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Abstract

We study the design of synthesis filters in noisy filter bank systems using an H*
estimation point of view. The H® approach is most promising in situations where
the statistical properties of the disturbances (arising from quantization, compres-
sion, etc.) in each subband of the filter bank is unknown, or is too difficult to model
and analyze. For the important special case of unitary analysis polyphase matrices
we obtain an explicit expression for the minimum achievable disturbance attenua-
tion. For arbitrary analysis polyphase matrices, standard state-space H* techniques
can be employed to obtain numerical solutions. When the synthesis filters are re-
stricted to being FIR, as is often the case in practice, the design can be cast as a
finite-dimensional semi-definite program. In this case, we can effectively exploit the
inherent non-uniqueness of the H* solution to optimize for an additional criteria.
By optimizing for average performance in addition to the H* criteria, we obtain
mixed H?/H® optimal FIR synthesis filters. Alternatively, if the additional criteria
is concerned with penalizing occasional occurance of large values of reconstraction
errors more than frequent occurance of small to moderate ones, we obtain risk-
sensitive FIR synthesis filters. Numerical examples and comparisons with existing
methods are also included.
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1 Introduction

Multirate filter bank systems have been a subject of extensive studies (see [1]-
[3] and the references therein) and are widely used in many application areas
(such as speech and image compression, joint source channel coding, adaptive
systems, and others). The design of perfect reconstruction filter banks, capable
of exactly replicating the input signal, has received particularly high attention.
In most of the research, the subbands of the filter bank system are assumed
noise free. Such an M-band filter bank system is illustrated in Figure 1. The
analysis filters H;(z) decompose the input signal into subband components,
which are then decimated by a factor of M. The signal is reconstructed by
upsampling by a factor of M followed by filtering with synthesis filters Fj(z).
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Fig. 1. M-channel filter bank

Ideally, the synthesis filters are required to exactly reconstruct the delayed
version of the input signal. The perfect reconstruction is thus achieved if

A

U; = Ui—m,

where m > 0 is the delay. However, the decimated signals in the subbands may
be, for example, encoded and transmitted (as in speech comparison applica-
tions), or be coded for storage, at which point the signal may be compressed
and some information lost. The perfect reconstruction approach studied in the
literature, assumes no loss of information in the subbands. However, signal
quantization and noise corruption in the subbands, as well as computational
roundoff, are always present in practical filter banks systems [4],[5]. Thus,
noise in subbands must be carefully considered in systems design.

In order to deal with noise-corrupted filter bank systems, multirate Kalman
synthesis filtering has been recently proposed [6]. The Kalman filtering ap-
proaches require a priori knowledge of the (first and second-order) noise statis-



tics. Therefore in applications involving compression, quantization, etc., where
the noise statistics are not readily known, the performance of the synthesis
filters may be suspect.

H*® estimation, on the other hand, requires no statistical assumptions, per-
forms a worst-case design, and is therefore robust with respect to noise un-
certainty. Moreover, the H* approach allows one to explicitly introduce finite
delay into the synthesis filter design. [Conventional IIR, perfect reconstruction
filters are often non-causal, which requires either infinite delay or some form
of truncation.] The H* optimization approach had been proposed first in
[7], followed by [8]-[10]. Unlike this paper, the work in [7]-[9] considered only
the noise-free subband case (in other words, we are considering a two-block
estimation problem, rather than the one-block problem considered in [7]-[9]).

The existence of corrupting noises in the subbands of the filter bank systems
is assumed throughout this paper. Analysis filters can be designed for good
frequency selectivity (i.e., good coding of the input signal). Then the synthesis
filters are designed to minimize the maximum energy gain from the unknown
disturbances to the estimation errors, i.e., the goal is to minimize the worst-
case reconstruction error to disturbance ratio.

We take on state space approach (unlike, say, [11]) to the design of synthe-
sis filters. In particular, we pose the design problem in terms of matrices in
the state space model of the polyphase representation of the synthesis filters.
Furthermore, by assuming FIR analysis filters, we state the optimization prob-
lem explicitely in terms of the coefficients of the synthesis filters. This differs
from the work in [10], where the state space representation of the bank of
filters is used to find an appropriate estimation gain. Finally, the results on
closed-form expression for the H* optimal synthesis filters for paraunitary
filter banks and derivation of the risk sensitive synthesis filters have not been
obtained elsewhere.

