

EE225A Lecture 21

Compressed Sensing Potpourri

Jon Tamir

Logistics

1. Problem Set 5 – Now Due Friday

1. Problem Set 6 Out Soon

Problem on board

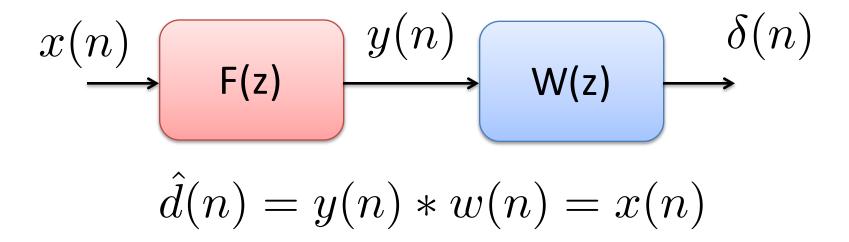
Particle Filtering: Example 7.4.2

Outline for Today

- 1. Application of LMS System Identification
- 2. Introduction to Modern Compressed Sensing Topics
 - » Phase Transition Curves
 - » Low Rank Matrix Recovery
 - » Low Rank + Sparse
 - » Multi-scale Low Rank
 - » Dictionary Learning

LMS and System ID

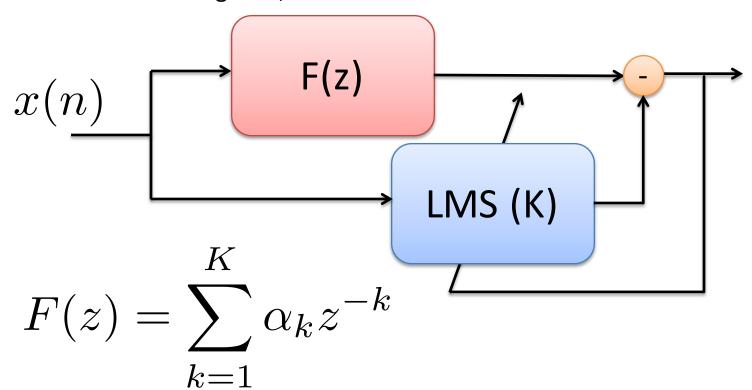
- » LMS: Stochastic gradient descent for Wiener-Hopf Equations
- » Special Case: Wiener Filter Deconvolution



» Need to know F(z)...

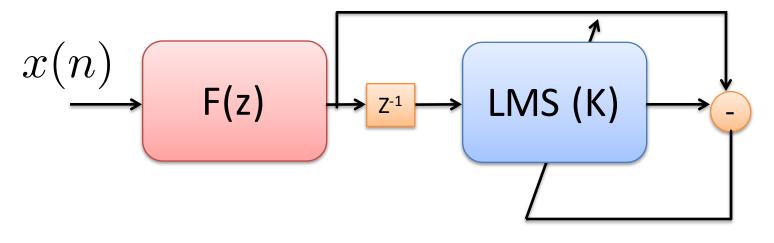
LMS and System ID

- » If we don't know F(z), we can use LMS to learn it
- » Case 1: F(z) is FIR(K), have access to input
 - » At convergence, error should be zero



LMS and System ID

- » If we don't know F(z), we can use LMS to learn it
- » Case 2: F(z) is an AR(K) process, do not have access to input
 - » At convergence, error should equal the innovation



$$F(z) = \frac{1}{1 - \sum_{k=1}^{K} \alpha_k z^{-k}}$$

Phase Transition Curves

- » Recall: Compressed Sensing Recipe
 - 1. Signal is k-sparse
 - 2. Incoherent and sufficient sampling
 - 3. Non-linear reconstruction
- » Goal: Recover x exactly from measurements y

$$y = Ax$$

$$y \in \mathbb{R}^n$$

$$x \in \mathbb{R}^N$$

$$||x||_0 \le k$$

» Setup:

$$A \sim \mathcal{N}(0, 1/n)$$

$$n/N o \delta$$
 (undersampling fraction) $k/n o
ho$ (measure of sparsity)

