
On the Sphere Decoding Algorithm. I. Expected Complexity

BABAK HASSIBI HARIS VIKALO

Department of Electrical Engineering

California Institute of Technology, Pasadena, CA 91125

e-mail: hassibi,hvikalo@systems.caltech.edu

Abstract

The problem of finding the least-squares solution to a system of linear equations where the unknown

vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers,

arises in many applications: communications, cryptography, GPS, to name a few. The problem is equiv-

alent to finding the closest lattice point to a given point and is known to be NP-hard. In communications

applications, however, the given vector is not arbitrary, but rather is an unknown lattice point that has been

perturbed by an additive noise vector whose statistical properties are known. Therefore in this paper, rather

than dwell on the worst-case complexity of the integer-least-squares problem, we study its expected com-

plexity, averaged over the noise and over the lattice. For the “sphere decoding” algorithm of Fincke and

Pohst we find a closed-form expression for the expected complexity, both for the infinite and finite lattice.

It is demonstrated in the second part of this paper that, for a wide range of signal-to-noise ratios (SNR)

and numbers of antennas, the expected complexity is polynomial, in fact often roughly cubic. Since many

communications systems operate at noise levels for which the expected complexity turns out to be polyno-

mial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally

intractable, can in fact be implemented in real-time—a result with many practical implications.

Index Terms—Integer least-squares problem, sphere decoding, wireless communications, multiple-antenna

systems, lattice problems, NP hard, expected complexity.

1 Introduction and Problem Statement

In this paper we shall be concerned with the following so-called integer least-squares problem

min
s∈Zm

‖x−Hs‖2 , (1)

where x ∈ Rn×1, H ∈ Rn×m, and Zm denotes the m-dimensional integer lattice, i.e., s is an m-

dimensional vector with integer entries. Often, the search space is a (finite) subset of the infinite lattice,



D ⊂ Zm, in which case we have

min
s∈D⊂Zm

‖x−Hs‖2 . (2)

The integer least-squares problem has a simple geometric interpretation. As the entries of s run over the

integers, s spans the “rectangular” m-dimensional lattice, Zm. However, for any given lattice-generating

matrix H , the n-dimensional vector Hs spans a “skewed” lattice. (When n > m, this skewed lattice

lives in an m-dimensional subspace of Rn×1.) Therefore, given the skewed lattice Hs, and given a vector

x ∈ Rn×1, the integer least-squares problem is to find the “closest” lattice point (in a Euclidean sense) to

x—see Figure 1.

Figure 1: Geometrical interpretation of the integer least-squares problem.

Compared to the standard least-squares problem where the unknown vector s is an arbitrary vector in

Rm×1, and the solution is obtained via a simple pseudo-inverse, it is much more difficult to find the solution

to (1) or (2). The main reason is that the search space is discrete (whether it is finite or infinite). In fact, it is

well known that problems (1) and (2) are, for a general H , NP hard, both in a worst-case sense [1], as well

as in an average sense [2].

The remainder of this paper is organized as follows. In section 2 we give an overview of some heuristic

and exact methods to solve the integer least-squares problem. We show that the exact methods can offer

substantial gains over the heuristic ones. However, they generally require an exponential worst-case com-

plexity, whereas the heuristic methods require only cubic, O(m3), computations. Section 3 introduces the

sphere decoding algorithm of Fincke and Pohst and argues that, if the received point is arbitrary, then the

expected complexity of the algorithm is exponential. Section 4 introduces a random model for the integer

least-squares problem, where the received point is assumed to be a lattice point perturbed by an additive

Gaussian noise vector with known statistical properties. It then proceeds to compute the expected com-

plexity of the sphere decoding algorithm, averaged over both the noise and the lattice, as a function of the

noise variance, or SNR. This is done both for the infinite lattice, as well as some finite lattices encountered

in communications problems. Section 5 provides the conclusion. The appendices give some mathematical

background for the problems encountered in this paper.
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2 Overview of Methods

Since the integer least-squares problem arises in many applications and finding the exact solution is, in

general, NP hard, all practical systems employ some approximations, heuristics or combinations thereof. In

communications applications, these approximations can be broadly categorized into three classes.

1. Solve the unconstrained least-squares problem to obtain ŝ = H †x, where H† denotes the pseudo-

inverse of H . Since the entries of ŝ will not necessarily be integers, round them off to the closest

integer (a process referred to as slicing) to obtain

ŝB =
[

H†x
]

Zm
. (3)

The above ŝB is often called the Babai estimate [1]. In communications parlance, this procedure is

referred to as zero-forcing equalization.

2. Nulling and cancelling. In this method, the Babai estimate is used for only one of the entries of s, say

the first entry s1. s1 is then assumed to be known and its effect is cancelled out to obtain a reduced-

order integer least-squares problem with m − 1 unknowns. The process is then repeated to find s2,

etc. In communications parlance this is known as decision-feedback equalization.

3. Nulling and cancelling with optimal ordering. Nulling and cancelling can suffer from “error-propagation”:

if s1 is estimated incorrectly it can have an adverse effect on the estimation of the remaining unknowns

s2, s3, etc. To minimize the effect of error propagation, it is advantageous to perform nulling and can-

celling from the “strongest” to the “weakest” signal. This is the method proposed for V-BLAST

[3]—see also [4].

The above heuristic methods all require O(mn2) computations, essentially because they all first solve

the unconstrained least-squares problem.

2.1 Lattice Reduction

The aforementioned heuristic methods are exact only if the columns of H are orthogonal. In this case H

can be diagonalized by a unitary transformation on the left, and so slicing the unconstrained least-squares

solution yields the exact solution.
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In practice, however, the columns of H are rarely orthogonal. Orthogonalizing the columns of H via

a QR decomposition, or otherwise, generally destroys the lattice structure. (The reason being that, if s

has integer entries, Rs need not have integer entries.) One method that attempts to alleviate this is lattice

reduction. In these methods, one attempts to find an invertible m×m matrix T , such that T and T −1 have

integer entries (thereby preserving the lattice structure), and such that the matrix G = HT is as “orthogonal

as possible”. Having found such a T , rather than solve (1), one can solve the integer least-squares problem

min
t∈Zm

‖x−Gt‖2 , (4)

using the earlier mentioned heuristics and set s = T t. Of course, lattice reduction is itself NP-hard. A

common heuristic is the LLL (Lenstra, Lenstra and Lovász [5]) algorithm which, permitting a gross over-

simplification, can be regarded as Gram-Schmidt over integers.

While lattice reduction may lead to some improvement in the solution of (1), the integer least-squares

problem over the infinite lattice, it is not useful for (2), which is over a subset of the lattice. The reason

is that the lattice transforming matrix T often destroys the properties of the subset D ⊂ Zm. Since in

communications applications, we are always interested in a finite subset of the integer lattice, we shall

therefore not consider lattice reduction methods in this paper.