The outline of the paper is as follows. The model description is given in Sec-
tion 2, where the problem is made equivalent to a standard general estimation
problem. In Section 3, we review the H* approach to the estimation problem,
apply it to the design of synthesis filters in the filter bank, and derive closed-
form H* optimal solution for the special case of paraunitary analysis filters.
In Section 4, assuming FIR analysis filters, we give a state-space solution to
the problem via semi-definite programming. Optimal mixed H?/H> design
is discussed in Section 5. In Section 6, we give simulation results and com-
pare the approach taken here with existing methods. Conclusions are given in
Section 7.



2 Model Description

To begin our study, we will use a polyphase representation of the filter bank
shown in Figure 1. We can represent the analysis filter bank in terms of the
M x M polyphase matrix H(z)

Hoo(z)  Hou(z) -+ Hom-1(2)
H1,0(Z) H1,1(Z) H1,M—1(Z)

_HM—l,o(Z) HM—1,1(Z) HM—I,M—I(Z)_

where Hy; is the {th polyphase component of the kth analysis filter. One can
find the polyphase analysis matrix H(z) by performing a type-1 polyphase
decomposition of the analysis filters as in [1],

Ho(2) | 1
Hll(Z) — H(M) z"l | 0
_HM—I(Z)_ _Z_(M_l)_

For the synthesis filter bank, we can define a polyphase matrix F'(z) in the
similar manner,

Fo,M—l(Z) FO,M—Q(Z) Fo,o(Z)
F1,M71(Z) Fl,M72(Z) Fl,o(Z)

_FM—1,M—1(Z) FM—1,M—2(Z) FM—1,0(Z)_
and find it by performing a type-2 polyphase decomposition of the synthesis
filters,

[Fo(2) Fi(z) -+ Fua(@]=[M" o 2 1] F(EM). (2)
Thus by replacing the bank of filters by its polyphase equivalent, we obtain the

polyphase equivalent structure of Figure 2. The subband noises are considered
to be additive noises in this model.
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Fig. 2. Polyphase equivalent structure

Blocking the input and output (see [7]) leads to a so-called vector-matrix
equivalent structure in Figure 3. The input signal u; (bold symbol denotes a
vector) in Figure 3 is of the form

u; = [Uz'M Uipr—1 - - - UiM—M+1]T-

Notice that while the original system in Figure 1 is a linear periodic time-
varying, the obtained equivalent system in Figure 3 is linear time-invariant.
As noted before, we are interested in estimating u; ,,, the delayed version of
the input signal (m > 0). The transfer matrix L(z) in Figure 3 can be found
as

L(z) = - | Ym0k Tarnxor-

z ok Opx(ar—k)

m=Md+k k=0,1,...,M—1.

Notice the paraunitary property of L(z), i.e., that L(z)L*(z~*) = L*(z*)L(z) =

I.
u; H(z) ‘é yi Fz) uiid

L(2)

Fig. 3. Vector-matriz equivalent structure



The system in Figure 3 is the standard model for a general estimation prob-
lem, where the goal is to design the causal linear time-invariant estimator F'(z)
to estimate the input sequence {u;_;} from the observations {y;}. The per-
formance of the estimator is evaluated according to an adopted criterion. One
common choice for such a criterion is the expected squared estimation error,
E(u; — 4;)*(u; — 4;), which is minimized by a minimum-mean-square-error
(MMSE) estimator. MMSE estimators assume that the disturbance sequences
are zero-mean stationary processes with known second-order statistics. How-
ever, in practice, the first and second order statistics of the underlying dis-
turbance are often not known exactly. One possible remedy for such a case is
the design of an estimator that would guarantee that small disturbances lead
to small estimation errors regardless of the statistical properties of the distur-
bances. This is, in fact, the defining property of H* estimators. An obvious
drawback is that since no assumption about the disturbances is made, H*
estimators may be over-conservative.

2.1 Paraunitary Filter Bank

For arbitrary analysis filters, one can solve the equivalent H* estimation prob-
lem and find the corresponding synthesis filters using a variety of methods such
as solving Riccati equations, performing J-spectral factorization, etc. (see, e.g.,
[13,17,24] and the references therein). However, we should mention that the
filter banks studied most extensively in the literature (especially in regards
to perfect reconstruction solutions) are orthogonal filter banks (see, e.g., [1]).
Such filter banks lead to paraunitary (or scaled paraunitary) polyphase anal-
ysis matrices. In the next section we shall specifically consider the design and
performance of such filter banks from the H*> estimation point of view. For
this particular choice of analysis filters, we shall derive a closed form expression
for the performance of the optimal synthesis filters in terms of our adopted
criterion for the reconstruction error.

