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Abstract—DNA microarray technology relies on the hybridiza-
tion process, which is stochastic in nature. Currently, probabilistic
cross hybridization of nonspecific targets, as well as the shot
noise (Poisson noise) originating from specific targets binding, are
among the main obstacles for achieving high accuracy in DNA
microarray analysis. In this paper, statistical techniques are used
to model the hybridization and cross-hybridization processes
and, based on the model, optimal algorithms are employed to
detect the targets and to estimate their quantities. To verify the
theory, two sets of microarray experiments are conducted: one
with oligonucleotide targets and the other with complementary
DNA (cDNA) targets in the presence of biological background.
Both experiments indicate that, by appropriately modeling the
cross-hybridization interference, significant improvement in the
accuracy over conventional methods such as direct readout can be
obtained. This substantiates the fact that the accuracy of microar-
rays can become exclusively noise limited, rather than interference
(i.e., cross-hybridization) limited. The techniques presented in
this paper potentially increase considerably the signal-to-noise
ratio (SNR), dynamic range, and resolution of DNA and protein
microarrays as well as other affinity-based biosensors. A prelim-
inary study of the Cramer—Rao bound for estimating the target
concentrations suggests that, in some regimes, cross hybridization
may even be beneficial—a result with potential ramifications for
probe design, which is currently focused on minimizing cross
hybridization. Finally, in its current form, the proposed method
is best suited to low-density arrays arising in diagnostics, single
nucleotide polymorphism (SNP) detection, toxicology, etc. How to
scale it to high-density arrays (with many thousands of spots) is
an interesting challenge.

Index Terms—Cross hybridization, DNA microarrays, max-
imum a posteriori, maximum likelihood, minimum-mean-square-
error (MMSE) estimation, Poisson noise, quantum-limited SNR,
shot noise, statistical modeling.

1. INTRODUCTION

VER the past decade, high-throughput assay technologies
O have gained a lot of attention in the genomic research
community. DNA microarrays, in particular, have attracted
much interest due to the large scale and parallel nature of their
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experiments, as well as the richness of the information obtained
by them. This stands in contrast to traditional techniques that
are capable of analyzing only a small number of genes at a time.

DNA microarrays [1], [2] (which are, essentially, massively
parallel affinity-based biosensors) are primarily used to mea-
sure gene expression levels, i.e., to quantify the process of
transcription of DNA data into messenger RNA molecules
(mRNA). The information transcribed into mRNA is further
translated to proteins, the molecules that perform most of the
functions in cells. Therefore, by measuring gene expression
levels, researchers may be able to infer critical information
about functionality of the cells or the whole organism. Accord-
ingly, a perturbation from the typical expression levels is often
an indication of a disease; thus, DNA microarray experiments
may provide valuable insight into the genetic causes of dis-
eases. Indeed, one of the ultimate goals of DNA microarray
technology is to allow development of molecular diagnostics
and creation of personalized drugs.

A DNA microarray is basically an affinity-based biosensor
where the binding is based on hybridization, a process in which
complementary DNA (cDNA) strands specifically bind to each
other creating structures in a lower energy state. Typically, the
surface of a DNA microarray consists of an array (grid) of spots,
each containing identical single-stranded DNA oligonucleotide
capturing probes, whose locations are fixed during the process
of hybridization and detection. Each single-stranded DNA cap-
turing probe has a length of 25-70 bases, depending on the exact
platform and application [1]. In the DNA microarray detection
process, the mRNA targets that need to be quantified are initially
used to generate fluorescent labeled cDNA, which are applied to
the microarray afterwards. Under appropriate experimental con-
ditions (i.e., temperature and salt concentration), labeled cDNA
molecules that are the perfect match to the microarray probes
will hybridize, i.e., bind to the complementary capturing oligos.
Nevertheless, there will always be a number of nonspecific bind-
ings since cDNA may nonspecifically cross-hybridize to probes
that are not the perfect match but are rather only partial com-
plements (having mismatches). It is important to understand
that this particular phenomenon, i.e., nonspecific binding, is in-
herent to all affinity-based biosensors such as DNA or protein
microarrays and also inevitable, given that it originates from the
probabilistic and quantum mechanical nature of molecular in-
teractions and biochemical bonds present in these systems [3].
Finally, the fluorescent intensities at each spot are measured to
obtain an image, having correlation to the hybridization process,
and thus the gene expression levels.
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Today, the sensitivity, dynamic range and resolution of
the DNA microarray data is limited by cross hybridization
[6] (which may be interpreted as interference), in addition
to several other sources of noise and systematic error in the
detection procedure [7]. The number of hybridized molecules
varies due to the probabilistic nature of the hybridization. It
has been observed that these variations are very similar to
shot noise (Poisson noise) at high expression levels, yet more
complex at low expression levels where the interference (i.e.,
cross hybridization) becomes the dominating limiting factor of
the signal strength ([6], [7]). In addition, the measurements are
also corrupted by the noise due to imperfect instrumentation
and other biochemistry independent noise sources.

Typically, cross hybridization is considered to be hurtful and
often attempted to be suppressed by creating more specific
probes. For instance, in the design of DNA microarrays, the
capturing probes are often selected so that the sequences of
nucleotides that comprise them are as unique as possible, and
different from others as much as possible [5]. Nevertheless, if
the application requires distinguishing among similar targets,
cross hybridization is certainly present and perhaps limiting
the accuracy. This may often be the fundamental limitation
in microarrays designed for diagnostics and single nucleotide
polymorphism (SNP) detection, for instance.