2.2 Exact Methods

With the abundance of heuristic methods, it is natural to ask what their performance is, and how close they

come to the optimal solution. In [6] this question is studied in the context of V-BLAST where it is shown

that the exact solution significantly outperforms even the best heuristics. We also give an example here

in the context of space-time codes from [7], which is shown in Figure 2. The example is a space-time

code for a system with M = 8 transmit and N = 4 receive antennas which spreads min(M,N)T = 32

complex symbols from a 16QAM constellation over T = 8 channel uses. [The rate of the code is R =

32/8 × log2 16 = 16.] The equivalent channel matrix (see [7]) has m = 2min(M,N)T = 64 rows and

n = 2NT = 64 columns. Therefore, the resulting integer least-squares problem corresponds to dimension

m = 64 and the entries of s each take on 4 integer values, say {−3,−1, 1, 3}. The number of lattice points

in D is 464 = 2128 ≈ 3.4× 1038. As can be seen from Figure 2, the bit-error rate (BER) performance of the

exact integer least-squares solution is far superior to that of the best heuristic, which in this case is nulling
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and cancelling with optimal ordering.1
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Figure 2: Bit error performance of a rate R = 16 linear space-time code, corresponding to m = 64. Exact

ML solution vs. nulling/cancelling with optimal ordering. (No. of lattice points= 2128 ≈ 3.4 × 1038).

The above discussion shows that there is merit in studying exact solutions. The most obvious one is

to form a search over the entire lattice which, although theoretically feasible for finite lattices, invariably

requires an exponential search. There do, however, exist exact methods that are a bit more sophisticated

than the above full search. These include Kannan’s algorithm [8] (which searches only over restricted

parallelograms), the KZ algorithm [9] (based on the Korkin-Zolotarev reduced basis [10]) and the sphere

decoding algorithm of Fincke and Pohst [11, 12]. Since then the work of Fincke and Pohst the sphere

decoding algorithm has been rediscovered in several contexts (see, e.g., [13] in the context of GPS systems)

and is the algorithm we will be considering in this paper. Many of the results of this paper and various

extensions can be found in the second author’s PhD dissertation [14].

1Of course, at this point it may appear surprising that one can even generate the ML curve in Figure 2, since it requires finding

the exact solution among a set of size 1038—more on this later.
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3 Sphere Decoding

The basic premise in sphere decoding is rather simple: we attempt to search over only lattice points s ∈ Zm

that lie in a certain sphere of radius d around the given vector x, thereby reducing the search space and

hence the required computations (see Figure 3). Clearly, the closest lattice point inside the sphere will also

be the closest lattice point for the whole lattice. However, close scrutiny of this basic idea leads to two key

questions.

Figure 3: Idea behind the sphere decoder

1. How to choose d? Clearly, if d is too large, we obtain too many points and the search remains

exponential in size, whereas if d is too small, we obtain no points inside the sphere.

A natural candidate for d is the covering radius of the lattice, defined to be the smallest radius of

spheres centered at the lattice points that cover the entire space. This is clearly the smallest radius that

guarantees the existence of a point inside the sphere for any vector x. The problem with this choice

of d is that determining the covering radius for a given lattice is itself NP hard [15].

Another choice is to use d as the distance between the Babai estimate and the vector x, i.e., d =

‖x − HŝB‖, since this radius guarantees the existence of at least one lattice point (here the Babai

estimate) inside the sphere. However, it is again not clear in general whether this choice of radius

leads to too many lattice points lying inside the sphere.

2. How can we tell which lattice points are inside the sphere? If this requires testing the distance of each

lattice point from x (to determine whether it is less than d), then there is no point in sphere decoding

as we will still need an exhaustive search.

Sphere decoding does not really address the first question. However, it does propose an efficient way to

answer the second, and more pressing, one. The basic observation is the following. Although it is difficult

6



to determine the lattice points inside a general m-dimensional sphere, it is trivial to do so in the (one-

dimensional) case of m = 1. The reason is that a one-dimensional sphere is simply an interval and so the

desired lattice points will be the integer values that lie in this interval. We can use this observation to go

from dimension k to dimension k+ 1. Suppose we have determined all k-dimensional lattice points that lie

in a sphere of radius d. Then for any such k-dimensional point, the set of admissible values of the k + 1-th

dimensional coordinate that lie in the higher dimensional sphere of the same radius d forms an interval.

The above means that we can determine all lattice points in a sphere of dimension m and radius d by

successively determining all lattice points in spheres of lower dimensions 1, 2, . . . ,m and the same radius

d. Such an algorithm for determining the lattice points in an m-dimensional sphere essentially constructs

a tree where the branches in the k-th level of the tree correspond to the lattice points inside the sphere of

radius d and dimension k—see Figure 4. Moreover, the complexity of such an algorithm will depend on the

size of the tree, i.e., on the number of lattice points visited by the algorithm in different dimensions.

k = 1

k = 2

k = 3

k = 4

m = 4

Figure 4: Sample tree generated to determine lattice points in a 4-dimensional sphere.

With this brief discussion we can now be more specific about the problem at hand. To this end, we shall

assume that n ≥ m, i.e., that there are at least as many equations as unknowns in x ≈ Hs (the case n < m

is considered in Part II). Note that the lattice point Hs lies in a sphere of radius d if, and only if,

d2 ≥ ‖x−Hs‖2 . (5)

In order to break the problem into the subproblems described above, it is useful to consider the QR factor-

ization of the matrix H

H = Q




R

0(n−m)×m



 , (6)
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where R is an m ×m upper triangular matrix and Q =
[

Q1 Q2

]

is an n × n orthogonal matrix. The

matrices Q1 and Q2 represent the first m and last n − m orthonormal columns of Q, respectively. The

condition (5) can therefore be written as

d2 ≥

∥
∥
∥
∥
∥
∥

x−
[

Q1 Q2

]




R

0



 s

∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥




Q∗

1

Q∗
2



x−




R

0



 s

∥
∥
∥
∥
∥
∥

2

= ‖Q∗
1x−Rs‖2 + ‖Q∗

2x‖2 ,

where (·)∗ here denotes Hermitian matrix transposition. Or in other words,

d2 − ‖Q∗
2x‖2 ≥ ‖Q∗

1x−Rs‖2 . (7)

Defining y = Q∗
1x and d

′2 = d2 − ‖Q∗
2x‖2

allows us to rewrite this as

d
′2 ≥

m∑

i=1



yi −
m∑

j=i

ri,jsj





2

. (8)

where ri,j denotes an (i, j) entry of R. Here is where the upper triangular property of R comes in handy.

The right-hand side (RHS) of the above inequality can be expanded as

d
′2 ≥ (ym − rm,msm)2 + (ym−1 − rm−1,msm − rm−1,m−1sm−1)

2 + . . . (9)

where the first term depends only on sm, the second term on {sm, sm−1} and so on. Therefore a necessary

condition for Hs to lie inside the sphere is that d
′2 ≥ (ym − rm,msm)2. This condition is equivalent to sm

belonging to the interval
⌈

−d′
+ ym

rm,m

⌉

≤ sm ≤
⌊

d
′
+ ym

rm,m

⌋

, (10)

where d·e denotes rounding to the nearest larger element in the set of numbers which spans the lattice.2

Similarly, b·c denotes rounding to the nearest smaller element in the set of numbers which spans the lattice.