3 H* Approach

With the polyphase representation of the filter bank, the design of the syn-
thesis polyphase matrix can be regarded as a special case of the estimation
problem formulation, where the observations {y;} are the noise corrupted sub-
bands signals. The induced transfer matrix mapping the unknown disturbances
u; and o~ 'v; to the estimation errors is

Tr(z) = [L(z) = F(2)H(2) —oF(2)], (3)



where o2 represents the intensity of the noise. The goal of H* estimation is
to choose a causal F'(z) to minimize the H* norm of Tr(z).

Definition 1 (The H* Norm) Let the transfer matriz Tr(z) map the input
sequence {u;} to the output sequence {y;}. Then the H® norm of Tr(z) is
defined as

A y
|T#(2)[lc = sup llyll: (4)
u€lz,u#£0 ||I,I||2

where [|ul|3 £ © owu; and 1% denotes the Hilbert space of all square-

summable discrete-time signals.

In other words, the H* norm of a stable LTI system is the square-root of
its maximum energy gain (more precisely, its /2-induced norm). Applied to a
filter bank system, we can state the design problem as follows:

Problem 1 (Optimal H* filter bank design) Given a polyphase analysis
matriz H(z), and a delay d > 0, find a causal polyphase synthesis matriz F(z)
that solves for

inf Yi(wicg — Wi—g)* (Wimg — Wi—g) 2 2 (5)
causalF(-) Zz llflli + o072 Ez V;Vi P

and find the resulting ~,pt.

We should further remark that the frequency domain characterization of the
H®* norm is given by

ITe(2)lo = sup o [Te(e)] = sup AJ2, [Tw(e)Ti(e)] (6)
0<w<L2m 0<w<L27

where &(-) denotes the maximum singular value of its argument.

There is also a related noncausal H* estimation problem, for which is very
easy to obtain the closed-form solution.

Theorem 1 (Noncausal H*-optimal Estimator) The optimal H* norm
for the problem

f Yilwg — ) (w — ;) A 5
FOO Y, wiw + 02y, vivy %




15 given by

1/2

Yo = L + 072 H () H(2)) 'L (7)) (7)

o0

while one corresponding noncausal H*-optimal solution is given by the Wiener
smoother,

F(2) = L@ H (=) [T + H)H ()] . 8)

The proof can be found in, e.g., [13]. Note, clearly, that v, < 7, since non-
causal solutions should outperform causal ones.

The optimal H* design with a causality constraint in place is hard to solve
and, unlike the noncausal case that we just saw, closed-form expression for
the causal H*-optimal estimators are generally not available. The common
approach is then to relax the optimization condition and solve for a related
suboptimal estimation problem. We can state it in the filter bank context as
follows:

Problem 2 (Suboptimal H* filter bank design) Given a v > 0, find a
causal synthesis polyphase matriz F(z) that guarantees

1T ()l = [IL(2) = F(2)H(2) —0F(2)]]|lo <7- (9)

We notice that it must hold that vy > 7yp-

For the sake of further discussion and for the completeness of this overview,
we now state the solution to the suboptimal H* estimation problem. The
solution, as we shall state in the following theorem, is based upon a procedure
referred to as J-spectral factorization. In this paper, we shall not dwell on J-
spectral factorization as a tool for solving H* optimization problems. Instead,
for implementation purposes, we refer the reader to [7] for useful pointers to
the relevant MATLAB tools. The purpose of the following theorem is to recall
the non-unique character of the solution to the H* optimization problem.

Theorem 2 (H* Suboptimal Filter Bank Design) Giveny > 0, a causal
F(z) achieving

[[L(z) = F(2)H(2) —0F(2)]llo <,



exists if, and only if, there exists a so-called J-spectral factorization of the form

[+ HEH (=) —H(z)L(=) ] _
| —L(z)H'(=7) =721+ L(z)L* (=)

[ L11 (Z) L12(Z)
| L21 (Z) LQQ(Z)

L11(2) Li2(2)

L21 (Z) L22(z) ]
L15(2) is strictly causal. If this holds, then all possible H*® estimators of level
v are given by

where is causal and causally invertible, L1} (2) is causal, and

F(2) = (L22(2)S(2) — La1(2)) (L11(2) — L12(2)S(2)) ",

where S(z) is causal and such that S(e’)S*(e’*) < I (S(z) is, in general,
highly non-unique transfer matriz). An important choice results from taking
S(z) =0, so that

Fcen(z) = _L21 (Z)Lfll(z)a

which is the so-called “central” filter.