Phase Transition Curves

- » Goal: Recover x exactly from the measurements y
- » Question: When will compressed sensing fail?
 - » Depends on $\,
 ho\,$, $\,\delta\,$, and the specific algorithm
- » For l1-minimization (as in homework),

(convex relaxation of true problem of interest)

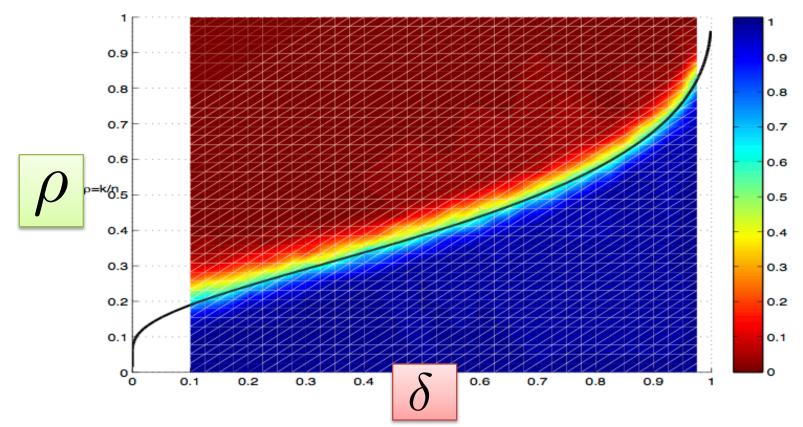
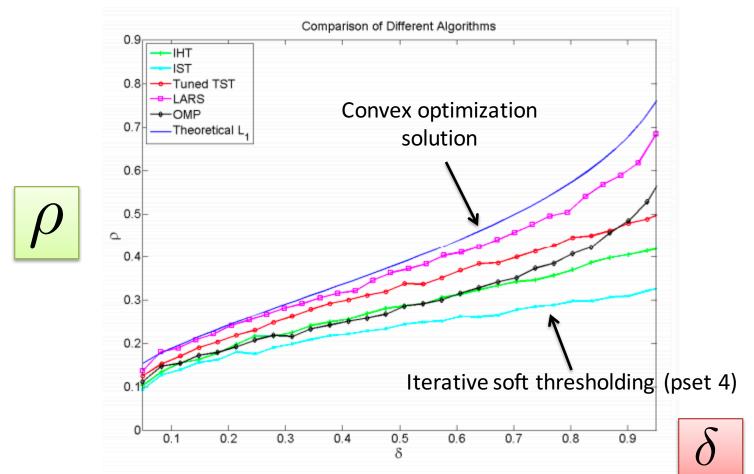


FIGURE 3. Compressed Sensing from random Fourier measurements. Shaded attribute: fraction of realizations in which ℓ_1 minimization (1.2) reconstructs an image accurate to within six digits. Horizontal axis: undersampling fraction $\delta = n/N$. Vertical axis: sparsity fraction $\rho = k/n$.

Best Phase Transition

- » Each reconstruction algorithm has a sharp phase transition curve
 - » Below the curve is exact recovery! Above the curve is total failure!



Beating IST: Approximate Message Passing

» Compressed Sensing LASSO: I1 minimization

(P2) minimize
$$\frac{1}{2}||y - Ax||_2^2 + \lambda ||x||_1$$

» Simple Algorithm: Iterative Soft Thresholding

$$x^{(i+1)} = \eta_i \left(A^T z^{(i)} + x^{(i)} \right)$$
$$z^{(i)} = y - A x^{(i)}$$

- » Converges to (P2), but only to (P1) in certain cases...
- » Computationally cheap

