the number of reads

scales as Θ(n lnn), where n denotes the haplotype length.

Simulation results corroborate theoretical claims, and the information-theoretic view of the

haplotype assembly problem is worth pursuing in other applications (e.g., polyploid assembly).
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[23] P. Erdős and A. Rényi, “On random graphs I,” Publicationes Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.

[24] B. Bollobás, Random graphs. Springer, 1998.



25

APPENDIX A

PROOF OF BOUNDS FOR ERROR-FREE CASE

Here, we first show a well-studied result for the lower and upper bounds on the connectivity

of a random graph.

Lemma 9 ([23][24]). Consider a random graph G(n,q), where n is the number of nodes, and

q is the probability of an edging included in the graph. Then, the graph is disconnected with

probability at least 1−ε , if q < (1−ε) lnn
n ; the graph is connected with probability at least 1−ε ,

if q > (1−ε) lnn
n , where ε is an arbitrarily small positive number.

Therefore, lnn/n is a sharp threshold determining connectivity of a random graph. Considering

the above lemma in the haplotype assembly setting, the probability that an edge is included to

the graph can be calculated as

q = 1−
(

1− 2
n(n−1)

)m

.

Hence, the threshold for connectivity becomes

m =
n(n−1)

2
· (1− ε) lnn

n
+O(n)

=
1
2
(1− ε)(n−1) lnn+O(n),

which gives Θ(n lnn) for both lower and upper bounds with the scaling factor of 1/2.

APPENDIX B

PROOF OF LEMMA 4

Assume m = κ1n lnn, where κ1 is a positive constant. In order to provide a lower bound for

α , we truncate the first summation by leaving only the term with i = 1. More precisely, we have

α =
m

∑
i=1

{(
m
i

)[
2

n(n−1)

]i[
1− 2

n(n−1)

]m−i i

∑
l=⌊i/2⌋+1

(
i
l

)
[(1− p)2 + p2]l[2p(1− p)]i−l

}

≥
(

m
1

)[
2

n(n−1)

][
1− 2

n(n−1)

]m−1(1
1

)
[(1− p)2 + p2][2p(1− p)]0

≥ 2κ1n lnn
n(n−1)

e−
4κ1n lnn
n(n−1) [(1− p)2 + p2]

=
2κ1[(1− p)2 + p2]n−

4κ1
n−1 lnn

n−1
.
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Note that n−
4κ1
n−1 is an increasing function with n and tends to 1. Hence, for large enough n, there

exists a constant κ2 < 1 such that

n−
4κ1
n−1 ≥ κ2. (24)

As a result, the lower bound becomes

α ≥ 2κ1κ2[(1− p)2 + p2] lnn
n−1

. (25)

Thus, α has a Θ(n−1 lnn) scale lower bound. In fact, this bound is rather tight, because the first

term (i = 1) dominates the overall value (analogue to the analysis of β that follows next).

In addition, we need to establish an upper bound on β . In particular, we show that the terms

in the above summation are at least exponentially decreasing, such that the first term dominates

the value of β . For this purpose, we denote

βi ,
(

m
i

)[
2

n(n−1)

]i[
1− 2

n(n−1)

]m−i i

∑
l=⌊i/2⌋+1

(
i
l

)
[2p(1− p)]l[(1− p)2 + p2]i−l.

Introducing

β (l)
i ,

(
i
l

)
[2p(1− p)]l[(1− p)2 + p2]i−l

and

β =
m

∑
i=1

βi,

it follows that

βi =

(
m
i

)[
2

n(n−1)

]i[
1− 2

n(n−1)

]m−i i

∑
l=⌊i/2⌋+1

β (l)
i .

In order to derive a lower bound on βi/βi+1 for any i, we focus on two cases:

1) For even i, write i = 2k and note that

β2k

β2k+1
=

(m
2k

)[ 2
n(n−1)

]2k [
1− 2

n(n−1)

]m−2k 2k
∑

l=k+1
β (l)

2k( m
2k+1

)[ 2
n(n−1)

]2k+1 [
1− 2

n(n−1)

]m−2k−1 2k+1
∑

l=k+1
β (l)

2k+1

=

(2k+1)[n(n−1)−2]
2k
∑

l=k+1
β (l)

2k

2(κ1n lnn−2k)
2k+1
∑

l=k+1
β (l)

2k+1

.
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Note that there are k+ 1 terms for β (l)
2k+1 in the denominator, but only k terms for β (l)

2k

in the numerator. Hence, we duplicate the numerator to compare it with the denominator.

