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Abstract

The sum rate capacity of the multi-antenna broadcast channel has recently been computed.
However, the search for efficient practical schemes that achieve it is still ongoing. In this pa-
per, we focus on schemes with linear preprocessing of the transmitted data. We propose two
criteria for the precoding matrix design: one maximizing the sum rate and the other maximiz-
ing the minimum rate among all users. The latter problem is shown to be quasiconvex and is
solved exactly via a bisection method. In addition to precoding, we employ a signal scaling
scheme that minimizes the average bit-error-rate (BER). The signal scaling scheme is posed
as a convex optimization problem, and thus can be solved exactly via efficient interior-point
methods. In terms of the achievable sum rate, the proposed technique significantly outperforms
traditional channel inversion methods, while having comparable (in fact, often superior) BER
performance.

Index Terms: Multi-antenna broadcast channel, convex problem, quasiconvex problem, bisec-

tion method, interior-point method

1 Introduction

Recently, the achievable limits of performance of multi-antenna broadcast channels have been

intensively studied (see, e.g., [1], [2], and the references therein). In [3], [4], non-linear techniques

that attempt to approach those limits have been considered. However, these schemes are often

computationally prohibitive when the number of transmit antennas is large. In this paper, we

limit ourselves to linear data preprocessing at the transmitter and, under such a constraint, find

∗This work was supported in part by the National Science Foundation under grant no. CCR-0133818, by the Office
of Naval Research under grant no. N00014-02-1-0578, and by Caltech’s Lee Center for Advanced Networking.

1



a precoding scheme maximizing the sum-rate of the broadcast channel. We also consider linear

precoding schemes that maximize the minimum rate among the users. The latter problem is shown

to be quasiconvex and is solved exactly using efficient interior point methods. In addition to the

precoding, we minimize the average BER among the users by performing an appropriate signal

scaling. The best performance is obtained when the optimal preprocessing and signal scaling are

combined.

We assume a standard system model for the broadcast channel with M transmit antennas and

M users, described by

r = Hs + w, (1)

where H is an M × M fading channel matrix whose entries are i.i.d. zero-mean, unit variance,

complex Gaussian random variables, and w is an M × 1 vector whose entries are also i.i.d. zero-

mean, variance σ2 complex Gaussian random variables which represent additive noise at each

receiver. Furthermore, s is an M × 1 vector of signals sent from the transmit antennas, and r is an

M × 1 vector whose components are the received signals at each user. The transmitted vector s is

assumed to be obtained by linear preprocessing of the information vector u, i.e. s = kGu, where

u =
[
u1, u2, ..., uM

]T
, ui is the symbol intended for the i-th user, 1 ≤ i ≤ M , and where k is a

scaling coefficient which ensures that the power constraint is satisfied.

We organize the paper in the following way; first in Section 2 we propose two possible schemes

for designing the preprocessing matrix G. In Section 3, we propose a possible scheme for deter-

mining the optimal value of the scaling coefficient k under the constraint of linear preprocessing

at the transmitter. In Section 4, we describe how to combine the schemes from Sections 2 and 3.

Finally, in Sections 5 and 6 we give simulation results, a brief discussion and several conclusions.

Preliminary version of this paper will appear in [10].

2 Finding optimal preprocessing matrix G

In this section, we find the optimal preprocessing matrix G assuming an average transmit power

constraint, E‖s‖2 = 1. Without loss of generality, we will assume that Euu
∗ = I . Then
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E‖Gu‖2 = Etr(G∗Guu
∗) = tr(G∗G) and thus k = 1/

√
tr(G∗G). Hence, from (1) we obtain

r =
HGu√
tr(G∗G)

+ w. (2)

The matrix G in (2) should be designed to optimize the performance of the overall system in

terms of both the rate as well as the bit error rate. Often encountered in the literature is the solution

employing a regularized pseudo-inverse of the channel matrix H , i.e., G = H ∗(βI + HH∗)−1,

where the coefficient β is typically chosen to maximize the signal-to-interference and noise ratio

(SINR) (see, e.g., [4]). However, optimizing for SINR does not necessarily imply that the total

sum rate will be maximized. This justifies the search for a better choice for the matrix G.