Of course, (10) is by no means sufficient. For every sm satisfying (10), defining d
′2
m−1 = d

′2 −
(ym − rm,msm)2 and ym−1|m = ym−1−rm−1,msm, a stronger necessary condition can be found by looking

2Clearly, for the case of infinite lattice Z
m, this set is the set of integer numbers Z . The set which spans a finite subset of Zm

is a finite subset of Z , possibly shifted.
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at the first two terms in (9), which leads to sm−1 belonging to the interval

⌈

−d′

m−1 + ym−1|m

rm−1,m−1

⌉

≤ sm−1 ≤
⌊

d
′

m−1 + ym−1|m

rm−1,m−1

⌋

. (11)

One can continue in a similar fashion for sm−2, and so on until s1, thereby obtaining all lattice points

belonging to (5).

3.1 The Sphere Decoding Algorithm

We can now formalize the algorithm.

Input: Q =
[

Q1 Q2

]

, R, x, y = Q∗
1x, d.

1. Set k = m, d
′2
m = d2 − ‖Q∗

2x‖2, ym|m+1 = ym

2. (Bounds for sk) Set UB(sk) = bd
′

k
+yk|k+1

rk,k
c, sk = d−d

′

k
+yk|k+1

rk,k
e − 1

3. (Increase sk) sk = sk + 1. If sk ≤ UB(sk) go to 5, else go to 4.

4. (Increase k) k = k + 1; if k = m+ 1 terminate algorithm, else go to 3.

5. (Decrease k) If k = 1 go to 6. Else k = k − 1, yk|k+1 = yk −∑m
j=k+1 rk,jsj , d

′2
k = d

′2
k+1 −

(yk+1|k+2 − rk+1,k+1sk+1)
2, and go to 2.

6. Solution found. Save s and its distance from x, d
′2
m − d

′2
1 + (y1 − r1,1s1)

2, and go to 3.

Note that the subscript k|k + 1 in yk|k+1 above is used to denote received signal yk adjusted with the

already estimated symbol components sk+1, . . . , sm. Furthermore, note that in step 2 and step 3 of the code,

we assumed unit spacing between any two nearest elements of the set spanning the lattice. If the lattice is

scaled, i.e., if the spacing between two nearest neighbors in the set spanning the lattice is different from 1,

those algorithm steps need to be adjusted accordingly.

We should mention that the original paper of Fincke and Pohst [12] used slightly different notation to the

one we have used. For completeness, we shall include it here. The paper [12] makes use of the unconstrained

least-squares solution ŝ = H†x = R−1Q∗
1x. In this case, it follows that ‖Q∗

2x‖2 = ‖x‖2 − ‖Hŝ‖2 and so

inequality (7) becomes

d2 − ‖x‖2 + ‖Hŝ‖2 ≥ ‖R(ŝ− s)‖2. (12)
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Expansion (9) becomes

d
′2 ≥ r2m,m(sm − ŝm)2 + r2m−1,m−1

(

sm−1 − ŝm−1 +
rm−1,m

rm−1,m−1
(sm − ŝm)

)2

+ . . . (13)

and the intervals (10) and (11)

⌈

ŝm − d
′

rm,m

⌉

≤ sm ≤
⌊

ŝm +
d
′

rm,m

⌋

(14)

and ⌈

ŝm−1|m − d
′

m−1

rm−1,m−1

⌉

≤ sm−1 ≤
⌊

ŝm−1|m +
d
′

m−1

rm−1,m−1

⌋

(15)

respectively, where we have defined ŝm−1|m = ŝm−1− rm−1,m

rm−1,m−1
(sm− ŝm). We can now alternatively write

the algorithm as

Input: R, x, ŝ, d.

1a. Set k = m, d
′2
m = d2 − ‖x‖2 + ‖Hŝ‖2, ŝm|m+1 = ŝm

2a. (Bounds for sk) Set z =
d
′

k

rk,k
, UB(sk) = bz + ŝk|k+1c, sk = d−z + ŝk|k+1e − 1

3a. (Increase sk) sk = sk + 1. If sk ≤ UB(sk) go to 5a, else to 4a.

4a. (Increase k) k = k + 1; if k = m+ 1 terminate algorithm, else go to 3a.

5a. (Decrease k) If k = 1 go to 6a. Else k = k − 1, ŝk|k+1 = ŝk −∑m
j=k+1

rk,j

rk,k
(sj − ŝj), d

′2
k =

d
′2
k+1 − r2k+1,k+1(sk+1 − ŝk+1|k+2)

2, and go to 2.

6a. Solution found. Save s and its distance from x, d
′2
m − d

′2
1 + r21,1(s1 − ŝ1|2)

2, and go to 3a.

3.2 A First Look at Complexity

The paper [12] gives a complexity analysis of the above algorithm. The main result is that the number of

arithmetic operations of the aforementioned algorithms (excluding Steps 1, 2, 3) is at most

1

6
(2m3 + 3m2 − 5m) +

1

2
(m2 + 12m− 7)



(2b
√
d2tc + 1)




b4d2tc +m− 1

b4d2tc



+ 1



 , (16)
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where t = max(r2
1,1, . . . , r

2
m,m). In practice t grows proportional to n (r2

1,1, for example, is simply the

squared norm of the first column of H , which has n entries) and d2 grows proportional to m (for more

on this see below) and so the upper bound on the number of computations in (16) can be quite large.

Our experience with numerical implementations of the algorithm shows that the bound is extremely loose.

Moreover, although it does depend on the lattice-generating matrix H (through the quantity t), it offers little

insight into the complexity of the algorithm. We will therefore not further consider it.

In this paper we propose to study the complexity of the sphere decoding algorithm using the geometric

interpretation we have developed so far. As mentioned earlier, the complexity of the sphere decoding algo-

rithm depends on the size of the generated tree in Fig. 4, which is equal to the sum of the number of lattice

points in spheres of radius d and dimensions k = 1, . . . ,m. The size of this tree depends on the matrix

H , as well as on the vector x. Therefore, unlike the complexity of solving the unconstrained least-squares

problem which only depends on m and n and not on the specific H and x, the complexity of the sphere

decoding algorithm is data-dependent.

3.2.1 Expected Complexity

Of course since the integer least-squares problem is NP hard, the worst-case complexity of sphere decoding

is exponential. However, if we assume that the matrix H and vector x are generated randomly (according

to some known distributions), then the complexity of the algorithm will itself be a random variable. In this

case, it is meaningful to study the expected (or average) complexity of sphere decoding, and perhaps even

some of its higher order moments.3

In what follows we will give a rough argument for the expected complexity of sphere decoding being

exponential, although it is not too difficult to make it rigorous. (For a rigorous treatment, albeit using a

different approach, see [2].) For an arbitrary point x, and an arbitrary lattice H , it is not too difficult to show

that the expected number of lattice points inside the k-dimensional sphere of radius d is proportional to its

volume given by (see, e.g., [15])

πk/2

Γ(k/2 + 1)
dk.

