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Abstract

In recent years, soft iterative decoding techniques have been shown to greatly improve

the bit error rate performance of various communication systems. For multi-antenna systems

employing space-time codes, however, it is not clear what is the best way to obtain the soft-

information required of the iterative scheme with low complexity. In this paper, we propose

a modification of the Fincke-Pohst (sphere decoding) algorithm to estimate the maximum a

posteriori probability of the received symbol sequence. The new algorithm solves a nonlin-

ear integer least-squares problem and, over a wide range of rates and signal-to-noise ratios,

has polynomial-time complexity. Performance of the algorithm, combined with convolutional,

turbo, and low-density parity check codes is demonstrated on several multi-antenna channels.

For systems that employ space-time modulation schemes, a major conclusion is that the best

performing schemes are those that support the highest mutual information between the trans-

mitted and received signals, rather than the best diversity gain.
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1 Introduction

Recently, the pursuit of high-speed wireless data services has generated a significant amount of ac-

tivity in the communications research community. The physical limitations of the wireless medium

present many challenges to the design of high-rate reliable communication systems. As shown in

[1], multi-antenna wireless communication systems are capable of providing data transmission at

potentially very high rates. In multi-antenna systems, space-time [2, 4] (along with traditional

error-correcting) codes are often employed at the transmitter to induce diversity. Furthermore, to

secure high reliability of the data transmission, special attention has to be payed to the receiver

design. However, good decoding schemes may result in high complexity of the receiver.

A low-complexity detection scheme for multi-antenna systems in a fading environment has

been proposed in [4]. This detection scheme (so-called “nulling-and-canceling”), depending on

the adopted criterion, essentially performs zero-forcing or minimum-mean-square-error decision

feedback equalization on block transmissions. In [5], a technique referred to as the “sphere de-

coding” (based on the Fincke-Pohst algorithm [6]) was proposed for lattice code decoding and

further adapted for space-time codes in [7]. The sphere decoder provides the maximum-likelihood

(ML) estimate of the transmitted signal sequence and so often significantly outperforms heuristic

nulling and cancelling. Moreover, it was generally believed that sphere decoding requires much

greater computational complexity than the cubic-time nulling and cancelling techniques. However,

in [8] an analytic expression for the expected complexity of the sphere decoding has been obtained

where it is shown that, over a wide range of rates and signal-to-noise ratios (SNRs), the expected

complexity is polynomial-time (often sub-cubic). This implies that in many cases of interest ML

performance can be obtained with complexity similar to nulling and cancelling.

Another area of intense research activity is that of soft iterative decoding. Such techniques have

been reported to achieve impressive results for codes with long codeword length. Following the

seminal paper by Berrou et al. [9], there have been many results on turbo decoding of concatenated

codes, with performances approaching the Shannon limit on single-input single-output systems

(see [10] and the references therein). More recently, low-density parity check (LDPC) codes, long
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neglected since their introduction by Gallager [11], have also been resurrected (see, e.g., [12, 13]).

Crucial to both turbo and LDPC decoding techniques is the use of the probabilistic (“soft”)

information about each bit in the transmitted sequence. For multi-antenna systems employing

space-time codes it is not clear what is the best way to obtain this soft-information with low com-

plexity. As noted in [14], where turbo-coded modulation for multi-antenna systems has been stud-

ied, if soft information is obtained by means of an exhaustive search, the computational complexity

grows exponentially in the number of transmit antennas and in the size of the constellation. Hence,

for high-rate systems with large number of antennas, the exhaustive search proves to be practically

infeasible. Therefore, heuristics are often employed to obtain soft channel information [14]. [Also,

see [15] and the references therein for a related work in the context of multi-user detection.] In

[16, 17], two variations of the sphere decoding algorithm have been proposed for estimating the

soft information. In [17], sphere decoding has been employed to obtain a list of bit sequences

that are “good” in a likelihood sense. This list is then used to generate soft information, which is

subsequently updated by iterative channel decoder decisions.

In this paper, we propose a MIMO detector, based on a modification of the original Fincke-

Pohst algorithm, which efficiently obtains soft information for the transmitted bit sequence. This

modified Fincke-Pohst algorithm essentially performs a maximum a posteriori (MAP) search and

thus provides soft information for the channel decoder. The channel decoder’s output is then fed

back to the Fincke-Pohst MAP (FP-MAP) for the next iteration. [Note that the channel decoder

may be iterative as well, as in the cases when the channel code is turbo or LDPC.] Our method

differs from that of [17] in that the sphere decoder is modified (to allow for the introduction of soft

information from the iterative decoder), that the detector performs MAP search, and that FP-MAP

is repeated for each iteration. Furthermore, in addition to the schemes with traditional modula-

tion techniques, we study the multi-antenna systems employing space-time codes – in particular,

linear-dispersive (LD) codes of [19]. We show that the LD codes allow for an efficient implemen-

tation of the FP-MAP algorithm, and illustrate excellent performance of the proposed scheme via

simulations. The LD codes are designed to optimize the mutual information between the transmit-
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ted and received signals. Maximizing the mutual information is a necessary condition to obtain

the excellent performances promised by the powerful channel codes. We illustrate this by means

of comparison with a space-time modulation scheme that does not optimize the above mentioned

mutual information – in particular, an orthogonal design [3].