One of the main challenges for a precise target detection and
quantification is the correct identification and modeling of the
noise sources, and the consecutive incorporation of the noise
model in the design of optimal estimators. While the former
has recently been experimentally studied (see, e.g., [6]), the
latter is still largely unexplored. In this paper, we describe the
hybridization and cross-hybridization processes by Markov
chains, similar to the techniques employed for modeling affinity
based sensors in [3], which suggests that these biosensors have
a quantum-limited SNR. Using the stationary distribution of
the Markov chains, we formulate a statistical model of the
microarray measurements. We note that a statistical modeling
of DNA microarray data, using the experimentally measured
correlation between observed hybridization intensity and cal-
culated free energy of hybridization, was also proposed in [9].
In a related work [8], another statistical model that addresses
individual probe-specific effects and automatic detection and
handling of outliers and image artifacts, was proposed. How-
ever, we believe our model and algorithms go well beyond
those of [8] and [9].

In our model, the biological noise is modeled as shot noise,
thus accounting for the inherent fluctuations of the measured
signal. We consider various criteria for the design of optimal
algorithms for the detection of the presence and the estima-
tion of the quantity of the target molecules. In particular, we
consider the maximum-likelihood, maximum a posteriori, and
constrained least-squares criteria. Therefore, instead of trying to
suppress the cross hybridization, we essentially exploit it. This
results in an increase in the signal-to-interference-and-noise
ratio (SINR), and accordingly the precision of the microarray
becomes limited by only the inherent noise, getting closer to its
fundamental quantum-limited SNR.

The paper is organized as follows. In Section II, we de-
velop a probabilistic model of the DNA microarray. Based
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on this model, we consider several algorithms for optimal
detection of the target concentrations in Section IIT and de-
rive the Cramer—Rao lower bound (CRLB) on the minimum
mean-square error of all estimators. In Sections IV and V, we
test the performance of the proposed technique on two sets
of experiments: one involving oligonucleotide targets and the
other cDNA targets in rich biological background. Finally,
conclusions and directions for future work (such as how to
scale the calibration experiments to high-density arrays) are
discussed in Section VL.
Preliminary results of this paper were first reported in [10].

II. PROBABILISTIC DNA MICROARRAY MODEL

We consider an m X m DNA microarray, with M < m?2

different types of oligonucleotide probes attached to its sur-
face. In other words, a particular oligonucleotide probe may be
present at more than one spot of the array. Each probe is par-
ticularly designed to capture one of the possible targets in the
sample that is required to be detected and quantified. We will as-
sume that a total of n molecules of NV different types of cDNA
targets, N < M, each consisting of ¢y, ca, ..., cny molecules
N . . .
(3°i1 ¢i = n), are present in the sample that is applied to the
microarray in the hybridization phase. For any target, there may
be more than one spot on the . X m array where the comple-
mentary probes are located; we denote the number of spots with
probes that are complements to the target of the type ¢ by M;,
and note that Zf\il M; = m?2. (For notational simplicity, we
will in fact assume that M = m?2.) The array is scanned after
the system has reached biochemical equilibrium. The resulting
image has information about the number of targets captured at
each spot and the goal is to detect which targets are present and
to estimate their unknown concentrations c;.

In general, in addition to hybridization to its matching
oligonucleotide probe, each target molecule of type ¢ may also
engage in nonspecific cross hybridization with probes whose
nucleotide sequences are only partial matches with the target. In
particular, for each target ¢, we will denote by k; the number of
nonspecific cross hybridizations. In our model, we assume that
both hybridization and cross hybridization are random events.
Accordingly, let p? denote the probability that a target of type
i hybridizes to its matching probe. If we assume that p is the
probability that target 7 hybridizes to its matching probe when
it is in the proximity of its matching probe, then we can write

p =pH . Prob(target 7 is in proximity of

its matching probe)

where we have used the fact that the target molecules are un-
dergoing a random walk to deduce the 1/m? factor. The reason
for expressing p? in terms of pI’ is that the latter is what de-
pends on factors such as the chemistry and probe and target se-
quences. For example, p can be estimated from the target and
probe sequences, as well as the hybridization conditions, using
the concepts of AG (Gibbs free energy change) and melting
temperature (see, e.g., [11] and [12]). However, these give only
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Markov chain modeling states of a target molecule on a microarray with one specific and & = 2 nonspecific binding sites. The hybridized state is denoted

by “H,” cross-hybridized states are denoted by “C,” and the unbound state is denoted by “N.”

approximate values and further refinements are currently under
investigation.

Furthermore, let pf; denote the probability that a target of type
1 cross-hybridizes to a probe of type j. Similarly, we may write
p§; = p§;/m?, where pg; is the probability that target i cross-hy-
bridizes with probe j when it is in its proximity. We should note
that cross hybridization is not necessarily reciprocal: in other
words, in general pf; # pj;. In fact, cross hybridization need
not even be mutual: If a target of type ¢ cross-hybridizes to a
probe of type j, the target j does not necessarily cross-hybridize
to a probe of type i, i.e., it could be that pj; = 0 even though
pi; > 0. Finally, the diffusion of the unbound target molecules
is modeled as a random walk across the array [13]. Thus, in
equilibrium, the distribution of the molecules is assumed to be
uniform on the array [3].