More precisely, for k+1 ≤ l ≤ 2k,

β (l)
2k

β (l)
2k+1

=
2k+1− l

(2k+1)[(1− p)2 + p2]
≥ 1

2k+1
, (26)

where the last inequality holds due to (1− p)2 + p2 ≤ 1. Moreover,

β (k+1)
2k

β (2k+1)
2k+1

=
(2k)![(1− p)2 + p2]k−1

(k+1)!(k−1)![2p(1− p)]k
≥ 1

2k+1
, (27)

where the last inequality holds due to 1 ≥ (1− p)2+ p2 ≥ 2p(1− p). Combining these two

expressions, we have

2β2k

β2k+1
=

(2k+1)[n(n−1)−2]
{

2k
∑

l=k+1
β (l)

2k +
2k
∑

l=k+1
β (l)

2k

}
2(κ1n lnn−2k)

{
2k
∑

l=k+1
β (l)

2k+1 +β (2k+1)
2k+1

}

≥
(2k+1)[n(n−1)−2]

{
2k
∑

l=k+1
β (l)

2k +β (k+1)
2k

}
2(κ1n lnn−2k)

{
2k
∑

l=k+1
β (l)

2k+1 +β (2k+1)
2k+1

}
≥ (2k+1)[n(n−1)−2]

2(κ1n lnn−2k)(2k+1)

=
n(n−1)−2

2(κ1n lnn−2)
.

Thus,

β2k

β2k+1
≥ n(n−1)−2

4(κ1n lnn−2)
. (28)

2) For i odd, write i = 2k−1 and note that

β2k−1

β2k
=

( m
2k−1

)[ 2
n(n−1)

]2k−1 [
1− 2

n(n−1)

]m−2k+1 2k−1
∑

l=k
β (l)

2k−1(m
2k

)[ 2
n(n−1)

]2k [
1− 2

n(n−1)

]m−2k 2k
∑

l=k+1
β (l)

2k

=

2k[n(n−1)−2]
2k−1
∑

l=k
β (l)

2k−1

2(κ1n lnn−2k+1)
2k
∑

l=k+1
β (l)

2k

.
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In this case, both numerator and denominator have k terms in summation. Hence, term-

by-term comparison leads to

β (l)
2k−1

β (l)
2k

=
2k− l

2k[(1− p)2 + p2]
≥ 1

2k
. (29)

Thus,

β2k−1

β2k
≥ n(n−1)−2

2(κ1n lnn−1)
. (30)

Note that, in both cases, the lower bounds (28) and (30) tend to infinity as n increases. Therefore,

there exists a constant κ3 > 1 such that for large enough n

min
{

n(n−1)−2
4(κ1n lnn−2)

,
n(n−1)−2

2(κ1n lnn−1)

}
≥ κ3, (31)

which further implies that for any value of i,

βi

βi+1
≥ κ3.

Based on this we obtain βi ≤ β1κ1−i
3 and

β1 =

(
m
1

)[
2

n(n−1)

][
1− 2

n(n−1)

]m−1(1
1

)
[2p(1− p)][(1− p)2 + p2]0

≤ 2κ1n lnn
n(n−1)

e−
2κ1n lnn
n(n−1) [2p(1− p)]

=
2κ1[2p(1− p)]n−

2κ1
n−1 lnn

n−1

≤ 2κ1[2p(1− p)] lnn
n−1

,

where we have used the fact that n−
2κ1
n−1 ≤ 1. Hence, we obtain

β =
m

∑
i=1

βi

≤
m

∑
i=1

β1κ1−i
3

≤ 2κ1[2p(1− p)] lnn
(n−1)(1−κ−1

3 )
. (32)

Thus, the upper bound for β is also Θ(n−1 lnn) scale.

A point to clarify: in several places we have somewhat imprecisely used categorization “large

enough n”. One may be concerned with whether a particular choice of n satisfying the proof
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assumptions could match the practical haplotype assembly scenarios. As an illustration, for κ1 = 2

that we use in the simulation setup, a simple choice of κ2 = 1/2 and κ3 = 2 implies that the

minimum value of n needed to satisfy both assumptions (24) and (31) is given by

n ≥ max{45,69,28}= 69,

which is quite smaller than the commonly encountered value in the haplotype assembly problems.

Therefore, our bounds are meaningful and useful in practical scenarios.