Beating IST: Approximate Message Passing

- » Approximate Message Passing (AMP)
 - » Add a "correction factor" to error vector
 - » Correction term makes noise statistics look Gaussian at each iteration
 - » Sparse signal + Gaussian noise fits the sparse denoising assumptions

$$x^{(i+1)} = \eta_i \left(A^T z^{(i)} + x^{(i)} \right)$$

$$z^{(i)} = y - Ax^{(i)} + \frac{1}{\delta}z^{(i-1)} \left\langle \eta'_{(i-1)} \left(A^T z^{(i-1)} + x^{(i-1)} \right) \right\rangle$$

- » Converges to (P1)!
- » Still computationally cheap

$$\eta_i'(x) = \frac{\partial}{\partial s} \eta_i(x)$$

$$\langle u \rangle = \frac{1}{N} \sum_{j=1}^{N} u(j)$$

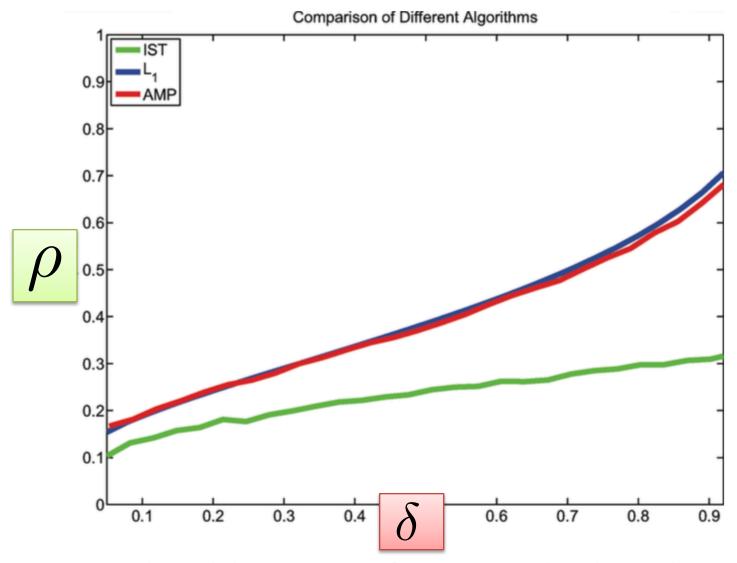
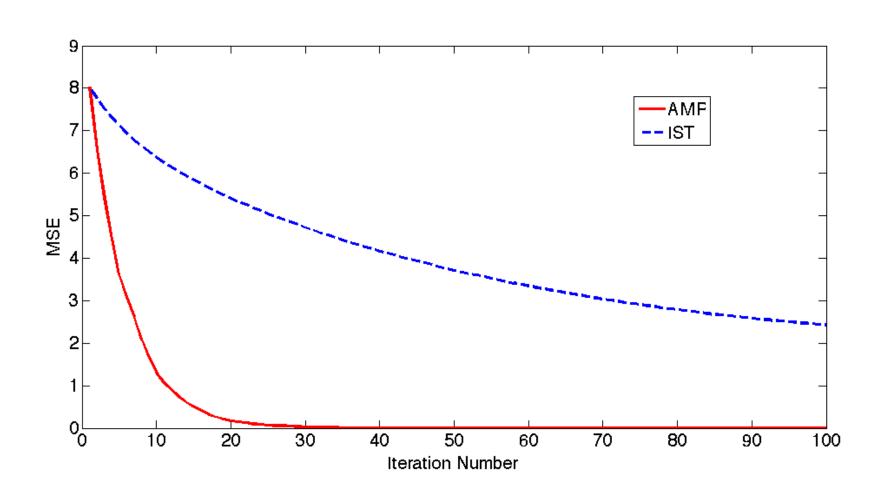


Fig. 3. Observed phase transitions of reconstruction algorithms. Red curve, AMP; green curve, iterative soft thresholding (IST); blue curve, theoretical ℓ_1 transition. Parameters of IST tuned for best possible phase transition (3). Reconstruction signal length N=1,000. T=1,000 iterations. Empirical phase transition is value of ρ at which success rate is 50%. Details are in *SI Appendix*.