If all we have is a probability of binding (i.e., hybridiza-
tion and cross hybridization) then, if enough probes are present,
eventually all the target molecules would bind to the probes.
However, this is not the case since both hybridization and cross
hybridization are reversible processes: once a target molecule is
bound to a probe there is a nonzero probability that it will be re-
leased. We denote the release probability for hybridization (i.e.,
the probability that target ¢ is released from probe ¢) by p; and
for cross hybridization (i.e., the probability that target ¢ is re-
leased from probe j) by p;;. In this sense, any target molecule
of type ¢ can be in one of k; + 2 states: one state corresponding
to hybridization to probe i, k; states corresponding to cross hy-
bridization to probes j, and one unbound state. The transition
probabilities between these states are given by the probabilities
ph, p;j» i~ and p;;. The corresponding Markov chain model is
depicted in Fig. 1 for an example where k; = 2. The probability
p} =1 -3, p§; — pi in Fig. 1 denotes the likelihood that an
unbound target remains free.

Remark 1: At this point, we need to mention an important as-
sumption in our work. We will assume that the probabilities p!
and pj; are constant. In other words, they do not depend on the
number of target molecules that are bound to different probes.
It is certainly conceivable that if there are not enough probes,
and/or if there are too many target molecules, then as more tar-

gets bind to probes there will be less probes available for binding
and so the binding probabilities p!* and p;; will decrease. This
will essentially lead to saturation. Therefore, in our model we
will restrict ourselves to the case where saturation is not met,
i.e., we will assume that the concentration of target molecules
relative to the number of probes is low.!

Remark 2: Recently, correlation between probes on the chip
(locational dependency) has been studied (see, e.g., [14]). We
have not directly incorporated these into our model, although in
principle it is possible to do so by adjusting the values of the
ph and p;; in accordance with the location of those probes. The
calibration experiments which we use to finetune the model in
Sections IV and V do, in fact, make the corrections required by
macroscopic issues such as the correlation between the probes.

What we are interested in is the probability that a given mole-
cule of type ¢ is in any of the aforementioned k; + 2 states, once
we have reached equilibrium. Let us denote this by the prob-
ability vector p; = [pi1 fi2 ... ui7ki+2]T, where p; 1 is the
probability of being in the hybridized state, 11; ;,2 < j < k; +1
is the probability of being in the jth cross-hybridized state, and
[tk +2 1 the probability of being unbound. These probabilities
are clearly given by the stationary distribution of the Markov
chain, i.e., they satisfy

pi = Pipi, 1Tpi =1
where 1 denotes the vector of all 1’s, and where the transition
matrix P; is given by

1—pf 0 . 0 ph
0 I—-pip ... 0 5
P = : : ' : :
0 0 L —piy, P,
p; Di1 Pik, s

'We should mention that modeling the case where the binding probabilities
p? and p¢ are a function of the number of molecules already in a bounded state
is quite interesting and will allow one to study microarrays when the target con-
centrations are high. However, the model and resulting estimation algorithms
become quite more complicated.
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Since what is measured in a microarray is (an indication of)
the number of molecules bound to any particular probe, let us
now turn our attention from target molecules to probes. Thus,
consider the Ith probe, I = 1,2,...,m? and let the number
of target molecules of type ¢ that are bound to it be given by
ny;. Clearly, the total number of molecules bound to probe [ is
given by n; = Ef\;l ny;. Bach ny; is an independent binomial
random variable, one of which corresponds to hybridization and
the remaining to (possible) cross hybridizations. Let us denote
by q; the probability that a target of type ¢ is bound to probe /.
These can be readily found from the earlier computed ; ;s. In
fact

ii1, if target 4 hybridizes with probe [
) wij,, iflis the j;th probe target i
Qi = cross-hybridizes to (2 < j; < k;)
0, otherwise

Since the total number of target molecules of type @ that are
available is given by c;, the distribution of n;; is given by

p(n; =) = <2>qﬁ(1 —qu) ", )

Since the number of molecules involved is large, this is well ap-
proximated by a Gaussian random variable with the same mean
qiic; and variance q;;(1 — qi; )c;. Furthermore, since the n;; are
independent, n; is well approximated by a Gaussian random
variable with mean 3" . ¢;;¢; and vari N qi(l—qui)ei
;—1 quic; and variance ) ., qui(1—qui)c;.
Arranging the n; into a m? x 1 column vector n =
[n1 2 . nmz]T, the measurement obtained from a DNA
microarray is

s=n+v 2)

where v is the noise due to imperfect instrumentation (e.g., read
noise of scanner or camera) and other biochemistry independent
noise sources and can be well modeled as having iid Gaussian
entries with zero mean and variance o2. Recall further that n
also can be represented as having independent Gaussian entries
with mean Zil quic; and variance Zil q:(1 — qi)c;. Thus,

defining the N x 1 column vector ¢ = (1/m?)[c1 ¢2 ... en]T,
we may write the microarray master equation
s=Qc+w+v 3)

where @ is the matrix with ([, 7) component ¢;; and w is a zero-
mean Gaussian random vector with covariance matrix
]\T

EwwT =diag un(l—qli)ci, ..
=1

N
. Z Gm2i (1= qm2i)ci
i=1
“
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The master equation (3) is the relationship between the mea-
sured signal s and the unknown target concentrations c. Note
that once (Q and o2 are given, the model is fully specified. (¢ can
be obtained either by direct measurements or through knowl-
edge of the probabilities p, pi;» pi and p;;.) Note also that the
unknown concentrations (the c;) are also present in the covari-
ance matrix of w. In fact, this means that we have a shot-noise
model.

III. OPTIMAL ESTIMATION OF TARGET CONCENTRATIONS

In this section, we state a few criteria that may be used for
recovering the unknown vector ¢ in the microarray master
equation (3). Furthermore, we derive a lower bound (viz.,
the Cramer—Rao bound) on the minimum mean-square error
of the target concentrations estimation. We also offer some
discussions of the results.