The paper is organized as follows. The channel model and problem statement are in Section 2.

The Fincke-Pohst algorithm is described and the calculation of its expected complexity is outlined

in Section 3. In Section 4, we introduce the MAP modification of the Fincke-Pohst algorithm, dis-

cuss its complexity and present simulation results of the performance of the FP-MAP algorithm in

systems using convolutional, turbo, and LDPC codes. In Section 6, we study iterative decoding in

multi-antenna systems employing LD space-time modulation and forward channel coding. Finally,

we conclude the paper in Section 7.

2 System Model

We assume a discrete-time block-fading multi-antenna channel model, where the channel is known

to the receiver. This is a reasonable assumption for communication systems where the signaling

rate is much faster than the pace at which the propagation environment changes, so that the channel

may be learned, e.g., via transmitting known training sequences.

During any channel use the transmitted signal ���������
	 and received signal ��������
	 are

related by

���
� �
����������� (1)

where � �� � �!� is the known channel matrix, and �"�� � �
	 is the additive noise vector, both

comprised of independent, identically distributed complex-Gaussian entries �#%$&�('*) . If we assume

that the entries of � and � have, on the average, unit variance, then
�

is the expected received

signal-to-noise ratio (SNR). The channel is used multiple times to transmit a vector of data.

An iterative decoding scheme is shown in Figure 1. The vector of information bits + is encoded

with an error-correcting code to obtain the vector of coded bits ,
- , which is then interleaved to result

in the vector , . The vector , is modulated onto a QAM-constellation. Assume that each constella-
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tion symbol represents ��� modulated bits (e.g., for a � -QAM constellation, ��� �����
	
��� ). Then

the modulation is performed by taking blocks of vector , of length ��� � and mapping them (e.g.,

by means of a simple gray mapping) into
�

-dimensional symbol vectors. The resulting symbols

are transmitted across the channel as described by model (1). Therefore, a block of ��� � coded

bits (corresponding to a single symbol vector) is transmitted per each channel use. Let us denote

these blocks of coded bits as ,� 	�� � ,� � � ������� ,� ��� � . Assume, for simplicity, that the total length of the

vector , is ������� � . Then the entire vector , can be blocked as

, ��� ,  	�� ,  � � ����� ,  � � ��� � (2)

and transmitted in � � channel uses.

Consider the !#"%$ channel use (i.e., the block ,� & � has been modulated onto symbol vector � and

transmitted across the channel). On the receiver side, the received vector � and a priori probabilities

of the components of the symbol vector � , '�� #%� 	 ) �(� #%� � ) ������� �(��# � � )*) , are processed by a MIMO

detector in order to obtain both the estimated bits in the current block ,  & � and the reliability infor-

mation about those decisions. Let us denote bits in the block ,  & � by +*, , - � '!��.&������� �(��� � . The

reliabilities of the decisions for the coded bits +�, can be expressed in the form of a log-likelihood

ratio (LLR) as
/
	 #0+�,21 � )��3�4�
	 �5�6+*, � � '71 � ��5�6+�, �98 '71 � � � (3)

[Note: we will represent logical $ with amplitude level 8 ' , and logical ' with amplitude level � ' .]
Let us denote the reliability information for the block ,� & � by

:  & �	 �;� / 	 #0+ 	 1 ��)
/
	 #0+ � 1 � ) ����� /

	 #<+ �*= � 1 ��) � �

and let
:
	 denote a vector of concatenated blocks of reliabilities,

:
	 ��� :  	��	

:  � �	 ����� :  ��� �	 � �

collected over all ��� uses of the channel. Then
:
	 is a vector of LLRs corresponding to all the bits

in the vector , .
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The vector
:
	 is de-interleaved to obtain vector

: - 	 , which is then used by a channel decoder

to form the estimate of the information bit vector, �+ , as well as to provide
: - � , the a posteriori reli-

ability information for the coded bits vector , - . A posteriori reliability information for the vector

, is obtained by de-interleaving
: - � into

: � . Let us denote the a posteriori reliability information

for the block ,� & � by
:  & �� . Furthermore, assume that the bits + , , - � '!�*.&������� �0��� � , in the block ,� & �

are independent (which, for a long vector , and an efficient interleaver is a valid approximation).

Then the a posteriori probabilities for the components of the symbol vector � (symbol vector cor-

responding to the block ,� & � ) can easily be found from
:  & �� using the modulator mapping function.

These probabilities, '���# � 	 ) �(��# � � ) ������� �0��#%� � )*) , can now be used to run the MIMO detector algo-

rithm (i.e., evaluate (3)) once again. Hence, the MIMO detector is an iterative one, and we use the

described scheme for iterative joint detection and decoding in a MIMO system. [Note that for the

first iteration of the MIMO detector, we assume that all symbols are equally likely.]