AMP in Practice

```
% data gen
N = 1000;
n = 500;
delta = n/N;
k = 50:
% sensing matrix
A = 1/sqrt(n)*randn(n,N);
% signal
x = [zeros(N-k, 1); randn(k,1)]; x = x(randperm(N));
v = A*x;
for i=2:nitr
 % IST
 xts_ista(:,i) = SoftThresh(xts_ista(:,i-1) + mu_ist*A'*(y - A*xts_ista(:,i-1)), mu_ist*lambda_ist);
 mse_ista(i) = norm(xts_ista(:,i) - x);
 % AMP
 % calculate x {t+1}
 gamma_amp = xts_amp(:,i-1) + A'*zts_amp(:,i-1);
 tmp = sort(abs(gamma_amp), 'descend');
 lambdas_amp(i) = tmp(n);
 xts_amp(:,i) = SoftThresh(gamma_amp, lambdas_amp(i));
 % calculate z_{t+1}
 zts\_amp(:,i) = (y - A*xts\_amp(:,i)) + ...
      zts_{amp}(:,i-1)/n*sum(abs(gamma_amp) > lambdas_amp(i));
 mse_amp(i) = norm(xts_amp(:,i) - x);
```

AMP in Practice



Phase Transition Curves Summary

- » For a particular matrix A and reconstruction algorithm:
 - 1. Choose ρ, δ
 - 2. Monte Carlo simulation of many problem instances
 - 3. Count ratio of successes vs. total problem instances
 - 4. Repeat
- » Extensive theory for phase transitions
 - » Deep connections between compressed sensing and denoising
 - » Provable optimality of Approximate Message Passing
 - » (i.e. it's not all simulation)
- » Framework for testing other sparse models/algorithms

» This slide intentionally left blank.

Extending Sparsity

- » Original Compressed Sensing formulation
 - » Recover a sparse signal x from incoherent measurements y
- » Are there other notions of sparsity?
 - » Block-sparse vector
 - » Low rank matrix
 - » Permutation matrix
 - » Sign vector

General Notion of Sparsity

- » "Low-dimensional subspace embedded in high-dimensional signal"
- » Atomic Norm Decomposition
 - » Signal can be decomposed as a linear combination of building blocks
- » Sparse Vectors: linear combination of standard basis

$$\mathbf{x} = \sum_{i} c_i \mathbf{e_i}$$

» Low Rank Matrices: linear combination of rank-1 matrices

$$\mathbf{X} = \sum_{i} c_i \mathbf{u_i} \mathbf{v_i}^T$$

"Netflix Problem"

- » After you watch a cool movie or TV show, you rate the it on a scale of 1 to 5
 - » House of Cards: 5
 - » Orange is the New Black: 3
 - » Real World: 1
 - **»** ...
- » Based on your (and others') ratings, can I predict how you (and others) will rate a movie/show you haven't seen?

Collaborative Filtering

Movies

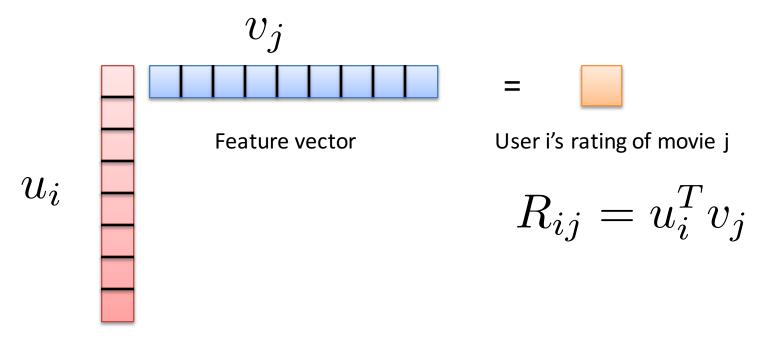
» Predict ratings for movies across all users