Maximum-Likelihood Criterion: The maximum-likelihood
(ML) estimate of the input concentrations maximizes the prob-
ability pg|c(s|c), i.e., it is obtained by solving the optimization
problem

max s|c), 5
>0 ps|c( | ) 5
where, due to Gaussian distribution of both w and v, we have

1 1 Ty —1
_ —3(8=Qc)” X7 (s—Qc
ps|c(S|C) = (271_)]\/[/2 det(25)1/2e z( ) ( )

where the covariance matrix X, is given by the equation shown
at the bottom of the page. The optimization (5) is equivalent to
the minimization

rcnzig [(s — Qc)*E; " (s — Qc) + log det 3] (6)

or more spelled out
2
2 N
m (Sl - Ei:l QI1:C7:>
min E
c; >0

= | %+ Zi\;l @i(1 — qui)ci

N
+log [ 0 + Z @i(l —aqu)ei | |- (D)

=1

Note that the above problem is highly nonlinear and non-
convex. It can be, at best, solved via some iterative procedure. A
good initial condition for any such iterative method can be found
from the deterministic least-squares solution described further
below.

Maximum a posteriori Criterion: In many cases, one may
have prior information about the target concentrations. In this
case, one would want to use the maximum a posteriori (MAP)

N
o+ 3 qui(l = qui)e

0

N '
02 + i dm2i(1 = qm2i)ci
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estimate that maximizes p(c|s) = p(s|c)p(c)/p(s), ie., it is
obtained by solving the optimization

rgggp(SlC)p(C)-
Here, this reduces to

m>151 [(s — Qc)*S (s — Qc) + logdet £ — log p(c)]  (8)

where p(c) = p(cy,...,cn) is the a priori information about
the joint presence of the different targets. The a priori informa-
tion in the MAP estimation therefore accommodates potential
use of information obtained previously by some other means,
i.e., it allows for biological data fusion.

Deterministic Least-Squares Criterion: The deterministic
least-squares (LS) solution is obtained by solving the following

optimization problem:
: 2
— . 9
min [|s — Qcll ©

Although this criterion does not have as nice a stochastic inter-
pretation, it is a quadratic program that can be solved exactly
via efficient convex optimization techniques (e.g., the reflective
Newton method—see [15]). In other words, the inequality con-
straints ¢; > 0 do not pose a problem. In fact, any other prior
information (such as upper and lower bounds on the concentra-
tions, saturation, etc.) that can be cast as inequality (or, more
generally, convex) constraints can be readily incorporated into
the method and solution.

As mentioned earlier, the solution obtained from determin-
istic least-squares is often a very good initial condition for iter-
ative methods used for solving the ML and/or MAP problems.

A. Limits of Performance

The minimum mean-square error (MMSE) of any estimation
procedure is lower bounded by the Cramer—Rao bound [16].
We compute and use this bound to characterize the limits of
achievable performance of target quantification in microarrays.

Assuming an unbiased estimator, the CRLB on the MMSE of
estimating a parameter c; is given by

E(é —c)® > [F'u (10)
where the Fisher information matrix F' is given by the negative
of the expected value of the Hessian matrix of log psc(s). In
other words, the entries of F' are given by

2

0
—Es———log ps|c(s).

11
8@8@ ( )

F =

Since the expectation is over only s, I’ (and hence the CRLB)
is a function of c. We shall further find it convenient to define
the entries of the Hessian matrix H as

82

H;; =
8ci8cj

log psje(s)-

Note now that H is a function of both s and c.
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In our case, the function whose second derivative we desire is

L(c)=1og (psjc(s|c))
=— % 10g(27r) - % logdet Es_ %(S—Qc)ngl(S—QC).

Rather than attempt to compute the Hessian by evaluating two
consecutive derivatives, we shall find it more convenient to do
so by perturbing ¢ around two of its components, say c¢; and c;,
and noting that to second order

9L(c)
L(c+e;bc; +ejdcj) = Lc) + [be;  d¢j] [ a(zc(ic) ]
dc;
1 Hy  Hij | | bc
ol ol [Hji Hjj} [5%} (42

where e; and e; are the 4th and jth unit vectors with ones in the
ith and jth components, respectively, and zeros elsewhere. To
determine the expansion (12), we will find it useful to write the
covariance matrix X, as

N
5. = Do+ Dici
i=1
where Dy = 021,,2, and where
q1i(1 = qu4)
q2:(1 — q25)

D; =
(Im2i(1 - (szL)
Furthermore, note that we can write
1 1
L(c+eiéci +ej5c]-) = —5 10g(27r) — §L1(c+ei5ci +e]-60j)
1
_ELQ(C + e;0c; + e]'(SCj)
where
Li(c +e;6c; + ejbcj) = logdet(X; + D;dc; + Djbe;)
and

LQ(C +e;bc; + ejécj) = (S — Qc — Qe;bc; — er§Cj)T
><(2s + D;be; + Djécj)_l(s — Qc — Qe;bc; — er(SCj).