Therefore the expected total number of points visited by the sphere decoding is proportional to the total

3In passing, we should mention that there is recent interest in studying the expected, rather than worst-case, complexity of

various algorithms in the computer science literature. The reader may wish to refer to the survey paper [16] and the references

therein, as well as the influential papers [17, 18]. In these works, a uniform distribution on the underlying problem is often

(artificially) assumed and complexity issues such as NP-completeness, etc., are re-visited. However, as we shall see below, our

problem allows for a very natural stochastic model.
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number of lattice points inside spheres of dimension k = 1, . . . ,m:

P =

m∑

k=1

πk/2

Γ(k/2 + 1)
dk.

A simple lower bound on P can be obtained by considering only the volume of an arbitrary intermediate

dimension, say k̄,

P ≥ πk̄/2

Γ(k̄/2 + 1)
dk̄ ≈

(
2eπd2

k̄

)k̄/2
1√
πk̄
,

where we have assumed m ≥ k̄ � 1 and have used Stirling’s formula for the Gamma function. Clearly,

P , and its lower bound, depend on the radius d2. This must be chosen in such a way that the probability of

the sphere decoder finding a lattice point does not vanish to zero. This clearly requires the volume of the

m-dimensional sphere to not tend to zero, i.e.,

(
2eπd2

m

)m/2
1√
πm

= O(1),

which for large m implies that 2eπd2 = m1+ 1
m . Plugging this into the lower bound for P yields

P ≥
(

m1+ 1
m

k̄

)k̄/2
1√
πk̄

=
1√
π
α

m
2α

+ 1
2m

1
2α

− 1
2 ,

where we have defined α = m/k̄ > 1. This last expression clearly shows that the expected number of points

P , and hence the complexity of the algorithm, grows exponentially in m. (Take, e.g., α = 2.)

4 A Random Model

Although not unexpected, the above is a discouraging result. In communications applications, however,

the vector x is not arbitrary, but rather is a lattice point perturbed by additive noise with known statistical

properties. Thus, we will assume

x = Hs+ v, (17)

where the entries of v are independent N (0, σ2) random variables with known variance and the entries of

H are independent N (0, 1) random variables. Furthermore, H and v are mutually independent.
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4.1 Choice of the Radius

The first by-product of this assumption is a method to determine the desired radius d. Note that 1
2σ2 · ‖v‖2 =

1
2σ2 · ‖x−Hs‖2 is a χ2 random variable with n degrees of freedom. Thus we may choose the radius to be

a scaled variance of the noise,

d2 = αnσ2,

in such a way that with a high probability we find a lattice point inside the sphere,

∫ αn/2

0

λn/2−1

Γ(n/2)
e−λdλ = 1 − ε,

where the integrand is the probability density function of the χ2 random variable with n degrees of freedom,

and where 1 − ε is set to a value close to 1, say, 1− ε = 0.99. [If the point is not found, we can increase the

probability 1 − ε, adjust the radius, and search again.]

The important point is that the radius d is chosen based on the statistics of the noise, and not based on

the lattice H . Making the choice based on H quickly leads us to NP hard problems (such as determin-

ing the covering radius). Moreover, choosing the radius based on the noise has a beneficial effect on the

computational complexity.

4.2 Implications for Complexity

Clearly, when σ2 = 0, i.e., when there is no noise, the exact solution can be found in O(mn2) time. (The

pseudo-inverse does the trick). On the other hand, when σ2 → ∞, the received vector x becomes arbitrary,

for which we argued in section 3.2 that the expected complexity is exponential. What we are interested

in is what happens at intermediate noise levels. In other words, how do we transition from cubic-time to

exponential complexity?

In our analysis we shall compute the expected complexity averaged over both the noise v, as well as over

the lattice-generating matrix H . Thus, we need a random model for H and will assume that it is comprised

of independent N (0, 1) entries. This assumption is made for two reasons:

1. It makes the problem analytically tractable.

2. It is also a very reasonable assumption for large, unstructured, matrices H . (There exist many results

in random matrix theory, such as Wigner’s semi-circle law, mixing conditions, etc. that are not very

sensitive to Gaussian assumptions–see e.g., [19].)
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Of course, if H possesses special structure, such as Toeplitz structure, then this is not a reasonable assump-

tion and the structure must be explicitly taken into account. However, this merits a separate analysis and

will be considered in the second part of this paper.

Now, as argued in the previous section, the complexity of the sphere decoding algorithm is proportional

to the number of nodes visited on the tree in Figure 4 and, consequently, to the number of points visited in

the spheres of radius d and dimensions k = 1, 2, . . . ,m. Hence the expected complexity is proportional to

the number of points in such spheres that the algorithm visits on average. Thus the expected complexity of

sphere decoding algorithm is given by

C(m,σ2, d2) =
m∑

k=1

(expected # of points in k-sphere of radius d
︸ ︷︷ ︸

∆
=Ep(k,d2=αnσ2)

) · ( flops/point
︸ ︷︷ ︸

∆
=fp(k)=2k+11

). (18)

The summation in (18) goes over the dimensions k = 1 through k = m. The coefficient

fp(k) = 2k + 11

is the number of elementary operations (additions, subtractions, and multiplications) that the Fincke-Pohst

algorithm performs per each visited point in dimension k.

We need to compute Ep(k, d
2), the expected number of points inside the k-dimensional sphere of radius

d. Let us first begin with the highest dimension, i.e., k = m.

4.2.1 k = m

Hs
t

x
Hs

a

Figure 5: st transmitted and x received. We are interested whether an arbitrary point Hsa lies in a sphere

of radius d centered around x.

If the lattice point st was transmitted and the vector x = Hst + v received, we are interested in the

14



number of arbitrary lattice points sa such that

‖x−Hsa‖2 ≤ d2.

(See Figure 5.) But, since x = Hst + v, this is just

‖v +H(st − sa)‖2 ≤ d2. (19)

Now the vector w = v+H(st − sa) is clearly a zero-mean Gaussian random vector, since its entries are the

sums of zero-mean Gaussian random variables. Now the covariance matrix has (i, j) entry

Ewiwj = E

{

vi +
m∑

k=1

hik(st,k − sa,k)

}{

vj +
m∑

l=1

hjl(st,l − sa,l)

}

= σ2δij +
m∑

k=1

m∑

l=1

δijδkl(st,k − sa,k)(st,l − sa,l)

= δij(σ
2 + ‖st − sa‖2), where ‖s‖2 =

∑m
k=1 s

2
k.

Thus, w is an n-dimensional vector of zero-mean iid Gaussian random variables with variance σ2 + ‖st −
sa‖2. This implies that

‖w‖2

2(σ2+‖st−sa‖2)
= ‖v+H(st−sa)‖2

2(σ2+‖st−sa‖2)
is a χ2 random variable with n degrees of freedom.