The structure of the channel decoder depends upon the choice of the error-correcting code.

For a simple convolutional code, the channel decoder is a simple soft-in soft-out decoder, such as

the BCJR algorithm of [18]. When the channel code is a powerful turbo code, then the channel

decoder is iterative itself ([10]). If the channel code is an LDPC, the channel decoder is an iterative

one, employing message passing algorithms of [11].

The computational complexity of traditional algorithms for evaluating (3) can be prohibitive for

applications in multi-antenna systems. Since the sphere decoding algorithm of Fincke and Pohst

can supply us with the ML estimate of � with reasonable complexity, one may speculate whether

a modification can be devised to yield soft information with low complexity. To show that this can

be done, and to describe how to efficiently approximate the LLRs in (3), it is instructive to review

the original Fincke-Pohst algorithm [6].

3 Fincke-Pohst Algorithm

We assume that the components of the transmitted symbol vector � in (1) are from a complex-

valued QAM constellation. To state the ML detection as an integer least-squares problem, we first
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find the real-valued equivalent of the equation (1). To this end, let � � . � , ��� . � , and let � , � ,

and � denote real vectors obtained from � , � , and � , respectively, as

� � ��� #%� )
	 � #%� )
	� 	 ��� � ��� # ��)
	 � # ��)
	� 	 � and � � ��� # � )�	 � # � )
	� 	 �
Furthermore, let � � ��� � � be given by

� �
� �
�

���� � #%� )�� #%� )
8�� #%� ) � # � )

����� �
Then the real-valued equivalent of (1) is given by

� �����������
The ML detector maximizes the likelihood that � was received given that � was sent, "!$#%'&)( =* �,+.- % #/� 10�*)*� (4)

The search space 1 �2 is a finite subset of the (shifted) � -dimensional integer lattice � � , which

reflects the fact that the unknown (complex) symbols � are from a QAM constellation. Therefore,1 �2 is an
/

-PAM constellation,

1 �2 �43 8 / 8�'
. ��8

/ 8�5
. ������� �

/ 865
. �

/ 8�'
. 7 � �

where
/

is usually a power of . .
Since � is known and the noise is zero-mean unit-variance Gaussian, the conditional distribu-

tion of � given � is

� +.- % #/� 18� ) � '
#(.$9�) �;: �=<?>A@ + >CB % @ED �

Hence maximization (4) is equivalent to the optimization problem GFIH%'&)( =*KJ � 8���� J � � (5)

Problem (5) is referred to as an integer least-squares problem and it is known to be NP-hard.

Geometrically, it corresponds to the search for the “closest” point in a skewed lattice �L� to a given� -dimensional vector � .
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The basic idea of the Fincke-Pohst (FP) algorithm is that rather than search over the entire

lattice, one should search only over lattice points in a hypersphere of radius � around � . Then the

closest lattice point inside the hypersphere is the solution to (5). To perform the search, however,

one needs to: (i) determine an appropriate radius � , and (ii) find the lattice points inside the sphere.

The algorithm of Fincke and Pohst does not address the choice of � , but it does propose an

efficient way of finding all the points inside the hypersphere. In particular, the algorithm constructs

a tree, whose nodes at the ! -th level correspond to the lattice points lying inside the sphere of

radius � and dimension ! . To find the lattice points inside a sphere of radius � and dimension � ,

the algorithm performs a depth-first tree search over all lattice points of radius � and dimensions

! � '!��.&������� � � . The nodes in the tree which correspond to the points outside the sphere are

pruned. This is illustrated in Figure 2, for an � � � dimensional lattice which has
/ � � points in

each dimension (i.e., � � 1��� ). [Remark: We need the tree-search interpretation for the discussion

on the complexity of the algorithms; further details can be found in [8].]

The search radius � can be chosen according to the statistical description of the noise. Note

that J � J � � J � 8 ��� J � is a � � random variable with � degrees of freedom. We choose the radius

� to be a linear function of the variance of J � J � ,
� � ��� � �

where the coefficient � is chosen in such a way that with a high probability � fp we find a lattice

point inside a sphere, ��� �
	 


� : � > 	� #/��
. ) <?>���� 
 � � fp � (6)

We find � in (6) by a simple table look-up.

3.1 Computational Complexity of Fincke-Pohst Algorithm

As noted above, the FP algorithm performs a search over all lattice points of radius � and dimen-

sions !�� '!�*.&������� � � . Hence the complexity of the algorithm is proportional to the number of

lattice points visited. In general, the algorithm has worst-case and average complexity that is ex-

ponential in the number of unknowns � (see [8]). However, in communications applications, as
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it is implied by (1), the vector � is not arbitrary, but is a lattice point perturbed by additive noise

with known statistical properties. Hence, in this case, the expected complexity is a relevant figure

of merit. The expected complexity of the FP algorithm is proportional to the expected number

of lattice points that the algorithm visits. We need two key ingredients to calculate this expected

number of lattice points (and, consecutively, the expected complexity):

1. A probability that an arbitrary lattice point ��� belongs to a ! -dimensional sphere of radius

� around the transmitted point � " ; it was shown in [8] that this probability is given by the

following incomplete gamma function:

� %�� � � �� � �
'�� 	 ����
	 2 D > 	�� J � " 8 �� J � � ! .