To find the contribution of L; to the Hessian, we use
1
logdet(I + X) ~ trX — itrX2 + o(X?)
to write

Ll(c + e;bc; + ej6Cj)
= logdet ¥, + logdet (I + X7 ' D;6¢c; + X7 D;éc;)
~ logdet ¥y + tr (X7 D;éc; + X' D;6c;)
1
— 5131‘ [E:lDLEg_lDL((SCL)Z + ZES_IDiE;le&ciécj
+3,'D;¥,1D;(6¢;)?] . (13)
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Comparing (13) and (12), it is clear that

M — —ltr (Ele.Ele.)
2 s 1~s J) "

14
Bciacj ( )

We now shift our attention to Lo(c + e;6¢; + e;6c;). To find
its contribution to the Hessian H, we use

(I+A) =T - A+ A% +0(A?)
to obtain
(ZS + D;bc; + Dj(SCj)_l
= (I + ;' Dsbe; + 5, D;6¢;) ' £
~ [[ - X,'D;bc; — £, 'Djbc; + 28, ' D; S, Djécibe;
+37'D; 871D, (8¢;)? + 71D, D (6¢)?] B

Putting this back in the expression for Lo(c + e;6¢; + €;6¢;),

it is not too difficult to identify

82L2(C) _ _ —

Dede; (s — Q)" DX DT (s — Qc)
+(s — Qc)'YID;Qej + el QTX Qe (15)

Using Es(s — Qc) = 0 and E4(s — Qc)(s — Qc)T = ¥, to
obtain the expectation of (15) and combining the result with (14)
yields

E. 0?L(c)
aciaCj

1
= —e] QTS Qe; — St (2,'D;2,'D;).

The (4, j) entry of the Fisher information matrix is therefore
given by

- 1 - -
Fij = G?QTES ler + Etr (Zs lDiES 1Dj) .

Note that with our definition of the diagonal matrices D; we
have

1 1

Os.k /’Jsk

>

tr (S7'D; 57" D;)

I
]
S

Djk

i Aki(1 — qri)ari (1 — qiy)
Uzk
k=1 E

which is readily identified as the (7, j) component of the matrix
(Q-Q6Q)TX72(Q - Q®Q), where ® represents the direct
product, (A ® B);; = (A);;(B);;. Note that o, 5, denotes the
(k, k) component of ¥ and D; j, is the (k, k) component of D, .
Therefore, we can write

F=QUSIQ4 L@ -QoQ)"S Q- Q0 Q). (6
Our end result, therefore, is
E(é — i)’ > KQTZle + %(Q -QoQ)T
x72Q-QoQ) ]

22

a7
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1) Comparison With Direct Readout: Note that, being unbi-
ased, the ML estimate (7) achieves the Cramer—Rao bound in
(17). In most current applications of microarrays, one assumes
that N = m? and estimation is performed by direct readout. In
this case it is easy to see that the mean-square error of direct
readout is given by

Eis—c)(s—c)f =(Q-DNecl(Q-DT+%,. (18)
Comparing (18) with (17) for a given system model and con-
centrations provides a measure of the improvement of the tech-
niques proposed in this paper over the currently widely used
methods that employ direct readout.

B. Effect of Cross Hybridization

In current microarray technology a great deal of effort is put
into the design of the probes (often using some time-consuming
form of combinatorial optimization) in such a way so as to min-
imize the effect of cross hybridization. In some important appli-
cations, such as SNP detection, the desired targets are inherently
similar and so eliminating the effect of cross hybridization may
not be completely possible.

Moreover, using the algorithms described in this paper, it may
be that cross hybridization can be turned to one’s advantage.
Take, for simplicity, the extreme case where our sample has only
a single target, i.e., N = 1. If an array has been designed that
has no cross hybridization then, assuming the target present is
the first target, it will only bind to probe site number one and not
to any of the other sites. The Fisher matrix from (17) therefore
becomes

q%1 q%l(l _qll)2

1
Fre — - )
o2t qn(l—qu)er 2 (624 q11(1 — q11)01)219)

Assume now that the array does have cross hybridization, i.e.,
that target 1 can bind to probe k with probability g1 . The Fisher
matrix now becomes

m2 2
c Qi1
Fe =
o kz:; [‘72 + qr1(1 = gr1)cr
—f—l . ql?:l(l — qkl)z
2 (o2 +qm(1— Qk1)01)2
m2 2
ne 91
" kZZQ [02 + qe1(l = gr1)cr
_1_1 . q1%1(1 — Qk1)2
2 (024 qu(1 - qr)er)’
> e,

In other words, the existence of cross hybridization improves
the accuracy of our estimate of target 1.

Of course, as one increases the number of targets beyond
N = 1, one would expect the improvement in accuracy to di-
minish and, in fact, for large enough N for the accuracy to de-
grade compared to the case of no hybridization. However, for
what value of N this transition occurs depends very much on
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the values of the parameters o2 and @, on the concentration of
the targets c; and on the number of probes m?2.

To illustrate this, consider an artificial example where we
have NV targets that hybridize to their corresponding probes with
probability ¢;; = ¢ and that cross-hybridize to all other (m?—1)
probes with probability ¢;; = (3, ¢ # j. Furthermore, assume
that the concentration of all N targets are identical, i.e., ¢; = ¢,
fori =1,..., N.(The reason for choosing such symmetric pa-
rameters is that it will allow us to explicitly compute the inverse
of the Fisher matrix F'. We hope it will also give some insight
into the more general setting.)

With these parameters, it is not difficult to see that
oy = (0® +q(l = g)e+ (N = 1)B(1 = f)e)

ES = O'SImz,

and that (after some straightforward algebra)

a b ... b
F = b o :(a—b)IN+1-b-1T
)
b ... b a
where
2 201_ )2 2 2(1_5)2
azg_s+q (203(1) +(m?—1) {/03_8+5 (2035)}
_ _ 2 201 _ 2\2
b= 2 AU o [ PUPPT

Now, inverting a matrix of the form of F' above is straightfor-
ward since

F' = ((a=b)Ix+1-5-17) 7"

1 1 1 1

- Iy — 1 T

a—b " a—b b—l_}_% a—b
1 1-5-17

= — l]\r—i .

a—"b a+ (N —-1)b

Therefore

_ 1 a+ (N —=2)b

1 = V- 2) 20)

a—b a+(N—-1)b

This is the CRLB that should be compared with the one without
cross hybridization in (19). Fig. 2 does this comparison for the
parameters o2 = 1000, ¢ = 500, m? = 100 (i.e., a 10 x 10
array), ¢ = 0.3, and § = 0.01. As can be seen from the figure,
cross hybridization is, in fact, beneficial when the number of
targets is N < 6. Therefore, our artificial example seems to in-
dicate that there is benefit in having cross hybridization in sce-
narios where the number of targets of interest in a given sample
is much less than the number of probes on the array.