The proof of Theorem 2 can be found in [13]. The important implication of the
Theorem 2 is that the solution to the H* estimation problem is highly non-
unique. This is due to the fact that the suboptimal H* problem is expressed
as a feasibility problem, rather than an optimization problem. We should
mention that the aformentioned MATLAB implementation tools yield the
central solution of Theorem 2.

3.1 A Special Case: Paraunitary Filter Banks

We notice that for the special case of a paraunitary analysis matrix H(z), i.e.,
when H(z)H*(2~*) = H*(¢~*)H(z) = I, we have from (7)

2
2 O-

Ts = 1402




and

1

= WL(Z)H*(Z_*)

Fy(2)

As we noted earlier, explicit closed-form expressions for 7,,, the minimum
achievable disturbance attenuation, are not always available when the causal
constraint on the synthesis filters is imposed. Nonetheless, for paraunitary
matrices H(z), an expression for v,, can be obtained. To this end, consider
the H* suboptimal problem of solving for a causal estimator F(z) which
achieves

I[L(z) = F(2)H(2) —o0F(2)]llo <7 (10)

Assuming a paraunitary H(z), (10) implies

[L(z) — F(2)H(2)] [L(2) — F(2)H(2)]" + 0 F(2)F" (2 ") <+

or, equivalently,

[L(z) = F(2)H(2)] H(z ") H(2) [L(2) = F(2)H(2)]" + 0*F(2) F*(27") < 7",

and, after obvious simplyfication,

*

[L(2)H(z*) = F(2)| [L()H (2 ") = F(2)] + 0*F(2)F*(z ") < 7*.

Since L(z)H*(z=*)H(z)L*(2~*) = I, we have

[L(z)H* (™) = F(2)] [L()H*(27") = F(2)] -

2
2
<7

2 * [ —x%
+0°F(2)F*(z )+1+02

which, upon factorization, becomes

L(z)H*(z™*) L(z)H*(z7*) i o?
HAR ) Arere)| [P ) A aeF
l V1402 Tt (z) V1+o? +o*F(z) +1+a2
Introducing (y')? = 72 — li%, the last inequality implies
1
——L(2)H*(27™") — V1 + 02?F <~ 11
| @) VT Tre)| < )

10

<72

2



Let us assume H(z) =Y _ h;z" and denote

T(z) = ﬁL(z)H*(z—*).

Our goal is to find a causal F'(z) which minimizes (24). Define the Hankel
operator associated with T'(z) = ¥°_t;z " as

tgt gt g---

h2+1 h2+2 h2+3 U
t_gt_g - he o R . .-
Hy = . _ d+2 . d+3
t_s: hy s

By Nehari’s theorem ([14]),

inf |[T() = VI+ 0 F()loe = 5(Hr) (12)

causalF(z)

Hence the achievable v-level in (6) is given by

2

+ % (Hr) (13)

2 _ o
f)/opt - 1 +02

Clearly, when in addition H(z) is FIR, if the delay d is greater than the length
of H(z), the system 7'(z) is going to be causal so that the Hankel operator is
zero. In that case,

2 o’
,Yopt - 1 +0_27

and the optimal solution is given by:

B 1
1402

F(z) L(z)H* (2 7). (14)

When H(z)H*(z~*) = I, this is same as Wiener smoother solution of (8).
Hence, when H(z) is paraunitary and FIR, a delay equal to the length of
H(z) suffices to obtain the same performance as the non-causal solution.

For IIR filters, or for delays less than the length of the FIR H(z), (13) offers a
way of relating the achievable v performance of the filter bank system to the

11



delay d. We should remark that computation of the Hankel norm of a trans-
fer matrix is straightforward and simply requires computing the maximum
singular value of a n X n matrix, where n is the transfer matrix’ McMillan
degree.

We can summarize the previous discussion with the following lemma:

Lemma 1 The achievable y-level for a signal reconstruction in a noisy pa-
raunitary filter bank is given by

2

o _
Vopt = 72 7*(Hr),
where Hr is the Hankel operator associated with T(z) = \/liLTL(z)H* (27%),

o’ is the noise variance and 5(-) denotes the mazimum singular value of its

argument.