We consider two optimization criteria for the design of the preprocessing matrix G. First, we

maximize the total sum rate over the space of all M × M complex matrices G. As we shall see,

this optimization results in a strategy where at each channel use, a subset of users is chosen and

data transmitted only to those users. Second, we consider the problem of optimal preprocessing

that maximizes the minimum rate among all the users. Extensive simulations imply that the best

BER performance of the system is achieved when the two strategies are combined, i.e., when a

subset of users is selected and then the minimum rate among the users in that subset is maximized.

2.1 Maximizing the sum rate over G

We assume that each user treats the interference as noise. Therefore the sum rate of the broadcast

channel (2) is given by R =
∑M

m=1 log

(
1 +

|Pp HmpGpm|2
σ2tr(G∗G)+

P
n6=m|Pp HmpGpn|2

)
. The optimal choice

for the matrix G is the solution to the optimization problem

max
G

R (3)

A closed-form analytic solution to (3) does not appear easy to find and thus we solve it itera-

tively. Before proceeding any further, we will find it useful to define numm =
∣∣∣
∑M

p=1 HmpGpm

∣∣∣
2

,

and denm = σ2tr(G∗G) +
∑M

n=1,n6=m

∣∣∣
∑M

p=1 HmpGpn

∣∣∣
2

. The following lemma gives a necessary

condition for the optimal G.
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Lemma 1. Denote ∆ = diag( (HG)11

den1
, .., (HG)ll

denl

, ..., (HG)MM

denM

) and D = diag( num1

den1(den1+num1)
, ...,

numl

denl(denl+numl)
, ..., numM

denM (denM+numM )
), Then any G which is solution of (3) is of the form G =

((σ2trD)I + H∗DH)−1H∗∆.

Proof. It is sufficient to show that ∂R
∂Gkl

= 0 ⇒ G = ((σ2trD)I + H∗DH)−1H∗∆. It is straight-

forward to show that ∂R
∂Gkl

=
Hlk(HG)∗

ll

denl

−
∑M

m=1
nummHmk(HG)∗

ml

denm(numm+denm)
−
∑M

m=1
σ2G∗

kl
numm

denm(denm+numm)
.

Setting each of these derivatives to zero, we obtain H∗∆ − H∗DHG − (σ2trD)G = 0, or equiv-

alently G = ((σ2trD)I + H∗DH)−1H∗∆. This implies that ∂R
∂Gkl

= 0 ⇒ G = ((σ2trD)I +

H∗DH)−1H∗∆, which concludes the proof.

Using Lemma 1, we state the following iterative algorithm for solving (3).

D0 = I, ∆0 = I, i = 0

Repeat

1. Gi = ((σ2trDi)I + H∗DiH)−1H∗∆i

2. numm =
∣∣∣
∑M

p=1(HGi)mm

∣∣∣
2

, denm = σ2tr(G∗
i Gi) +

∑M

n=1,n6=m

∣∣∣
∑M

p=1(HGi)mn

∣∣∣
2

3. Di+1 = diag( num1

den1(den1+num1)
, ..., numl

denl(denl+numl)
, ..., numM

denM (denM+numM )
),

4. ∆i+1 = diag( (HGi)11

den1
, .., (HGi)ll

denl

, ..., (HGi)MM

denM

), i=i+1

end

We refer to using the matrix G obtained from the previous iterative procedure as Method 2.1.

Since H∗((σ2trD)I + HH∗)−1 = ((σ2trD)I + H∗H)−1H∗, the initial value G0 coincides with

the one obtained by the regularized pseudo-inverse (see, e.g., [4]). Simulation results presented

in following sections imply that such a choice of initial value leads to an iterative process that

converges after a fairly small number of iterations (roughly 15 on average).