IV. EXPERIMENTAL VERIFICATION (I):
OLIGONUCLEOTIDE TARGETS

In this section, we describe a set of experiments designed
specifically to test our hypotheses regarding the statistical model
and to verify the performance of the estimation algorithms on
this experimental data.
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Fig.2. CRLB with and without cross hybridization as a function of the number
of target types N. The parameters are o> = 1000, ¢ = 500, m?> = 100
g = 0.3,and 3 = 0.01.

Description of the Experiments: We started with a com-
mercial set of oligonucleotide probes chosen from 96 genes
of the bacterium Escherichia coli (specifically, the E. coli
Array-Ready Oligo Set sample purchased from Operon Tech-
nologies, Huntsville, AL); denote this set by

., Po}.

Each probe is a 70 bases long (i.e., a 70-mer) and, even though
the set is commercial and designed with minimization of cross
hybridization in mind, there are many pairs of probes that are
mutually similar. We selected a subset of ten such probes, i.e.,
the probes are selected so that there is some cross correlation
between the sequences of nucleotides comprising them. More
specifically, we proceeded in the following manner. We selected
the first probe as p; = P;. To find the second probe, we used
the sequence alignment functions in Matlab’s Bioinformatics
Toolbox to find one that had significant cross correlation with
p1. Call this probe p. In the process of determining p2, we also
designed two targets, ¢; and ¢, which are 25 mers such that
they are Watson—Crick complements of certain subsequences
of p; and po, respectively, and such that they have high cross
correlation with a certain subsequence of the other probe.

After this, we proceeded in a sequential manner by deter-
mining a probe, say p;, that has significant cross correlation with
the probes selected earlier, {p1,...,p;—1}, and in doing so de-
signed a 25-mer target ¢; that hybridizes perfectly to p;, yet has
high cross correlation with certain subsequences of the earlier
probes {p1,...,pi—1}.

At the end of this process, we obtained a subset of ten probes

Pog = {P1, P, ..

Pio = {p1.p2,- .. P10}

as well as a set of ten targets
Tho = {t1,t2,..., 10}

The targets were highly purified and fluorescently labeled with
Cy5 Cyanine dyes.
Two types of 10 x 10 arrays were designed:
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. Type 1, which has all 96 probes from Pyg

P |\ Py | P3| Py | Ps | Ps | Pr| Ps| Py
Py1|Pro| P13 | Pry| P15 | Pis | Pi7| Pis | Pro
Po1| Pas | Pa3| Py Pog | Par | Pag | Pag
P31| P32 | P33| Py P36 | P37| P3g | Pag
Py1| P2 | Py3| Pyg Pyg | Py7 | Pyg | Pag
Ps1| P52 | Ps3 | Psq | Pss | Pse | Ps7| Psg | Psg
Ps1|Ps2 | Po3 | Psa | Pos | Pss | Pot | Pos | Poo
P71| Py Pre | Pr7| Prg| Pro| Pso
Pg1| Pya | Pg3| Pay Pse| Ps7 | Pss| Pso | Poo
Po1| Po2| Po3 | Pos | Pos | Pog| P1 | P2 | P3| Py

Py
Pay
Psy
Py
Psq
Pgo
Prg

. Type 2, which contains only the probes from Py

P1|P2 |P3|P4|P5|P6|P7|P8|P9 |P10
Pio|P1 (P2 | P3| P4 |P5 | D6 |P7| P8 | DP9
Po |Pio|P1 | P2 |P3 |P4|DP5|P6 |P7| D8
P8 | P9 |Pio|P1 |P2|P3|P4|P5|P6|DP7
P7| P8 | P9 |Pio|P1|P2|P3|P4|P5 | D6
Pe | P7 | P8 | P9 |Pio|P1|P2|P3 |P4|P5
Ps|Pe | P7 | P8 |P9 |Pio|P1|P2|DP3|DP4
Pa|P5|P6 | P7|P8|P9 |P1o|P1|P2|DP3
P3| P4 |P5|P6 |P7|Ps8| P9 |P1o|P1 | P2
P2 | P3| P4|P5|P6|P7|P8|P9o |P1o|P1

Determiming Parameters of the Statistical Model: To apply
the estimation algorithms discussed in Section III, we need to
determine matrix () in (3). To this end, the probabilities of hy-
bridization and cross hybridization of each of the 10 targets to
any of the ten probes are determined based on both of the fol-
lowing:

* analytical expressions (AG, melting temperature, etc.; see,

e.g., [12]);

* calibration experiments, where only one target is applied

to a microarray, and its binding to each probe is quantified.

The melting temperature is used to get a rough estimate of
the desired probabilities. Then, the calibration experiments are
used to finetune them. We performed two sets of calibration ex-
periments where the target quantity was 2 pmol in 50 plit.

The final measurement obtained by the experiment is a 16-b
image (scanned by GenePix scanner by Axon Instruments, Inc.,
Foster City, CA) with the intensities of the pixels ranging be-
tween 0 and 65 535. These intensities are correlated to the hy-
bridization process. The results of the calibration experiments
are summarized in the matrix R shown below.