��
� (7)

2. A technique for enumerating points ��� in the lattice with respect to the transmitted point � " ;
in [8], an efficient method for counting those lattice points which yield the same argument

of the gamma function in (7), based on certain generating functions, is developed.

Using '
� , .7� , from above, one can find the number of lattice points visited by Fincke-Pohst algo-

rithm and, therefore, the analytic expression for its expected complexity. The details can be found

in [8]. E.g., the complexity of the FP algorithm for a 2-PAM constellation is

� # � � � ) � ��
&�� 	 #(.
! � '��!)

&�� � 	
���� ! � ����� � �� � �

'�� 	 ��� ��
	 2 D > 	�� � ! .
��
� (8)

For a 4-PAM constellation it is

� # � � � ) � ��
&�� 	 #0.
! �"'�� )

� � '
. &

&� �
� 	
���� ! � �������

&

�
#
�
) �
�� � �
'�� 	 ��� �� 	 2 D > 	�� � ! .

��
� (9)

where
�
&

�
#
�
) is the coefficient of � � in the polynomial

# '���� ��� � ���"! ) � # '�� .$� ��� � ) & > � �
Similar expressions can be obtained for 8-PAM, 16-PAM, etc., constellations.

For a wide range of � ,
/

and
�
, the sphere decoding algorithm has complexity comparable to

cubic-time methods such as nulling and cancelling (cubic in � ). As a general principle, for a fixed� , the complexity decreases by increasing the SNR
�

or by decreasing
/

.
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4 Modified FP Algorithm for MAP Detection

The MAP detector maximizes the posterior probability � % - + # ��1 � ) , "!$#%'&)( =* � % - + # ��1 � )*� (10)

Using Bayes’ rule,

arg max � % - + # ��1 � ) � arg max
� +.- % #/� 18� )�� % # �*)

� + #/� ) � arg max � +.- % #/� 18� )�� % # �*)
Further, by assuming that the symbols � 	 � � � ������� � ��� are independent, we can write

� % # � ) � ��
&�� 	 ��# � & ) � <�� = �����	��
� � 	 % � � �

Then, for a known channel in AWGN, (10) is equivalent to the optimization problem F H%�& ( =* � J � 8���� J � 8 ��
&�� 	 �4�
	 ��# � & )�� (11)

For an iterative decoding scheme, we also require soft information, i.e., the probability that each

bit is decoded correctly. To this end, consider the LLR defined in (3) and, as in Section 2, consider

the !7"%$ channel use (that is, the current symbol vector � is obtained by modulating coded block

,  & � ���6+ 	 + � ����� + � = � � onto an
/

-PAM constellation):

/
	 #<+*, 1 � ) � �4� 	 ��� +�, ��� '�1 � ��5� +�, ��8 '�1 � � �3�4�
	 �5� � ��+*, � � ' ��5� � ��+�, �98 ' � � �4�
	

� �5� � 1 ,� & � � ��� ,� & � ��� ����� ��� �����
� �5� � 1 ,� & � � �5� ,� & � ��� ����� ��� �����

� (12)

Assuming independent bits + 	 ��+ � ������� ��+ � = � , (12) becomes

/
	 #<+*, 1 � ) � ���
	 �5� +�, ��� ' ��5�6+*, ��8 ' �� � !2 � � 	 �#" � � �4�
	

� �5� � 1 ,  & � � $ �5� +&% ��� ����� � � ����� ')(*',+� "
� �5� � 1 ,� & � � $ �5� +&% �� � ��� � � � ����� ')(*'-+� "� � !2 �/. 	 �#" �

�
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where
/
	 � #0+�, ) and

/
	�� #<+*, ) denote so-called a priori and extrinsic part of the total soft information,

respectively. [Note that, when used in an iterative decoding scheme, it is only
/
	�� #0+�, ) that is

passed to the other decoding block(s) in the scheme.] Since the block ,  & � is uniquely mapped into

the symbol vector � , it follows that for an AWGN channel

/
	 #<+*, 1 � ) � ���
	

� �5� � 10� � $ ����� % �
� � � � ��� � '

� �5�8� 18� � $ �5��� % �
��� � � ����� '

�3�4�
	

� < >A@ + >CB % @ D � � ' ��
� �  % ' �
� � ��� �����

� < >A@ + >CB % @ED � � ' ��
� �  % ' �
� � ��� � � �

(13)

Computing (13) over the entire signal space 1 �2 is of prohibitive complexity. Instead, we constrain

ourselves to those � ��1 �2 for which the argument in (11) is small. [Note that these are the signal

vectors whose contribution to the numerator and denominator in (13) is significant.]