2.2 Maximizing the minimum rate over G

Instead of maximizing the sum rate, one may demand that the worst (active) user gets as large rate

as possible. This criterion leads to the following optimization problem

max
G

min
i

log

(
1 +

|(HG)ii|2
σ2tr(G∗G) +

∑
j,j 6=i |(HG)ij|2

)
. (4)
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The previous problem (or problems similar to it) have been studied and various algorithms for

solving it have been suggested throughout the literature (see, e.g. [5, 6, 7, 8]). Here we suggest

another way of solving it based on interior point methods. Define B = HG. Then (4) can be

written as

max
B

min
i

|Bii|2
σ2tr(B∗H−∗H−1B) +

∑
j,j 6=i |Bij|2

. (5)

Without loss of generality, we can assume that the optimal Bii are real and positive. Let vec(B)

denote a vector comprised of columns of matrix B. Then we can write σ2tr(B∗H−∗H−1B) =

σ2
vec(B)∗(I ⊗ H−∗H−1)vec(B). Denoting F = I ⊗ H−∗H−1, x =


<(vec(B))

=(vec(B))


 and T =


<(F ) −=(F )

=(F ) <(F )


, we have σ2tr(B∗H−∗H−1B) = σ2

x
∗Tx. Define 2M 2 × 2M2 matrix K(ij)

with K
(ij)
(j−1)M+i,(j−1)M+i

= K
(ij)
M2+(j−1)M+i,M2+(j−1)M+i

= 1 and zeros otherwise. Combining all

of the above, (5) can be rewritten as

min
x

max
i

x
∗Wix

x2
(i−1)M+i

subject to x(i−1)M+i > 0, 1 ≤ i ≤ M

xM2+(i−1)M+i = 0, 1 ≤ i ≤ M, (6)

where Wi = σ2T +
∑M

j=1,j 6=i K
(ij). Note that Wi is positive semidefinite because matrices T and

K(ij) are positive semidefinite. To solve (6), we first prove the following lemma.

Lemma 2. The optimization problem (6) is quasiconvex.

Proof. We first need to prove that function fi(x) = x
∗Wix

x2
(i−1)M+i

is quasiconvex. We can write fi(x) =

gi(x)
x(i−1)M+i

, where gi(x) = x
∗Wix

x(i−1)M+i
. Let us show that the function gi(x) is convex for x(i−1)M+i > 0.

To do so, we need to show that gi(θx + γy) ≤ θgi(x) + γgi(y), where θ + γ = 1, 0 ≤ θ, γ ≤ 1.

This is equivalent to showing that y(i−1)M+i

x(i−1)M+i
x
∗Wix − 2x∗Wiy +

x(i−1)M+i

y(i−1)M+i
y
∗Wiy ≥ 0. Since Wi

is symmetric and positive semidefinite, it can be written as Wi = R∗
i Ri. From Cauchy-Schwartz

inequality it follows that x∗Wiy = x
∗R∗

i Riy ≤ ||Rix||2||Riy||2 =
√

x∗Wixy∗Wiy, from which it
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follows that

y(i−1)M+i

x(i−1)M+i

x
∗Wix−2x∗Wiy+

x(i−1)M+i

y(i−1)M+i

y
∗Wiy ≥

(√
y(i−1)M+i

x(i−1)M+i

x∗Wix −
√

x(i−1)M+i

y(i−1)M+i

y∗Wiy

)2

≥ 0

therefore, function gi(x) is convex for x(i−1)M+i > 0. Since the ratio of convex and linear function

is qausiconvex and since pointwise maximum of quasiconvex functions is quasiconvex (see, e.g.,

[9]) we conclude that the objective function in (6) is quasiconvex.

Remark: When preparing the final version of this paper, we became aware of related work [8],

where the authors deal with a similar problem. There they present another proof of quasiconvexity

of (6), using different approach.

We use the bisection method combined with the interior-point method to solve (6). Once we

find the optimal x in (6), we determine B such that x =


<(vec(B))

=(vec(B))


. Then we calculate G as

G = H−1B. We refer to using the matrix G found by the aforementioned procedure as Method 2.2.