Thus, the probability that the lattice point sa lies in a sphere of radius d around x is given by the normalized

incomplete gamma function

γ

(
d2

2(σ2 + ‖sa − st‖2)
,
n

2

)

=

∫ d2

2(σ2+‖sa−st‖
2)

0

λn/2−1

Γ(n/2)
e−λdλ. (20)

Now that we have computed this probability, the expected number of points in them-dimensional sphere

can be evaluated. However, before doing so, let us turn to the k < m case.

4.2.2 k < m

Referring back to (9), we are interested in all k-dimensional lattice points s such that

d
′2 ≥

m∑

i=m−k+1



yi −
m∑

j=i

ri,jsj





2

. (21)
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To better understand this set, let us again consider the QR decomposition of (6) to write

‖x−Hsa‖2 = ‖v +H(st − sa)‖2 =

∥
∥
∥
∥
∥
∥

v +Q




R

0(n−m)×m



 (st − sa)

∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

Q∗v +




R

0(n−m)×m



 (st − sa)

∥
∥
∥
∥
∥
∥

2

.

[We shall henceforth suppress the subscripts of the all-zero submatrices, as long as their dimensions are

self-evident.] Now if we partition the upper triangular matrix R and the vector u
∆
= Q∗v as

R =




Rm−k,m−k Rm−k,k

0k×(m−k) Rk,k



 and u =








um−k

uk

un−m








(22)

where the block matrices Rm−k,m−k, Rm−k,k and Rk,k are (m − k) × (m − k), (m − k) × k and k × k,

respectively, and the vectors um−k, uk and un−m are m − k, k and n−m dimensional, respectively, then

we can write

‖x−Hsa‖2 = ‖um−k +Rm−k,m−k(s
m−k
t − sm−k

a ) +Rm−k,k(s
k
t − sk

a)‖2 +

‖uk +Rk,k(s
k
t − sk

a)‖2 + ‖un−m‖2,

where the vectors sm−k
t , sm−k

a , and sk
t , sk

a, are m− k and k dimensional, respectively, and such that

st =




sm−k
t

sk
t



 , sa =




sm−k
a

sk
a



 .

It is now straightforward to see that d
′2 = d2 −‖un−m‖2 and that ‖uk +Rk,k(s

k
t − sk

a)‖2 is simply the sum

of the last k terms in the sum (8). Thus, we may rewrite the inequality (21) as

d2 ≥ ‖uk +Rk,k(s
k
t − sk

a)‖2 + ‖un−m‖2 =

∥
∥
∥
∥
∥
∥




uk

un−m



+




Rk,k

0



 (sk
t − sk

a)

∥
∥
∥
∥
∥
∥

2

. (23)

Thus, to compute the expected number of k-dimensional lattice points that satisfy (21), we need to

determine the probability distribution of the RHS of (23). For this we need the following result.
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Lemma 1. Let H be an n×m (with n ≥ m) random matrix with iid columns such that each column has a

distribution that is rotationally-invariant from the left. In other words, for any n× n unitary matrix Θ, the

distribution of hi, the i-the column of H , satisfies

ph(hi) = ph(Θhi).

Consider now the QR decomposition

H = Q




R

0



 ,

where Q is n × n and unitary, and R is m ×m and upper triangular with non-negative diagonal entries.

Then Q and R are independent random matrices, where

1. Q has an isotropic distribution, i.e., one that is invariant under pre-multiplication by any n×n unitary

matrix:

pQ(Q) = pQ(ΘQ), ∀ΘΘ∗ = Θ∗Θ = I.

2. Consider the partitioning of R according to (22) and further partition H as

H =




Hm−k,m−k Hm−k,k

Hn−m+k,m−k Hn−m+k,k



 ,

where the subscripts indicate the dimensions of the sub-matrices. Then Rk,k has the same distribution

as the R obtained from the QR decomposition of the (n−m+ k) × k matrix Hn−m+k,k.

Proof: See Appendix A.

Remarks:

1. What is interesting about the above Lemma is that even though the (n − m + k) × k submatrix



Rk,k

0



 is not the R of the QR decomposition of the (n−m+ k) × k submatrix Hn−m+k,k it has

the same distribution.

2. Lemma 1 clearly holds for an H with iid zero-mean unit-variance Gaussian entries. In this case, one

can be explicit about the distribution of R: the entries are all independent with the i-th diagonal term
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having a χ2 distribution with n − i + 1 degrees of freedom and the strictly upper triangular entries

having iid zero-mean unit-variance Gaussian distributions.

Let us now apply Lemma 1 to the problem at hand. First, since v has iid zero-mean σ2-variance Gaussian

entries and Q is unitary, the same is true of u = Q∗v and also of the sub-vectors um−k, uk and un−m.

Moreover, since Q is independent of R, the same is true of u. Returning to the inequality (23) let us

multiply the vector inside the norm by an isotropically-random unitary matrix Θ. Since this does not change

norms, we have

d2 ≥

∥
∥
∥
∥
∥
∥

Θ




uk

un−m



+ Θ




Rk,k

0



 (sk
t − sk

a)

∥
∥
∥
∥
∥
∥

2

.

Now clearly, the n−m+ k-dimensional vector v̄ = Θ




uk

un−m



 has iid zero-mean σ2-variance Gaussian

entries. Also, from Lemma 1 part 2, the (n − m + k) × k matrix H̄ = Θ




Rk,k

0



 has iid zero-mean

unit-variance Gaussian entries. Thus, we may write (23) as

d2 ≥ ‖v̄ + H̄(sk
t − sk

a)‖2, (24)

which is precisely (19), except that the dimensions have changed from n and m to n−m+ k and k. Thus,

using the same argument as presented after (19), we conclude that the probability that the k-dimensional

lattice point sk
a lies in a sphere of radius d around x is

γ

(
d2

2(σ2 + ‖sk
a − sk

t ‖2)
,
n−m+ k

2

)

=

∫ d2

2(σ2+‖sk
a−sk

t
‖2)

0

λ(n−m+k)/2−1

Γ((n−m+ k)/2)
e−λdλ. (25)

Given this probability and the one in (20), one could in principle proceed by finding the argument of

the gamma function in (20) and (25) for each pair of points (sa, st), and sum their contributions; however,

even for a finite lattice this would clearly be a computationally formidable task (and not doable at all in the

infinite lattice case). Therefore, we shall find it useful to enumerate the lattice, i.e., count the number of

points with the same argument of the gamma function in (20) and (25). Enumeration of infinite and finite

lattices is treated separately.
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4.3 The Infinite Lattice Case

The above probability (25) depends only on the Euclidean distance between the points sk
t and sk

a, that is, on

‖sk
a − sk

t ‖2 = ‖sk‖2. Now, since in an infinite integer lattice sa − st = s is just another lattice point, we

conclude that the probability in (25) depends only on the squared norm of an arbitrary lattice point in the

k-dimensional lattice. It is thus straightforward to see that the expected number of of lattice points inside a

k-dimensional sphere of radius d is given by:

Ep(k, d
2) =

∞∑

l=0

γ

(
d2

2(σ2 + l)
,
n−m+ k

2

)

· (# of k-dimensional lattice points with ‖sk‖2 = l). (26)

Since ‖s‖2 = s21 + . . .+ s2k, we basically need to figure out how many ways a non-negative integer l can be

represented as the sum of k squared integers. This is a classic problem in number theory and the solution is

denoted by rk(l) [20]. There exist a plethora of results on how to compute rk(l). We only mention one here

due to Euler: rk(l) is given by the coefficient of xl in the expansion

(

1 + 2
∞∑

m=1

xm2

)k

= 1 +
∞∑

l=1

rk(l)x
l. (27)

(For more on the problem of representing integers as the sum of squares see Appendix B.)