R =kQ
res 3 0 0 0 O O 0 2 17
3 %5 0 0 0 0 O 0 0 O
1 2 62 0 0 0 0 0 O O
0 2 3 60 0 0 O O 0 O
_| 1 1 28 23 48 0 0 0 0 O <10
0 3 0 32 6 54 0 0 0 0 ’
9 4 6 4 41 34 56 0 0 O
1 1 1 3 4 25 46 40 0 O
0o 0 2 0 8 0 5 2 63 0
L0 0 0 0 0 0 3 16 61 46
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Fig. 4. Measured and estimated signal, 7> mixture.

The matrix R is proportional to the probability matrix ) whose
(7,7) component is the probability that target j binds to probe 4.
The reason for having the factor k is that we do not directly mea-
sure the number of molecules (as suggested by (3)) but rather
light intensity. Therefore, k is essentially the factor that trans-
lates the concentration of target molecules to light intensity.

The peculiar (almost) lower-triangular structure of () is an ar-
tifact of the sequential selection of the probes and targets in P;
and 77. Thus, ¢; is likely to cross-hybridize to probes selected
earlier, 2 < 7, and not to ones selected later, 7 > j.

The Algorithm in Action: We tested the performance of the
estimation algorithm in experiments where a mixture of 2 or 3
targets were applied to the designed microarrays. In particular,
the mixtures
T3 = {ts,t6}

Tl = {t27t47t7}7 T2 = {tg,tg},

were prepared, each with an equal amount of component target
concentrations. The final concentrations of 1%, 15, and T3 were
1 pmol each and were applied to a 50 plit microarray reaction
buffer. Each experiment was replicated four times. GenePix and
Matlab’s Bioinformatics Toolbox were used for data analysis.

Figs. 3-5 show the measured signal and the estimated
target quantities obtained from the constrained least-squares
algorithm. Fig. 4 shows a very accurate estimation of the true
target quantities of 50 pmol for targets ¢3 and ¢9. Fig. 3 shows a
relatively good estimation of the target quantities of 33 pmol for
targets to, t4, and t7. Note also that in both cases the artifacts
due to cross hybridization are suppressed, i.e., no target is
incorrectly detected (as a false positive).
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Measured and estimated signal, 7% mixture.

Fig. 6. Measured signal, 75 applied to Type 1 microarray.

Fig. 7.

Measured signal, 15 applied to Type 2 microarray.

A particularly interesting experiment is the one where 73
is applied to the microarray. The signal that was measured is
shown in Fig. 6 and Fig. 7 and indicates a significant presence
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of binding to not only targets p; and pg, but also to ps and py.
The raw measured data vector is

[p17 .. 7p10]

= [800, 3520, 23760, 38200, 46820, 46060, 60, 0, 40, 0].

However, we know from our design of the experiment that the
high levels of binding in spots 3 and 4 must be due to cross
hybridization since T3 contains only targets ¢5 and ¢g.

When our algorithm is applied to the measured data, it cor-
rectly identifies the presence of only two targets in the mixture,
and quantifies them quite precisely as

[t1,... t] = [0,0,0,0,0.50,0.49,0,0,0,0] pmol.

V. EXPERIMENTAL VERIFICATION (II): cDNA TARGETS IN
BIOLOGICAL BACKGROUND

In Section IV, we reported a set of microarrays experiments
where the targets were synthesized 25-mer oligonucleotides. In
this section, we present the results of an experiment wherein the
targets are actual E.Coli cDNA molecules in a rich biological
background (typical of actual microarray experiments).l

Description of the Experiments: The targets used in the ex-
periment are generated from The RNA Spikes, a commercially
available set of eight purified RNA transcripts purchased from
Ambion, Inc., Austin, TX. The sizes of the RNA sequences are
(750, 752, 1000, 1000, 1034, 1250, 1475, 2000), respectively.
These spikes are used for calibration purposes in microarrays
and so have been chosen such that the eight sequences have
minimal correlation. We were therefore also very interested in
whether we could observe cross hybridization effects in such
a highly optimized set of targets. The RNA sequences were
reverse transcribed to obtain cDNA targets, labeled with Cy5
dyes.

We designed 32 probes (25-mer oligonucleotides), four for
each of the eight targets, and printed slides where each probe is
repeated in ten different spots (hence, the slides have 320 spots).
Denote the probes by p;;, where 1 < ¢ < 8,1 < j < 4; there-
fore, p;; denotes the jth probe for the ¢th target. Furthermore,
let P; = { pij}, 1 <7 < 8 be the jth probe set. The probes are
designed so that they cross-hybridize with one or more targets
other than their intended ones.

The melting temperature is used to get a rough analytical es-
timate of the probabilistic model (i.e., of the matrix Q in the
master equation (3)). Then, calibration experiments were per-
formed in order to finetune the model. Two sets of eight calibra-
tion experiments were performed, wherein 2 ng of a single target
was applied to a slide in every experiment. The experiments
were done at T' = 24.8 °C, the data was acquired with a GenePix
scanner by Axon Instruments and analyzed with GenePixPro 6.0
and Matlab’s Bioinformatics Toolbox.

To test the performance of the estimation algorithm, we
performed a set of experiments where a mixture of three
targets was spiked with a complex biological background
(from mouse total RNA). In particular, we used a mixture
(r1,72,73) = (1,0.75,1.5) ng and spiked it with 500 ng of the
mouse RNA. The experiment was replicated four times. The
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Fig. 8.