Applying the idea of the Fincke-Pohst algorithm, we search for the points � that belong to the

geometric body described by

� ��� # � 8���*)	��
��
�# � 8��� ) 8 ��
&�� 	 �4� 	�� # � & ) � (14)

where 
 is the lower triangular matrix obtained from the QR factorization of � . (Note that this

is no longer a hypersphere.) The search radius � in (14) can be chosen according to the statistical

properties of the noise and the a priori distribution of � .
A necessary condition for � � to satisfy (14) readily follows,

� ��5� # ��� 8����� ) � 8 ���
	 ��# ��� )�� � � � (15)

Moreover, for every ��� satisfying (15), we define

� �� > 	 � � � 8 � ��5� # ��� 8����� ) � � �4�
	 ��# ����) �
and obtain a stronger necessary condition for (14) to hold,

� �� > 	�� � > 	
������� ��� > 	 8����� > 	 � ��� > 	�� ���� > 	�� � > 	 # ��� 8������)� � !�% = ����� =

��������
�

8 ���
	 ��# ��� > 	 )�� � �� > 	 �
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The procedure continues until all the components of vector � are found. The FP-MAP algorithm

can be summarized as follows:

Input: 
 , � , �� , � , � % #%� ) .
1. Set ! � � , ��� �� � � � 8 J � J � � J � �� J � , ���� - � � 	 � ����
2. (Bounds for � & ) Set � � � ��� ��� ,

��� # � & ) ��� � � �� & - & � 	 	 , � & ��
 8 � � �� & - & � 	 � 8 ' .
3. (Increase � & ) � & � � & �"' . If � �& & # � & 8���*) �� � - �& � �4�
	 ��# � & ) and � & � ��� # � & ) , go to 3, else

proceed. If � & � ��� # � & ) go to 5, else to 4.

4. (Increase ! ) ! � ! � ' ; if !�� � � ' , terminate algorithm, else go to 3.

5. (Decrease ! ) If ! � ' go to 6. Else ! � ! 8 ' , �� & - & > 	 � �� & � � �% ��& � 	 � ��'� ��� # � % 8 �� % ) ,
��� �& � ��� �& � 	 8 � �& � 	�� & � 	 # � & � 	 8��� & � 	 - & � � ) � � �4� 	�� # � & � 	 ) , and go to 2.

6. Solution found. Save � and go to 3.

Assume that the search yields the set of points � �9'?� 	 	�� � � 	 � � ������� � � 	 � � � ) . The vector � ��� that

minimizes (11) is the solution to the MAP detection problem (10). The soft information for each

bit +*, can be estimated from (13), by only summing the terms in the numerator and denominator

such that � ��� .

4.1 Computational Complexity of FP-MAP Algorithm

The complexity of the FP-MAP algorithm can, in principle, be found following the outline of

the calculation of complexity of the original Fincke-Pohst algorithm in Section 3.1. However,

the probability that an arbitrary point ��� belongs to a ! -dimensional sphere of radius � around

the transmitted point � " (which we need to compute the expected number of points the FP-MAP

algorithm visits) now becomes

��� � � � �� � � � 	 ���� 	 2 D > 	�� � �% � 	 �4�
	 ��# � % )'�� 	 ���� 	 2 D > 	�� J � " 86� � J � � ! .
��
� (16)
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The argument of this probability function is not as simple as the one in (7), and the computation

of the expected number of points is much more difficult. First and foremost, (16) is a function of

the a priori probabilities which are generally not known in advance to iterations. Second, since

each point � � in a lattice has a distinct a priori probability affiliated with it, argument of the prob-

ability function (16) will, in general, be different for each pair of points # � " � �� ) . Thus an efficient

enumeration that would help the complexity calculation cannot be done. Hence, to compute the

expected number of points, one needs to consider all the possible pairs of points # � " � �� ) and the

corresponding probabilities (16) which, as the size of the problem increases, clearly becomes rather

cumbersome. However, we note that since ���
	 ��# �	% )��"$ ��� � '!������� � � , we have

� � � ' . �� # / � 8 '*) ��% � 	 �4�
	 ��# � % )�� � � �
Hence from (7) and (16) it follows that, for the same choice of radius � ,

����� > ��� �% � � �����%�� �
and we conclude that, for the same choice of � , the expected number of points that the FP-MAP

algorithm visits is upper bounded by the expected number of points visited by the original sphere

decoding algorithm. Thus, the expected complexity of the FP-MAP is roughly upper bounded

by the expected complexity of the sphere decoding, for the same choice of � . [“Roughly” upper

bounded because since the a priori probabilities enter the algorithm, there are a few (two, to be

exact) additional operations per each visited point; this is accounted for by changing #(.
! � '��!) to

#(. ! � '�� ) in (8) and (9).]

Therefore, the results of [8] suggest that the expected complexity of the FP-MAP algorithm is

polynomial in � over a wide range of rates and SNRs. Generally, we chose the search parameter

� so that there is sufficiently many points to make a good approximation of (13). Note that the

logarithms in (13) can be efficiently computed using the standard Log-MAP implementation [20].