3.2 The General Case: Minimum Delay

It is of interest to obtain those values of delay m that ensures that the perfor-
mance of the estimator exceeds that of doing no estimation. In other words:
of determining the value of delay that ensures v,,; < 1 (since F'(z) = 0 results
in v = 1). For a single block case, the authors in [7] report examples with
the minimum delay m needed to obtain values of 7,,; < 1. This “worst-case
non-estimability” has been studied in [15]-[16], from which it follows that that
choosing m greater than the number of non-minimum phase zeros of H(z) is
a sufficient condition for achieving 7,,; < 1. [In all the numerical examples
performed, it was observed that this condition is also necessary.]

Finally, once 7,,: has been obtained, the actual filters F'(z) can be found
via standard H* techniques. These techniques are based on a solution of a
Riccati equation, leading to the J-spectral factorization in state-space form.
The corresponding central solution is, in general, an IIR filter of the same
McMillan degree as [H(z) L(z)]", which could be rather high.

In practice, however, IIR synthesis filters are rarely used in filter bank applica-
tions. (One major reason is that finite-precision implementations may lead to
limit cycles, or other forms of numerical instability.) Therefore in the remain-
der of this paper we shall focus on FIR synthesis filters. This has one further
advantage: the H* design procedure can be reduced to a finite (rather than
infinite) dimensional semi-definite program, so that it is possible to effectively
optimize the filter weights over criteria in addition to the H* constraint.

12



4 FIR Synthesis Filters: State Space Formulation

In this section we shall derive the state-space representation of the transfer
function Tr(z) for FIR synthesis filters. Given this state-space representation,
we shall pose the H* optimization problem as a semi-definite programming
problem, which allows for efficient numerical solutions.

To obtain the state-space description of Tw(z), we first need to introduce the
state-space descriptions for H(z), F(z), and L(z).

The state space description of the polyphase analysis filters H(z), with noisy
subchannels, is given by

u;
Biv1 = Ap i+ By 0]
~ | v;
Ag Bg t
yi=Ch Bi+[Dy I]|
~~ ~—— V;

CVH DH

where (Ay, By, Ch, Dy) are the matrices in the state space realization of the
transfer function H(z), u; is the input sequence, and v; is the noise sequence.

The state space representation of the delay L(z) = z %I is given as

02><(2d72) 0252 Iy 0252 u;
Ni+1 = n; +
I(24-9)x (2d-2) O2d-2)x2 0@d—2)x2 O@d—2)x2 | | Vi

~~

AL BL

u_q=1[0 I|n;
——

Cr

We assume FIR synthesis filters, i.e.,

F(z2)=Fy+Fz '+ Fe 24+ . 4+ Fp 27D,

The state space structure of F(z) is of the form

0@d-2)x2  O2x2 PSS
Siv1 = & + Yi
Lyxo  Oax(24-2) 02a-2)x2
Ap Br

13



Wg=1[F...FL1&+ By y;
N————— N~~~

CF DF

To obtain the state-space structure for Tx(z), we group all the state variables
into a single state vector

X; = [ﬂz‘ Ua fz‘]T-

Let us denote

Ag 0 0 By
Ap = 0 A, 0|, Br=| By |,
BrCy 0 Ap BrDyg

CT:[—FocH CL —CF], DT:—F()DH.

It can be shown that the state space equations for Tr(2) then can be written
as

u;
Xi+1 = Arx; + Br
Vi
(15)
yi = Crx; + Drp i
Vi

We now invoke a standard representation of the H,, norm as a convex con-
straint parametrized over the matrices obtained from the state-space repre-
sentation. This can be stated as follows:

Lemma 2 (Bounded Real) Given any transfer function Tp(z) = Dr +
Cr(zI — Ar) !By, we have

[ TFlle0 <

14



if and only if the following LMI in X s feasible:

ALXAr  AYXBr CE

BYXAr BEXBp —~I DL | <0 (16)
CT DT —’)/I
X>0

Proof: The proof can be found in several places (see, e.g., [23], [24]).