Measured signal, (r1,7r2,73) = (1,0.75,1.5) ng of Ambion RNA
Spikes in 500 ng of mouse RNA background. Locations of the probes from P
are denoted in the image to give further description of the array.
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Fig. 9. Signal measured by the probe set 77; and the corresponding target
amount estimates.

conditions of these experiments were the same as the conditions
of the calibration experiments.

Fig. 8 shows the scanned image. In Fig. 9, we show the mea-
sured signal and the estimated values of the targets using the
probe set P;. Similarly, Figs. 10-12 show the measured sig-
nals and the estimated values of the targets using the probe sets
Py — Py, respectively.

These figures show several interesting features. A direct
readout of the signal obtained from Fig. 9 for probe set P;
might lead an observer to conclude that there is more target r;
than target r3 in the applied mixture. However, the constrained
least-squares algorithm corrects this, recovers the true relation
of the targets in the mixture, and gives fairly accurate estimates
of their quantities. It also suppresses the cross-hybridization
artifact that may lead one to erroneously believe in the presence
of r7 in the mixture. Similar remarks apply to Fig. 10 (obtained
from the probe set P») where the algorithm correctly estimates
the presence of target ro, even though this barely evident from
the direct readout.
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Fig. 10. Signal measured by the probe set P, and the corresponding target
amount estimates.
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Fig. 12. Signal measured by the probe set P, and the corresponding target
amount estimates.

The presence of the biological background seems to most ad-
versely affect the results of Figs. 11 and 12 obtained from probe
sets P3 and Py, respectively. In particular, in Fig. 12, the algo-
rithm incorrectly identifies the presence of target rs. However,
when all four sets of probes are used for estimation, the targets
are estimated quite precisely, as indicated by Fig. 13.

The results thus demonstrate that our algorithm is fairly ro-
bust with respect to the presence of rich biological background.
Moreover, it should be surely possible to further improve the
performance of the algorithm by incorporating the presence of
a biological background into our statistical model.
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VI. SUMMARY AND CONCLUSION

We developed a statistical model for DNA microarrays based
on a probabilistic description of the hybridization and cross-hy-
bridization processes. In particular, when the target concentra-
tions are not too high, or if the number of probes per site is not
too low—so that saturation does not occur—we show a linear
relationship between the unknown target concentrations and the
measured light intensities. This linear relationship is perturbed
by additive white Gaussian noise consisting of two components,
one of which has a variance proportional to the number of tar-
gets (and hence is shot noise). The shot noise nature of the noise
in DNA microarrays has been earlier observed experimentally
[6].

The statistical model can be fully described by knowing
the probability of different targets binding to different probes.
Though these probabilities can be somewhat estimated based
on the target and probe sequences, e.g., using the concepts of
AG and melting temperature (see, e.g., [12]), it appears that
one needs some sort of calibration experiments to estimate them
more accurately. Therefore, in its current form, our method is
best suited to low-density arrays where the number of spots is
not too large so that the number of calibration experiments is
not too prohibitive. Fortunately, there are many applications for
such arrays in diagnostics, SNP detection, toxicology, etc. (see,
e.g., [18]-[21] and the references therein). Of course, it would
be very interesting to see whether our method can be scaled to
high-density arrays (with many thousands of spots) by coming
up with models that require only a few calibration experiments.

In any event, once the probabilistic framework is in place, one
may use a variety of statistical methods to estimate the target
concentrations and we described ML, MAP, and constrained
least-squares estimation. We also determined the Cramer—Rao
bounds for estimation in DNA microarrays.
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Our proposed algorithm differs from current methods (see,
e.g., [4]) in that, rather than treating cross hybridization as
noise, it views it as interference and does estimation while
taking it into account. In fact, some preliminary studies of the
Cramer—Rao bounds suggest that cross hybridization may, in
fact, be beneficial. In particular, if we have only a few target
types present in the sample (as is often the case in diagnostic
applications), the existence of cross hybridization can lead to
more accurate estimates of the target concentrations, simply
because there are more sites where the targets can bind, thus
increasing the signal strength. This result may have ramifica-
tions for probe design. [Currently, all probe design is based on
minimizing the amount of cross hybridization (see, e.g., [17]
and the references therein).]

Two sets of experiments were designed and performed, that
confirmed the validity of the proposed model and the efficacy
of the estimation techniques. The experiments included an ex-
ample with a sample consisting of two oligonucleotide targets
where existing techniques would detect the presence of four tar-
gets (the extra detected targets being an artifact of cross hy-
bridization). Our algorithm, on the other hand, correctly detects
only two targets and estimates their concentrations to remark-
able accuracy. Results of a similar flavor were obtained in ex-
periments with cDNA targets in the presence of a complex bio-
logical background.

The work described in this paper can be extended in several
ways. One is to generalize the model to the case where the target
concentrations are high and saturation at the probes may occur.
This would require modeling the probability of binding to dif-
ferent probes as a function of the number of targets that are
already bound to the probes. This will undoubtedly make the
model nonlinear and will require modifications to the estimation
algorithm. Another direction would be to study ways to more ac-
curately compute the probabilities of various targets and probes
binding (including possible local dependencies). As mentioned
earlier, this may allow the method to scale to high-density arrays
where extensive experimental calibration is not feasible. Also,
a study of the robustness of the estimation algorithms to uncer-
tainties in the statistical model should be useful. Our methods
seemed fairly robust to the presence of a complex biological
background. Nonetheless, one of the most interesting general-
izations will be to study, both theoretically and experimentally,
the proposed statistical framework for detection and quantifica-
tion of targets in a complex biological background.
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