The above arguments lead to the following result.

Theorem 1 (Expected complexity of sphere decoding over infinite lattice). Consider the model

x = Hs+ v,

where v ∈ Rn×1 is comprised of iid N (0, σ2) entries, H ∈ Rn×m is comprised of iid N (0, 1) entries, and

s ∈ Zm is an m-dimensional vector whose entries are integer numbers. Then the expected complexity of

the sphere decoding algorithm of section 3.1 with a search radius d for solving the integer least-squares

problem,

min
s∈Zm

‖x−Hs‖2,

is given by

C(m,σ2, d2) =

m∑

k=1

fp(k)

∞∑

l=0

γ

(
d2

2(σ2 + l)
,
n−m+ k

2

)

rk(l). (28)
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Proof: Follows from the earlier discussions.

We should remark that, for any given search radius d, there always exists a probability that no lattice

point is found. Therefore, to obtain the optimal solution, it is necessary to increase the search radius. One

plausible way of doing this is to start with a radius for which the probability of finding the transmitted point

is 1 − ε, then if no point is found to increase the search radius to a value such that the probability of not

finding the transmitted point is 1 − ε2, and so on. For such a strategy, we have the following result.

Corollary 1 (Expected complexity for finding the optimal solution). Consider the setting of Theorem 1.

Given any 0 < ε � 1, consider a strategy where we first choose a radius such that we find the transmitted

lattice point with probability 1 − ε, and then increase it to a probability of 1 − ε2, and so on, if no point

is found. Then the expected complexity of the sphere decoding algorithm to find the optimal solution is

bounded by

C(m,σ2, ε) ≤
∞∑

i=1

(1 − ε)εi−1
m∑

k=1

fp(k)

∞∑

l=0

γ

(
αinσ

2

2(σ2 + l)
,
n−m+ k

2

)

rk(l), (29)

where αi is chosen such that

γ
(αin

2
,
n

2

)

= 1 − εi, i = 1, 2, . . . (30)

Note that the probability of having to perform i decoding steps in order to find the transmitted point can

be calculated to be (1 − ε)εi−1 as follows

p
(
d(i)2 > ‖v‖2 > d(i − 1)2

)
= p

(
‖v‖2 < d(i)2

)
−p
(
‖v‖2 < d(i− 1)2

)
= 1−εi−1+εi−1 = (1−ε)εi−1,

where d(i) denotes sphere radius at the ith decoding step. We remark that this is different from the proba-

bility of having to perform i decoding steps in (29) since there is always the error probability of the sphere

decoder finding a lattice point even when the transmitted lattice point is not inside the sphere. This explains

why we have only an upper bound in the above corollary.
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4.4 Finite Lattice Case

In communications problems, rather than being unbounded integers, the entries in the unknownm-dimensional

vector s are often points that belong to an L-PAM constellations,

DL =

{

−L− 1

2
,−L− 3

2
, . . . ,

L− 3

2
,
L− 1

2

}

. (31)

In fact, L is often taken as a power of 2. We say that the point s then belongs to the lattice constellation Dm
L ,

Dm
L = DL ×DL × . . . ×DL

︸ ︷︷ ︸

m-times

,

where ×-operation denotes the Cartesian product.

Furthermore, in this case, rather than the noise variance σ2, one is interested in the signal-to-noise ratio

ρ,

ρ =
m(L2 − 1)

12σ2
. (32)

The probability expression (25) for finding an arbitrary lattice point sk
a inside a sphere around the given

point x when the point lattice sk
t was transmitted, holds for the finite lattice case as well. However, counting

the lattice points which have the same argument of the incomplete gamma function in (25) is not as easy.

The reason is that unlike in the infinite lattice case, the difference between two lattice points in Dk
L, sk

a − sk
t ,

is not necessarily another lattice point in Dk
L. Thus, the lattice enumeration that we used in the previous

section needs to be performed over pairs of points, (sk
a, s

k
t ).

More formally, the number of subset lattice points in the k-dimensional sphere is given by

1

Lk

∑

l

∑

sk
t ,sk

a∈D
k
L

,‖sk
t −sk

a‖
2=l

γ

(
αnσ2

2(σ2 + l)
,
n−m+ k

2

)

,

and enumerating the set
{

(sk
t , s

k
a) | sk

t , s
k
a ∈ Dk

L, ‖sk
t − sk

a‖2 = l
}

,

appears to be complicated.

For this, we propose a modification of Euler’s generating function technique. In particular, for various fi-

nite lattices we will define generating polynomials that, when combined appropriately, perform the counting

operations for us.
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Let us do the case study for various values of L:

1. Dk
2 : The constellation Dk

2 consists of the corners of a k-dim hypercube, as illustrated in Figure 6.

Due to symmetry, all points in the hypercube are essentially equivalent. Therefore, without loss

y

i

y y

y

y

yy

�
�

�

�
�

� �
�

�

Figure 6: Counting for Dk
2

of generality, we can assume that the “lower-left-corner” point sk
t =

[
−1

2 ,−1
2 , . . . ,− 1

2

]T
has been

transmitted. Then, depending on whether the corresponding entry of sk
a is −1

2 or 1
2 , the vector sk

a − sk
t

is comprised of zero and one entries. The number of such vectors whose squared norm is l is clearly

given by the number of vectors that have l entries at one, which is




k

l



. This gives the number of

points in Dk
2 at distance l from sk

t .

2. Dk
4 : In this case, all points in the constellation are not the same. For each entry of sk

t , we can

distinguish between the “corner” and the “center” points, as illustrated in Figure 7. Extending

} } }}? ?