Notice that for a given synthesis filter H(z), and a given delay d, once we
choose the order of F(z), the matrices Ay and Br are fixed. Thus, (16) is an
LMI (linear matrix inequality) in X, Cr and Dr (and hence in X and the
filter weights of F'(z), since these appear linearly in Cr and D7), and we can
re-state the suboptimal H* problem as the following semi-definite program
(SDP):

Problem 3 (SDP formulation of the H* reconstruction problem) Given
matrices Ar and Br in the state-space realization of Tr(z), solve

min
XaCTyDT

subject to (16).

This SDP can be solved using efficient algorithms such as the primal-dual
method ([18], [19]).

5 Mixed H?/H* Signal Reconstruction

As we discussed in Section 3 and at the end of the Section 4, the solution
to the H* estimation problem is highly non-unique. One way to remove this
non-uniqueness is to optimize some other criterion besides the H> feasibility
constraint. A natural choice for a criterion in a filter bank reconstruction
context is to minimize the H? norm of the transfer matrix Tw(2), i.e., || Tx||o-
We notice that when Ty is a matrix, then

=

ITF||2 = trace (TrT})? .

15



Thus the goal of unconstrained H? optimization in the finite horizon case is
to minimize the Frobenius norm of the matrix 7. In the infinite-horizon case,
we have

1
2

2w
1 jW\* (L Jw
I Tr|2 = <%O/trace [Tp(e’ )T (€’ )] dw)

By introducing an H* constraint to the H? optimization problem, we can ex-
ploit the non-uniqueness of the solution to the H* problem in order to improve
some other performance aspect of the estimator besides its obvious robustness.
This leads to the mixed H?/H> criterion (see, e.g., [20], [22], [21]). and re-
sults in the estimator with the best average performance among all estimators
achieving the same optimal y-level. Thus, the mixed estimator yields a smaller
H? norm than the one obtained from the aformentioned central solution to
the H* problem. We should also point out that the mixed estimator achieves

the optimal H? performance whenever the optimal H? estimator satisfies the
H* bound.

Problem 4 (Mixed H?/H> Signal Reconstruction) Given v > 0, find
a causal polyphase synthesis filter F(z) that minimizes the H® norm of the
transfer function Tp(z) = [L(z) — F(2)H(2) — oF(2)], subject to the H®
norm of Tr(z) being less than ~. In other words, find a causal F(z) that
satisfies

ming(s) || Tr(2)]]2
(17)
subject to ||Tp(2)]|oc < 7y

Note that, in the frequency domain, both the objective and the constraints
are convex. While it is possible to solve the above problem by sampling in the
frequency domain, this generally leads to an infinite-dimensional SDP, since
we will have an infinite number of constraints (one for each frequency).

Therefore, as in the pure H* problem, in order to obtain a finite-dimensional
SDP, we seek a way to restate the problem of finding the optimal H?/H®
solution in terms of its state-space representation. To this end, assuming the
state-space description of the transfer function 7x(z) in (15), we first state
a result on the representation of the H? norm as an LMI constraint in the
following lemma.

Lemma 3 (H? Norm bound) Given any transfer function Tp(z) = Dy +

16



Cr(zI — Ap)™' By, it holds that

ITrl5 < o

if and only if the following LMI in'Y and S s feasible:

ALY Ar—Y ALY By .
<
BLYAr BLYBr—1

y 0 CF

0 I DL|>0 (18)

Cr Dr S
Tr(S) —a? <0
Y >0

Proof: The proof can be found in [25], [26].

We now use results of Lemma 2 and Lemma 3 to formulate the mixed H?/H>
optimization problem as a SDP in state-space.

Problem 5 (SDP Formulation of the Mixed H?/H* Problem) The mized
H?/H®> signal reconstruction problem (17) is equivalent to the following SDP:

min o
Cr,Dt

subject to (16), (18)

Notice that v in (16) must be feasible, i.e., we must have

Y 2> || Tr|lo = Yopt-

Moreover, as in the SDP formulation of the pure H* optimization problem,
for a given delay and a given analysis filter length, the matrices Ay and By
are fixed and both (16) and (18) are LMIs in X, Y, S, a?, and Cr and Dy
(and hence in the filter weights of F'(z), since Cr and Dy are linear in these
weights).