The technique described in Subsection 2.1 maximizes the sum rate of the multi-antenna broad-

cast system under the linear data processing constraint. The individual rates resulting from the

maximization (3), however, may differ significantly. This disparity is inherent to the optimization

(3) since (3) essentially denotes the maximization of ‖v‖1 (i.e., norm-1 of the vector v). It is

well known that in the process of maximizing the norm-1 of a vector, a few components of the

vector are suppressed while the remaining ones are boosted up. Thus in Subsection 2.1 the sum

rate is maximized at the expense of the weakest few users which are ignored. [Note: Transmitting

data over many channel uses provides fairness.] The symbols intended for the remaining strong

users may be modulated with higher modulation schemes, thus overcompensating for the sum rate

seemingly lost by transmitting only to a subset of users.

On the other hand, as a result of the disparity among the individual rates (and hence among the

SINRs and BERs of individual users), the average BER of the system may suffer. To compensate

for the loss in average BER, we employ Method 2.2 on the subset of strong users selected for

transmission by Method 2.1. We formalize this combination of Method 2.1 and Method 2.2 in the
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following way

1. obtain G using Method 2.1

2. denote the set of indices which correspond to zero-columns of G by I0

3. denote a submatrix of H comprised of rows 1 ≤ i ≤ N , i /∈ I0 by Hsub

4. Apply Method 2.2 on Hsub to obtain B; set G = H∗

sub(HsubH∗

sub)−1B.

As it turns out, maximizing the minimum individual rate among the selected strong users results

in fairly equal (and high) SINRs. We refer to the previous combination of Method 2.1 and Method

2.2 as Method 2.

3 Finding the optimal scaling coefficient k

Recall our basic model (1). Let us assume that the preprocessing matrix G is obtained by simple

inversion of the channel matrix H , i.e., G = H−1. In this section, we propose a way of scaling the

magnitudes of the information signal u so as to minimize the average BER. [Note that in Section

4 we will show how to employ this signal scaling scheme to the optimal G obtained in Section 2.]

To minimize the average BER, one needs to maximize the minimum SINR at receivers. To

this end, in [4] authors suggest perturbation of information signals by appropriately translating

original M -QAM signal constellation in complex space. In this section we suggest a similar idea

but focus on perturbations (in fact, radial scaling) of M -PSK constellation. An advantage of con-

straining ourselves to PSK constellations is in the simplicity of decoding. Since the signal points

are perturbed only radially, rather than vertically or horizontally as in QAM, the angular informa-

tion has not changed. Therefore, no side information about the signaling scheme (i.e., the nature

of the perturbation) is needed at the receiver. In other words, each user’s decoder makes simple

angular decisions. The decoder is no longer necessarily ML but it is efficient and practical since

it requires no additional information from the transmitter. [Our simulation results indicate that the

performance of this sub-optimal ML decoder is almost identical to the optimal one.]
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By fixing G = H−1 and representing u via its phases and magnitudes, we can rewrite (1)

as r = kHH−1Φum + w, where u = Φum and Φ is the diagonal matrix of phases of u, and

where um is the vector of magnitudes of u. Note that due to the use of a PSK modulation scheme,

the information to be transmitted is contained in Φ. We are concerned with designing optimal

magnitudes of the signals, i.e., designing the um. The relevant power constraint now becomes the

one on instantaneous, rather than average, transmission power. This means that the corresponding

form to (2) can be written as

r =
HH−1Φum√

tr(u∗
mΦ∗H−∗H−1Φum)

+ w. (7)

Now we want to optimize scaling coefficient while keeping magnitudes of u greater or equal to 1.