4.2 Simulation Results

We consider bit-error rate (BER) performance of the system with
� � �

transmit and
� � �

receive antennas and '�	 -QAM modulation scheme without a space-time coding (i.e., simple Grey

13



mapping is used for modulation). Figure 3 shows the BER performance of the system employing a

simple rate 
 � ' �
. convolutional code with length � .&'�	 information bits, memory length . , and

generating polynomials � 	 #�� ) � ' ��� � (feedforward) and � � #���) � ' ��� ��� � (feedback).

The FP-MAP algorithm is used to obtain the soft information. Figure 4 compares the performance

of the FP-MAP with that of the soft nulling and cancelling (N/C) algorithm. For each entry in

a transmitted symbol vector, the soft N/C algorithm cancels the previously decoded symbols and

obtains the soft information using the distribution of the noise. [The soft N/C algorithm is similar

to the soft MMSE equalizer of [21]. Also, see [15] for an application in multi-user context.] Prior

to the decoding, symbols are optimally ordered. The complexity of the soft N/C algorithm is

roughly cubic (due to the required QR-factorization of the channel matrix). The FP-MAP even

with a single iteration outperforms
�

iterations of the soft N/C by . dB at BER of ' $ > � .
Figure 5 shows the BER performance of the system with a parallel concatenated turbo code

with rate 
 � ' �
. and length �
.&'�	 information bits. The constituent convolutional codes are

as the one described above. For each iteration of the FP-MAP, the turbo (decoder performs �
iterations of its own. Figure 6 shows the BER performance of the same system (

��� �
), with�

-QAM constellation and � � � LDPC code of length ' $	�	� , column weight
�
. When the LDPC

decoder receives soft information from FP-MAP, it performs � iterations before passing what it

inferred about the coded bits back to FP-MAP. In Figure 5 – Figure 6, the dashed vertical line

denotes the capacity limits of the MIMO channel.

The turbo coded scheme in Figure 5 gets 5���5 dB close to capacity. At BER of ' $ > 
 , it outper-

forms the convolutional code employed on the same system by approximately 5 dB. The rate of the

system is � bits per channel use. The LDPC code, on the other hand, is about
� ��� dB away from

capacity of the system in which it is employed; the data rate in this system is �#� ' bits per channel

use. Although the LDPC code is outperformed by the turbo code, it proves to be an interesting

alternative, especially in light of the complexity exponents �4�
	 � �# � � / � � ) shown in Figure 7. At

SNR  ' $ dB, both schemes have BER  ' $ > 
 . As indicated in Figure 7, for such SNRs, the

complexity of the detection in the system employing the (high rate) LDPC code and
�
-QAM mod-
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ulation is approximately cubic in � , while the complexity in the system with the ( ' � . rate) turbo

code and '�	 -QAM modulation is significantly higher. So, although the mutual information plots

in Figure 7 imply that the system with '�	 -QAM modulation scheme is more efficient, the system

that employs
�
-QAM modulation is more favorable from the complexity point of view.

5 Systems employing both channel and S-T codes

Space-time coding has been developed to fully exploit the spatial diversity provided by a wireless

link. There has been a tremendous amount of the research activities in the field (see, e.g., [2]-

[3]). In this section, we consider powerful channel codes for data encoding in the multi-antenna

systems that employ space-time codes. We focus on the LD space-time codes of [19], both for the

simplicity of the decoding as well as for the certain optimality properties whose importance will

become clear later in the section.

Space-time coding is a modulation technique that imposes spatial and temporal correlation

onto a transmitted sequence of modulated symbols. This correlation is generally embedded over a

number of channel uses. Therefore, we shall find it useful to model the transmission over a number

of channel uses, say � , during which the channel remains constant. In other words, we assume that

� , �
� �
� � � , ��� , � - � ' ������� ��� �

and hence we can write
� �

� �
��� � ��� � (17)

where
� ��� � 	 � � ����� � 	 � - �� 	 �!� is the received signal, � �;� � 	 � � ����� � 	 � - �  	 �!� is the

transmitted signal, and � � � � 	 � � ����� � 	 � - �  	 �!� is the additive �#%$&�('*) noise. Furthermore,

the transmitted signal matrix satisfies the power constraint �	� � �
� � ��� � .

A linear-dispersion code is one for which

� �
��� � 	 # � � � � � � �� � � ) �

where
� � �  	 �!� and � � �  	 �!� are fixed matrices, and � � � � � '!������� � � are complex scalars.

Scalars � � can be chosen from either PSK or QAM constellations. For simplicity, we shall assume
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that they are chosen from a � -QAM constellation. The particular choice of scalars � 	 ������� � � �
determines a specific codeword from the code that is determined by the set of matrices ' � � � � � ) .
The rate of the LD code is then 
 � #0� � � )��4�
	 � � .

Matrix � can be considered a symbol that is being transmitted (over � channel uses). The total

number of matrices � that can be generated by ' � � � � � ) and � 	 ������� � � � is . � 	 and thus can be

very large. This symbol space can easily be generated by the LD codes. However, its enormous

size generally prevents any exhaustive search decoding technique and asks for more sophisticated

receiver algorithms. For instance, the system employing
� � � transmit antennas coded over

� � �
channel uses with a rate 
 � '�	 LD code has a symbol space with . � 	  57� ��� '($ ���

elements. Real-time exhaustive search over such a large set is out of question.