6 6

”center” points: st − sa ∈ {∓1, 0,±1,±2}

”corner” points: st − sa ∈ {0,±1,±2,±3}

−3
2

−1
2

1
2

3
2

Figure 7: Counting for Dk
4
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Euler’s idea, for the corner points we identify the generating polynomial

θ0(x) = 1 + x+ x4 + x9, (33)

and for the center points the polynomial

θ1(x) = 1 + 2x+ x4. (34)

Essentially, the powers in the polynomials θ0(x) and θ1(x) contain information about possible squared

distances between an arbitrary point sk
a and the transmitted point sk

t . For instance, if an entry in the

transmitted vector sk
t , say st,1, is a corner point, then sa,1 − st,1 ∈ {0,±1,±2,±3}, depending on

sa,1 ∈ D4. Thus the squared norm of their difference |sa,1 − st,1|2 can be either 0, 1, 4, or 9, as

described by the powers of θ0(x). On the other hand, if st,1, is a center point, then sa,1 − st,1 ∈
{0,±1,∓1,±2} (which explains coefficient 2 in front of term x in θ1(x)). Now, if among the k

entries of sk
t , we choose a corner point j times, the number of ways ‖sk

t − sk
a‖2 can add up to l is

given by the coefficient of xl in the polynomial




k

j



 θj
0(x)θ

k−j
1 (x). (35)

3. Dk
8 : Note that

Dk
8 = {−7

2
,−5

2
,−3

2
,−1

2
,

1

2
,

3

2
,

5

2
,

7

2
}k.

Let us define the following subsets of D8:

S0 = {−7
2 ,

7
2} S1 = {−5

2 ,
5
2}

S2 = {−3
2 ,

3
2} S3 = {−1

2 ,
1
2}

. (36)

Similar to the L = 4 case, we can identify the following polynomials for counting sa − st in Dk
8
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lattice:

ψ0(x) = 1 + x+ x4 + x9 + x16 + x25 + x36 + x49,

ψ1(x) = 1 + 2x+ x4 + x9 + x16 + x25 + x36,

ψ2(x) = 1 + 2x+ 2x4 + x9 + x16 + x25,

ψ3(x) = 1 + 2x+ 2x4 + 2x9 + x16.

(37)

Therefore, if among k entries of sk
t , we choose ji points from Si, i ∈ {0, 1, 2, 3}, then the number of

ways ‖sk
t − sk

a‖2 can add up to l is given by the coefficient of xl in the polynomial




k

j0, j1, j2, j3



ψj0
0 (x)ψj1

1 (x)ψj2
2 (x)ψj3

3 (x), (38)

where j0 + j1 + j2 + j3 = k and




k

j0, j1, j2, j3



 = k!
j0!j1!j2!j3!

.

4. Counting for Dk
16 and higher order lattices is done similarly.

We can now summarize the above results for the expected computational complexity of the Fincke-Pohst

algorithm for finite lattices in the following theorem.

Theorem 2. [Expected complexity of the sphere decoding over a finite lattice] Consider the model

x = Hs+ v,

where v ∈ Rn×1 is comprised of iid N (0, 1) entries, H ∈ Rn×m is comprised of iid N (0, ρ/m) entries,

and s ∈ Dm
L is an m-dimensional vector whose entries are elements of an L-PAM constellation. Then the

expected complexity of the sphere decoding algorithm of section (3.1) with a search radius of d for solving

the integer least-squares problem

min
s∈Dm

L

‖x−Hs‖2,

1. for a 2-PAM constellation is

C(m, ρ, d2) =

m∑

k=1

fp(k)

k∑

l=0




k

l



 γ

(

αn

2(1 + 12ρl
m(L2−1)

)
,
n−m+ k

2

)

(39)
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2. for a 4-PAM constellation is

C(m, ρ, d2) =

m∑

k=1

fp(k)
∑

q

1

2k

k∑

l=0




k

l



 gkl(q)γ

(

αn

2(1 + 12ρq
m(L2−1) )

,
n−m+ k

2

)

, (40)

where gkl(q) is the coefficient of xq in the polynomial

(1 + x+ x4 + x9)l(1 + 2x+ x4)k−l

3. for a 8-PAM constellation is

C(m, ρ, d2) =

m∑

k=1

fp(k)
∑

q

1

4k

∑

j0+j1+j2+j3=k

gkj0j1j2j3(q)γ

(

αn

2(1 + 12ρq
m(L2−1)

)
,
n−m+ k

2

)

,

(41)

where gkj0j1j2j3(q) is the coefficient of xq in the polynomial (38).

4. similar expressions can be obtained for 16-PAM, etc., constellations.

The number of elementary operations per visited point in (39)-(41) is fp(k) = 2k + 9 + 2L.4

Proof: Follows from the above discussions.

We remark that to obtain the optimal solution to the integer least-squares problem we will occasionally

need to increase the search radius d, and so we can obtain a result similar to that of Corollary 1, which we

omit for brevity.

5 Conclusion

In many communication problems, maximum-likelihood detection reduces to solving an integer least-squares

problem, i.e., a search for the closest integer lattice point to the given vector. In such applications ML detec-

tion is rarely performed, on the grounds that it requires exponential complexity and is therefore computation-

ally intractable. However, what distinguishes the communications applications from many other instances

of integer-least-squares problems is that the given vector is not arbitrary, but rather is an unknown lattice

4Since Dm
L is shifted integer lattice, we assume that each rounding in step 2 of the algorithm in Section 3.1 takes L−1 operations.

Hence fp(k) slightly differs from the one used to find expected complexity of sphere decoding in the infinite lattice Zm.
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point that has been perturbed by an additive noise vector with known statistical properties. Therefore, the

complexity of finding the closest lattice point for any given algorithm should, in fact, be viewed as a random

variable. This is the approach taken in this paper and, for the “sphere decoding” algorithm of Fincke and

Pohst, we obtained a closed-form expression for the mean, averaged over both the noise and the lattice, of

the complexity. This was done for both finite and infinite lattices.

Based on these closed-form expressions, in the second part of this paper, we will demonstrate that over a

wide range of SNRs, rates and dimensions, the expected complexity of sphere decoding is polynomial (often

roughly cubic), which implies the practical feasibility of sphere decoding in many applications. The second

part of this paper will deal with various generalizations of this result and will also address the computation

of the variance of the sphere decoding algorithm.

We should also mention that there are many variants of the sphere decoder algorithm, some of which are

mentioned in Sec. 7 of second part of this paper. While these algorithms generally outperform the standard

sphere decoder mentioned here, the computation of their expected complexity appears to be a formidable

task. Our results may therefore be viewed as upper bounds for these more powerful algorithms.
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A Proof of Lemma 1

Let us start with part 1. Since H is rotationally-invariant from the left, the matrix ΘH has the same distri-

bution as H , for any unitary matrix Θ. The following simple calculation shows that the same is true for any

random unitary Θ that is independent of H:

p(ΘH) =

∫

p(ΘH|Θ)p(Θ)dΘ =

∫

p(H)p(Θ)dΘ = p(H),

where in the second step we used the fact that Θ that is independent of H to conclude p(ΘH|Θ) = p(H).