17



6 Risk Sensitive Signal Reconstruction

In Section 5, we showed how to remove inherent non-uniqueness of the H sig-
nal reconstruction problem by additionally optimizing H? norm of the transfer
matrix Tr(z), which led to the mixed H?/H® signal reconstruction. In this
section, we show how to remove the non-uniqueness by searching for H* opti-
mal synthesis filters with minimum risk sensitive cost, yielding the minimum
entropy synthesis filters [13]. These filters minimize exponential-quadratic cri-
terion

1
Eexp(2—72||6||2) (19)

for some y2. Minimizing (19) is equivalent to minimizing

+2log [Eea:p(#nen?)] (20)

The criterion thus penalizes occasional occurrence of large values of reconstruc-
tion error more than frequent occurrence of small to moderate reconstruction
errors.

The design of risk-sensitive FIR synthesis filters can be posed as a finite di-
mensional convex optimization problem and thus efficiently solved using in-
terior point methods [18]. To show this, we first use state space description
introduced in Section 4 to give an alternative statement of the H* feasibility
condition. To this end, we proceed with stating Kalman-Yakubovich-Popov
(KYP) lemma:

Lemma 4 (KYP Lemma) Consider the observable pair (A,C). Then the

following two statements are equivalent

(1) Sy(z) >0 for all z = e ¢ \(F) where

QS| |GE—-A)"Cr

Sy(z) = | C(zl — A T
S* R I

(2) There exists a Hermitian Z such that

—Z +AZA* S+ AZC

S*+CZA* R+CZC*

(21)
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The proof of Lemma 4 can be found in [13]. Assume state-space description
of the error transfer matrix T (z) as in (15). Using Schur complement, it can
easily be shown that condition ||TF||« < 7 is equivalent to

I Tr(elv
, w(") >0, 0<w< 2.
Ti(e™) 21

Further, it can be shown (see, e.g., [15]) that

I Tp(e) 0S| |(e?1—A")""C*

= [C(ej“’f — A I]

Tr(e?¥)  ~2I S* R I
where
A=A Sz[c,;o],
0 I Dy (22)
C = R = .
B} Dj I

Therefore, from KYP Lemma we conclude that the set of y-level H* optimal
FIR filters is a convex set F, of all F'(z) for which there exists a hermitian Z
such that condition (21) is satisfied, with (A4, C, R, S) defined as in (22).

For the infinite horizon case, the risk sensitive synthesis filters design can be
formulated as

min — / log(det(7? — Tp(e7)Th(e7)))dw (23)

FEF,

The cost function in (23) is a convex function of the coefficients of the syn-
thesis filters. Moreover, since K, is a convex set, the minimization in (23) is a
convex optimization problem. It is possible to convert the cost function from
(23) into a more compact expression involving previously introduced state
space description as in [15]. This leads to the so-called “constrained analytical
centering” problem:

minimize — log(det(R + CZC*))

(24)
subject to (21).
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Notice that the optimization problem in (24) has a nonlinear convex barrier
function as the cost function and a convex linear matrix inequality (LMI)
constraint. It can thus be efficiently solved using interior point methods.

7 Simulation Results and Discussion

In this section, we illustrate the performance of the H* optimal FIR synthesis
filters given IIR analysis filters in a 2-band filter bank. As the H* approach
does not put any constraints on the choice of the analysis filters, we may choose
them arbitrarily. For simplicity, the fifth order Butterworth filters shown in
Figure 4 were chosen for the analysis filters. Furthermore, we compare the
average performance of the mixed H?/H® optimal reconstruction filters with
the central H* solution as obtained in [7].T [For this particular example, the
risk sensitive and the mixed H?/H®> optimal synthesis filters coincide.]

0
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Fig. 4. Frequency response of analysis filters

We have chosen the length of the FIR synthesis filters to be L = 16. The
frequency responses of the corresponding mixed H?/H® optimal synthesis
filters are shown in Figure 5.

Figure 6 shows the largest singular value of the error transfer function, T (e’*)
as a function of frequency. Although the area under this curve is not, strictly

' In general, the central H* solution is an IIR filter and in the following simulations
we approximate this IIR filter by an FIR filter obtained by truncation to a length
equal to the length of the mixed H?/H® solution.
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Frequency responses of H” optimal synthesis filters
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Fig. 5. Frequency response of the mixed H2/H® optimal synthesis filters, L = 16,
d=15,7="Yopt
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Fig. 6. [Tk (e'?)] vs. w, ¥ = Yopt

speaking, the H? norm of T (e’”) (since we also need to add the contribution
from the second singular value), it is somewhat indicative of the H? norm,
and hence the average performance of the filters. Figure 6 clearly shows that
the H2-optimal synthesis filter has the smallest area under the curve, which is
a result of the fact that, under given stochastic assumptions, the H?-optimal
synthesis filter have the best average performance among all possible causal
synthesis filters. On the other hand, the H*-optimal synthesis filters yield the

21



error spectra with the smallest peak. Thus the H*-optimal synthesis filters
(both central and mixed solution) guarantee the best worst-case performance
among all causal estimators.