This will result in magnitudes of the components of the received vector r that are at least as large

as if there were no signal scaling at all. This requires solving the following optimization problem

min u
∗
mΦ∗H−∗H−1Φum

subject to umi
≥ 1, 1 ≤ i ≤ M (8)

This problem is convex and can easily be solved exactly by a host of numerical methods (see, e.g.,

[9] and the references therein). More importantly, we can show that the solution of this problem is

equal to the solution to

max
um1 ,um2 ,...,umM

min
i

u2
mi

u∗
mΦ∗H−∗H−1Φum

subject to umi
≥ 1, 1 ≤ i ≤ M, (9)

which is the problem of maximizing the minimum SINR in system (7). Denoting by ûm the

solution to (9), we see that the transmitted signal should have the form of s = H−1Φdum√
dum

∗Φ∗H−∗H−1Φdum

.

We refer to this signal scaling policy as Method 3. As said earlier, although the magnitudes of

optimal u will generally be different from 1, the receivers will still be able to decode the received

signals by considering their angle, since s has the same phase matrix Φ as u.
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4 Combined method

In Section 3, we employed the signal scaling scheme to optimize the BER in a system that uses

G = H−1 for data preprocessing. In this section, we combine the signal scaling with the optimal

preprocessing matrices G found in Section 2. This is done in stages. In particular, assume that

Method 2.1 is used to find G which maximizes the sum rate of the channel. Then to minimize

the average BER of the users, we employ signal scaling for such G. Instead of solving (8) (which

assumed G = H−1), we now need to solve optimization

min u
∗
mΦ∗Ĝ∗ĜΦum

subject to umi
≥ 1, 1 ≤ i ≤ M (10)

where Ĝ is G found by Method 2.1. The above problem is convex and thus can be solved exactly

via efficient convex optimization techniques. If we denote solution of (10) by ûm, the optimal

transmitted signal s is given by s =
bGΦdum√

dum
∗Φ∗ bG∗ bGΦdum

. We refer to the above algorithm as Method 4.

5 Simulation results

In this section we briefly discuss simulation results of the suggested methods for linear prepro-

cessing. Figures 1 and 2 show that Method 2.1 performs at least as good as the regularized pseudo

inverse in terms of BER while, due to the use of a higher modulation scheme, provides significantly

higher sum rate. Figure 1 also shows that Method 2, due to the additional minmax optimization

of SINRs, performs even better than Method 2.1 in terms of BER. Figure 3 shows that the sim-

ple scaling strategy gives a better BER performance than the pseudo inverse. Finally, Figures 4

and 5 show that both, Method 2 and Method 4, outperform the pseudo inverse in terms of both,

the BER and the sum rate. All plots were done using uncoded sequences of information bits at

the transmitter modulated with symbols from standard PSK constellations as denoted below the

figures.
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6 Conclusion

In this paper, we have proposed two criteria for the design of the precoding matrix in a multi-

antenna broadcast system. First, we maximized the sum rate, and then we showed how to maximize

the minimum rate among all users. The latter problem is shown to be quasiconvex and solved

exactly. The precoding techniques are constrained to linear preprocessing at the transmitter. In

addition to precoding, we have employed a signal scaling scheme that minimizes the average BER

of the users. The signal scaling scheme is posed as a convex optimization problem, and solved

exactly via interior-point methods. Finally, we have combined the precoding with signal scaling.

The combined scheme can be efficiently applied in practice. In terms of the achievable sum rate, the

proposed technique significantly outperforms traditional channel inversion methods, while having

comparable (in fact, often superior) BER performance.
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Figure 1: Comparison of BER, M=6 antennas/users, 8PSK-Method 2, 8PSK-Method 2.1, 4PSK-
regularized pseudo inverse
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Figure 2: Comparison of rates, M=6 antennas/users, 8PSK-Method 2, 8PSK-Method 2.1, 4PSK-
regularized pseudo inverse
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Figure 3: Comparison of BER, M=20 antennas/users,8PSK-Method 3, 8PSK-regularized pseudo
inverse
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Figure 4: Comparison of BER, M=6 antennas/users, 16PSK-Method 4, 16PSK-Method 2,8PSK-
regularized pseudo inverse
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Figure 5: Comparison of rates,M=6 antennas/users, 16PSK-Method 4, 16PSK-Method 2,8PSK-
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