In particular, the above equation is true for an independent isotropically random unitary Θ.5 Now, for such

a Θ, we have

ΘH = ΘQR,

from which, due to the uniqueness of the QR decomposition when R has positive diagonal entries (see, e.g.,

[23, 24]), we conclude that ΘQ is the Q and R remains the R in the QR decomposition of ΘH . Now, since

Θ is independent isotropically random, ΘQ is also isotropically random and, moreover, it is independent of

Q. Therefore ΘQ must be independent of R, as well. Since ΘH and H have the same distribution, the Q’s

in their QR decompositions must have the same distribution, from which we conclude that Q must be an

isotropically random unitary matrix, independent of R.

This concludes the proof of part 1. [We remark that the proof of part 1 only required that H be

rotationally-invariant. We did not require the independence of the columns of H . This independence is

required for the proof of part 2, to which we now turn our attention.]

Consider the partitioning

H =




Hm−k,m−k Hm−k,k

Hn−m+k,m−k Hn−m+k,k



 ,

where the subscripts indicate the dimensions of the sub-matrices. Now consider the QR decomposition of

the leading m− k columns of H , i.e.,




Hm−k,m−k

Hn−m+k,m−k



 = Q1




Pm−k,m−k

0



 ,

where Q1 is n×(m−k) unitary and Pm−k,m−k is upper triangular with non-negative diagonal entries. Now

5For some of the properties of isotropically random unitary matrices the reader may refer to [21, 22].
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since P ∗
m−k,m−kPm−k,m−k = H∗

m−k,m−kHm−k,m−k + H∗
n−m+k,m−kHn−m+k,m−k, which is the leading

(m−k)×(m−k) submatrix ofH∗H , we conclude that Pm−k,m−k is indeed the leading (m−k)×(m−k)
submatrix of R in the partitioning (22), i.e., Pm−k,m−k = Rm−k,m−k.

Applying the unitary matrix Q∗
1 to the full H (and not just its leading m− k columns) we have

Q∗
1H =




Rm−k,m−k H̄m−k,k

0 H̄n−m+k,k



 . (A.1)

Now, since Q1 depends only on the first m − k columns of H and these are independent of the remaining

k columns, by the rotational-invariance of the columns of H , we conclude that H̄n−m+k,k has the same

distribution as Hn−m+k,k.6 Now if we consider the QR decomposition of H̄n−m+k,k:

H̄n−m+k,k = Q2




Rk,k

0



 ,

combining this with (A.1), we have

Q∗
1H =




I 0

0 Q2












Rm−k,m−k H̄m−k,k

0 Rk,k

0 0







,

and so

H = Q1




I 0

0 Q2












Rm−k,m−k H̄m−k,k

0 Rk,k

0 0







. (A.2)

Since Q1




I 0

0 Q2



 is unitary and since the diagonal entries of Rm−k,m−k and Rk,k are non-negative, we

conclude that this is indeed the QR decomposition of H (which justifies our use of the notation Rk,k for the

R in the QR of H̄k,k).7 Since H̄n−m+k,k and Hn−m+k,k have the same distribution, we conclude that Rk,k

has the same distribution as the R obtained from the QR decomposition of Hn−m+k,k.

This concludes the proof of part 2.

6This is also true of H̄m−k,k and Hm−k,k, though we shall not need this fact.
7Thus, for example, H̄m−k,k = Rm−k,k.
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B Representing Integers as a Sum of Squares

The quest of representing a positive integer as the sum of squares has a long history in mathematics and

number theory. The problem of determining the number of ways that a non-negative integer l can be repre-

sented as k squares was first posed by Waring in 1770 and is denoted by rk(l).
8 The first known result in

this direction is due to Diophantus of Alexandria (325-409 A.D.) who showed that no integer of the form

4m + 3 can be represented as the sum of two squares. In other words, r2(4m + 3) = 0. In 1632, Girard

conjectured that l is the sum of two squares if the prime divisors of l of the form 4m + 3 occur in l in an

even power. (For example, l = 32 · 5 = 32 + 62, while l = 33 · 5 cannot be represented as the sum of two

squares.) Euler proved this conjecture in 1749. However, he did not give an explicit formula for r2(l). This

was done by Legendre in 1798 and Gauss in 1801, who showed that

r2(l) = 4(d1(l) − d3(l)), (B.1)

where d1(l) and d3(l) are the number of divisors of l congruent to 1 and 3 mod 4, respectively.

In 1770, Lagrange proved his famous Four Squares Theorem, which states that every positive integer

can be represented as the sum of four squares. This essentially establishes that r4(l) > 0 for all positive

integers l; however, Lagrange did not give an explicit formula for r4(l).

In terms of computing the value of rk(l), the first result is due to Euler who introduced (what is now

known as) the Jacobi theta function

θ(x) =

∞∑

m=−∞

xm2
= 1 + 2

∞∑

m=1

xm2
(B.2)

and established the following.

Theorem 3. Let θ(x) be given by (B.2). Then

θk(x) = 1 +

∞∑

l=1

rk(l)x
l. (B.3)

In other words, the number of ways a non-negative integer l can be represented as the sum of k squares is

8In fact, Waring considered the much more general problem of determining the number of ways an integer can be represented as

the sum of k integers raised to the power q. In this sense, the number of ways an integer can be represented as the sum of k squares

is essentially the q = 2 Waring problem.
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given by the coefficient of xl in the expansion of θk(x).

This can be illustrated as follows: θk(x) is clearly a series in which each term has an exponent that is

obtained as the sum of k squares; since the summation in (B.2) goes over all integers, the coefficients in

front of each term in the series expansion θk(x) must be equal to the number of ways that the exponent in

that same term can be represented as the sum of k squares.

Using the connection between the above theta function and elliptic functions, Jacobi in 1829 obtained

closed-form expressions for rk(l) when k = 2, 4, 6, 8 (see [20], chapter 9). His formula for k = 4 immedi-

ately yields Lagrange’s Four Squares Theorem. Solutions for k = 10 and k = 12 were found by Liouville

and Eisenstein. Later, Ramanujan, Hardy, and Littlewood obtained formulas for even k ≤ 24. For odd k,

the only results are due to Dirichlet, who found r3(l), and Eisenstein, Smith, and Minkowski, who found

r5(l) and r7(l).

For a long time, these were the only known explicit formulas for rk(l). Indeed, results by Glaisher,

and by R. Rankin (1965), using the theory of modular forms, discouraged many researchers from obtaining

further closed-form expressions. The subject was therefore presumed to be “dead” until very recently. In

1994, as a consequence of their study of certain affine super-algebras, V. Kac and M. Wakimoto conjectured

formulas for θk(x) when k = 4m2 and k = 4m(m + 1) [25]. In 1996, these conjectures were proved

by S. Milne using Jacobi’s elliptic functions, Hankel determinants and continued fractions [26]. For an

expository review of this, and subsequent results, the interested reader is referred to [27].

This exhausts known closed-form solutions for rk(l). There exist many asymptotic results (in both k

and l)—see e.g., [28], chapter 5. In any case, for any given k and l, the value of rk(l) can be numeri-

cally computed using Euler’s formula (B.3). Moreover, rk(l) is also a built-in function in Mathematica,

SumOfSquaresR[k,l] [29].
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