We shall find it convenient for the decoding purposes to represent the scalar � � by its real and

imaginary parts, � � ��� � � � � � �
�
� '!������� ��� �

Denoting � � � � � � � � , � � � � � 8 � � , one can write

� �
��� � 	 # � � � � � � � � � � ) � (18)

The linearity of the LD codes (18) in the variables '�� � � � � ) can be exploited to pose the detection

problem as an integer least-squares problem. To this end, we write (17) as

� �
� �
� � � � � �

� �
�
��� � 	 # � � � � � � � � � � ) � � � �

Define

	 � �
���� � � � � 8
�
� � �
�
� � � � � � �

� ��� �� � � ���� 8 � � � � 8 � � � �� �
� � 8 � � � �

� ��� ��� � � ���� � � � ���� �
�
� ��� �

where the vectors � � �
� and ��� �

� , � � '!������� � � , denote !#"%$ columns of matrices � � and ��� ,
respectively. Now, collecting all real and imaginary parts, we can write the expression for the

input/output relation as � ��� ��� � � (19)
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where � � � � � � 	 � � � 	 ����� � � � � � � � � � - , � � � � 	 � 	 ����� � � � � � - , � � �8� � � 	 � � � 	 ������� � � � � � � � � - ,
the . � � � . � real valued equivalent channel matrix is given by

���
� �
� �

��������
	
	 � 	 � 	 � 	 ����� 	 � � 	 � � � 	
...

...
. . .

...
...

	
	 � � � 	 � � ����� 	 � � � � � � �

��������� �
and where � � � & , � � � & , � � � & , and � � � & denote ! "%$ column of

� � ,
� � , � � , and � � , respectively.

The equivalent channel � is comprised of the dispersion matrices ' 	 � � � � ) and the known

channel matrix � and is, therefore, known to the receiver.

Note that ��, � 1 2 for ' � - � . � , where 1 2 denotes an
/

-PAM constellation (
/ � �

� ).

Then from (19), one can pose the MAP detection problem as F H% J � 8 � � J � � � �4�
	 ��# ��, ) � (20)

where ��# � , ) is the a priori probability of the - "%$ component of the . � -dimensional vector � . Prob-

lem (20) allows for efficient implementation of FP-MAP algorithm.

5.1 Performance results

In this section, we present examples that illustrate performance of the LDPC codes in a multi-

antenna system with LD space-time modulation. In particular, we use the same � � � -rate LDPC

code of the length ' $ �	� as in the previous section. Figure 8 shows the performance of the . � .
system employing a

�
-QAM modulation scheme and a rate 
 � �

LD code (see page 5 ' in [19]

for the construction of the LD code). The significant coding gain due to use of the LDPC code

is evident. Even without S-T coding, LDPC code would yield good performance, as illustrated in

Section 4. However, S-T coding is necessary in systems with less receive than transmit antennas,

to provide as many equations as there are unknowns and provide feasibility of decoding (when
� � �

, the Fincke-Pohst algorithm is exponential in
� 8 �

). Performance of such a system,

with
� � 5 and

� � ' , employing the LD code is shown in Figure 9.

In this section, we have focused on LD codes. One can ask whether any S-T code would

suffice, i.e., would any modulation scheme support the excellent performance of the powerful
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channel codes? The answer is negative: S-T modulation schemes need to maximize the mutual

information between the input and output signals. Note that the dispersion matrices of the LD

code are actually chosen to optimize the mutual information between � and � , i.e., to solve for the

optimization problem

� 2�� # � ��� � � � � ) �  G!$#
���	� � � � � � 	�������� � � '

. � � �4�
	 �	��
��� � � 	 � �
� � � -�� (21)

for a particular
�

of interest and an appropriate power constraint. So, the LD codes satisfy the

required criterion. Interestingly, V-BLAST also satisfies this condition. Indeed, as shown in Fig-

ure 10, the multi-antenna system employing an LDPC channel code and V-BLAST performs al-

most as good as the scheme with an LD code (eq. (36) in [19]). Of course, there is an additional

gain that the LD code obtains by spreading the signals across space and time more efficiently than

V-BLAST. On the other hand, if a S-T code throws away some information (i.e., if it violates (21)),

the system performance is inferior in comparison to the S-T code designed with (21) in mind. This

is illustrated in Figure 11, where we compare performance of the LD code of Figure 9 with the

orthogonal S-T code ([3], also eq. (35) in [19]). The orthogonal design does not satisfy (21) and

the performance of the system is clearly much worse than of that employing the LD code.

6 Conclusion

In this paper, we developed a modification of the sphere decoding algorithm to perform the MAP

detection and efficiently estimate soft information. When combined with soft iterative decoding

schemes, the proposed detection algorithm, FP-MAP, provides close to capacity performances of

multi-antenna systems. This was demonstrated on systems employing both turbo and LDPC codes.