It is also clear from Figure 6 that the H2-optimal synthesis filter can have poor
performance if the disturbance signals have high frequency components, since
the value of the error spectrum at these frequencies is large. This is indicative
of the fact that H?-optimal filters may have poor robustness properties. The
H< filters, on the other hand, have inferior average performance. The central
H*-optimal solution, in particular, has poor average performance, since the
curve of & [Tr(e’?)] is quite flat. The mixed H?/H® solution, however, by
virtue of its very construction, has an area under the & [Tr(e’*)] curve that
is comparable to that of the H2-optimal solution. Thus it achieves close to
optimal average performance, while being robust at the same time.

To compare the performance of the various filters for the signal reconstruction
application, we adopt the SNR of the input signal to the reconstruction error

([61)

— > u’ (k)
SR = 1000 (ot ).

Figure 7 compares the average performances (in terms of the above reconstruc-
tion SNR as a function of the delay, m) for the optimal mixed H?/H*, H?,
and central H* solution. The input signal and noise are modeled as white se-
quences yielding subband signal-to-noise ratios of 0dB. Thus SN R, measures
the improvement with respect to 0dB obtained from performing reconstruc-
tion. As can be seen from Figure 7, the mixed H?/H® optimal reconstruction
filters are on average slightly outperformed by the H? optimal reconstruction
filters. The average performance of the filters obtained from the central H>
solution, however, is significantly worse than that of either the H? or mixed
H?/H® one. As mentioned earlier, this is clearly expected from Figure 6.

Finally, Figure 8 compares the worst-case performances (again in terms of
the reconstruction SNR as a function of the delay, m) for the optimal mixed
H?/H*, H? and central H* solution. Here, strictly speaking, the perfor-
mances are not really “worst-case”, but rather those that are obtained from
input and noise signals that have most of their frequency components at fre-
quencies where & [T (e7%)] is large — it is therefore only indicative of the worst-
case performance. As can be seen, the central H*°-optimal and mixed H?/H-
optimal filters significantly outperform the H?-optimal filter, in terms of the
worst-case performance.?

! 'We should mention, in passing, that for large values of delay, m, the average and
worst-case performances of the H?- and H*®-optimal filters are close, since it is well
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Fig. 7. SNR, vs. m with white noise input disturbance

=

£ o5 _ =~ " worst-case performance E
]
o4 _ B
P
-05F ¥ i
P
.
.
_1 |- - - 4
.
.
-7 - HIH”
-1.5¢ N H
+ H” central

-2 1 Il Il Il Il Il T

3 4 5 6 7 8 9 10 11

Fig. 8. SNR, vs.m for worst-case input and noise signals.

In summary, the mixed H?/H>-optimal filter appears to achieve the best of
both worlds: it has average performance comparable to that of the H2-optimal
solution, while it significantly outperforms this filter in terms of the worst-case
performance.

known that the noncausal H?- and H*-optimal solutions coincide.
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8 Summary

The design of multirate filter banks often assumes that the subbands of the
filter bank are noise free. However, quantization and encoding cause the cor-
ruption of the signal in the subbands and may thus significantly deteriorate the
reconstructed signal. Moreover, the statistical properties of such mechanisms
are often hard to determine so that statistical methods (such as the Kalman
filter) for reconstructing the corrupted signal are not always applicable.

In this paper, we have attempted to address the signal reconstruction prob-
lem from an H* estimation point of view, which provides robustness against
statistical uncertainty. We give an explicit solution for the case of paraunitary
analysis filters. Exploiting the non-uniqueness of the H* solution, we design
synthesis filters which both satisfy an H* bound and optimize for the aver-
age performance, yielding the so-called mixed H?/H® optimal solution to the
reconstruction problem. The general solution to the H*-optimal signal recon-
struction problem is an IIR synthesis filter, which may be of a high order and
thus difficult to implement. To alleviate these implementation issues, we have
further restricted the synthesis filters to be FIR. This enabled us to state the
design problem as one of convex optimization (in particular, a semi-definite
program) for which efficient numerical algorithms exist.
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