We considered the expected complexity of the algorithm and found it is closely related to the

expected complexity of the original sphere decoding. In fact, over a wide range of rates and SNRs,

the FP-MAP algorithm has complexity that is polynomial in the number of transmit antennas.

Furthermore, we studied the use of powerful channel codes and iterative decoding in multi-

antenna systems that employ space-time modulation schemes. We found that in order to obtain the
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remarkable performance of the iterative decoding, the space-time techniques need to optimize for

the mutual information between the transmitted and received symbols. Thus, the design paradigm

of [19] that constructs codes based on mutual information appears to be very reasonable.

References

[1] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” Eur. Trans. Telecom., 10:585-595,

November 1999.

[2] V. Tarokh V, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless

communication: performance criterion and code construction,” IEEE Trans. on Info. Theory,

44(2):744-765, March 1998.

[3] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna

communication in Rayleigh flat-fading,” IEEE Trans. Info. Theory, 46(3):543-564, Mar. 2000.

[4] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading envi-

ronment when using multi-element antennas,” Bell Labs. Tech. J., 1(2):41-59, 1996.

[5] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Trans.

on Information Theory, vol. 45, pp. 1639-1642, July 1997.

[6] U. Fincke and M. Pohst, “Improved methods for calculating vectors of short length in a lattice,

including a complexity analysis,” Mathematics of Computation, 44(4):463-471, April 1985.

[7] M. O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice codes decoder for space-time codes,”

IEEE Communications Letters, vol. 4, pp. 161-163, May 2000.

[8] B. Hassibi and H. Vikalo, “Expected complexity of the sphere decoder algorithm,” submitted

to the IEEE Trans. on Signal Processing, 2003.

[9] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding

and decoding. Turbo codes,” in Proc. Int. Conf. Comm., pp. 1064-1070, 1993.

[10] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding techniques: an overview,”

IEEE Trans. on Vehicular Technology, vol. 49, no. 6, November 2000.

19



[11] R. G. Gallager, Low-density parity-check codes, Cambridge, MA: MIT Press, 1963.

[12] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low-density parity-

check codes,” Electron. Lett., vol. 32, pp. 1645-1646, 1996.

[13] D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,” IEEE Trans.

Inform. Theory, vol. 45, pp. 399-431, March 1999.

[14] A. Stefanov and T. M. Duman, “Turbo-coded modulation for systems with transmit and re-

ceive antenna diversity over block fading channels: system model, decoding approaches, and

practical considerations,” IEEE J. on Sel. Areas in Comm., vol. 19, no. 5, May 2001.

[15] P. D. Alexander, A. J. Grant, and M. C. Reed, “Iterative detection in code-division multiple-

access with error control coding,” European Trans. on Tel., 9:419-425, 1998.

[16] H. Vikalo and B. Hassibi, ”Low-complexity iterative decoding over multiple antenna chan-

nels via a modified sphere decoder,” in Proc. Allerton Conf. on Commun., Control, and Com-

puting, Monticello, IL, October 2001.

[17] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,”

in Proc. Allerton Conf. on Commun., Control, and Computing, Monticello, IL, October 2001.

[18] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing

symbol error rate,” IEEE Trans. Info. Theory, pp. 284-287, March 1974.

[19] B. Hassibi and B. Hochwald, “High-rate codes that are linear in space and time,” Transactions

on IEEE Trans. Info. Theory, 48(7):1804-1824, July 2002.

[20] P. Robertson, P. Hoeher and E. Villebrun, ”Optimal and suboptimal maximum a posteriori al-

gorithms suitable for turbo decoding”, Euro. Trans. Telecommun., 8:119-125, Mar-Apr. 1997.

[21] Tuechler, M., Singer, A., Koetter, R.: “Minimum Mean Squared Error Equalization using

A-priori Information,” IEEE Trans. on Sign. Proc., vol. 50, pp. 673-683, 2002.

20



��� �
��� �
��� �

� � �

��� �
��� �
��� �

���

�

�

�

Source
Channel
Encoder Interleave Modulator

Channel

Interleave

Sink Deinterleave DetectorDecoder

� �� � �

� � D � D
� � �L��� �

�� � � �

�
�

Receiver:

Transmitter:

Figure 1: System model.
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Figure 2: Tree-pruning interpretation of sphere decoding.
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Figure 3: BER performance of
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system employing rate ' � . , 9216 bits long convolu-

tional code, '�	 -QAM, FP-MAP.
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Figure 4: Comparison of BER performances for FP-MAP and soft N/C employed on
� � � � �

system with rate ' � . , 1000 bits long convolutional code, '�	 -QAM.
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Figure 5: BER performance of
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system employing rate ' � . turbo code, ' 	 -QAM,

FP-MAP.
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Figure 6: BER performance of
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system employing rate � � � LDPC code,
�
-QAM,

FP-MAP.
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Figure 7: Maximum mutual information and complexity exponents for 4-QAM and 16-QAM con-
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� � � � � system.
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used for detection.
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