 $R \in \mathbb{R}^{m imes n} egin{bmatrix} 2 & 3 & ? & ? & 5 & ? \ 1 & ? & 4 & ? & 3 \ ? & ? & 3 & 2 & ? & 5 \ 4 & ? & 3 & ? & 2 & 4 \end{bmatrix}$ Users

- » Only know $\,R_{ij}\,$ for $(i,j)\in\Omega$
 - » Don't have ratings for every movie from every user

Low Rank Matrix Decomposition

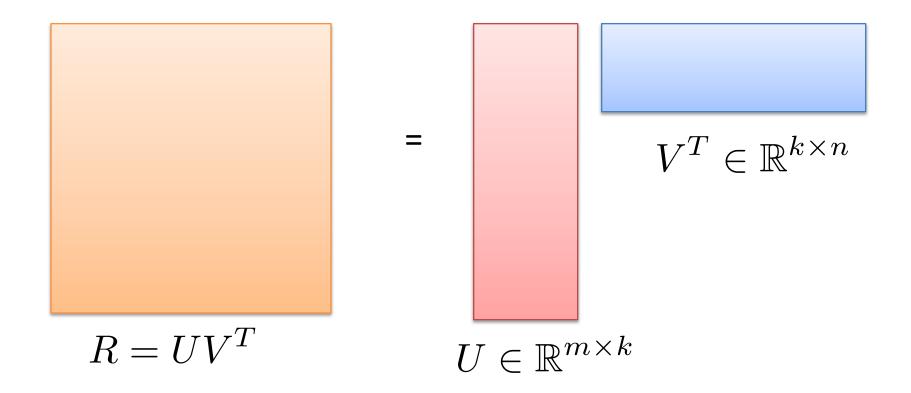
- » Can "explain" a movie rating by a small (k) number of features
 - » Actors, genre, storyline, length, year, ...
- » Each user has a preference for the features



User's interest in each feature

Low Rank Matrix Decomposition

- » Can "explain" a movie rating by a small (k) number of features
 - » Actors, genre, storyline, length, year, ...
- » Each user has a preference for the features
- » Matrix R is low rank, with rank k << m, k << n</p>



Low Rank Matrix Completion

» Given that the true R is low rank, find a matrix X that is low rank and agrees with R at the observed entries:

minimize
$$\operatorname{rank} X$$
 subject to $\mathcal{A}(X) = y$ $(X_{ij} = R_{ij} \ \ \forall (i,j) \in \Omega)$

$$y = \mathcal{A}(R)$$

$$\mathcal{A}(X) = \{X_{ij} : (i,j) \in \Omega\}$$

Low Rank Matrix Completion

» Given that the true R is low rank, find a matrix X that is low rank and agrees with R at the observed entries:

(P3)
$$\max_{X} ||X||_*$$
 subject to $\mathcal{A}(X) = y$

Convex Relaxation

$$||X||_* = \sum_i \sigma_i$$
 (sum of singular values)

Low Rank Matrix Completion

» How can we solve the low rank matrix completion problem?

» Intuition:

- » A low rank matrix has a small number of non-zero singular values
- » We see a linear mixture of these singular values (through SVD)
- » How about we apply IST on the singular values of X?

» POCS Algorithm:

2. Soft Threshold: $\hat{\Sigma} = S_{\lambda}(\Sigma)$

4. Enforce data consistency:

$$X_{ij} = R_{ij} \quad \forall (i,j) \in \Omega$$

When Does the Algorithm Work?

- » Matrix Restricted Isometry Property (RIP):
 - » An operator A satisfies Matrix-RIP if, for all X with rank X at most r,

$$(1 - \epsilon)||X||_F^2 \le ||\mathcal{A}(X)||_2^2 \le (1 + \epsilon)||X||_F^2$$

» (describes the incoherence of the measurement operator A)

» Theorem:

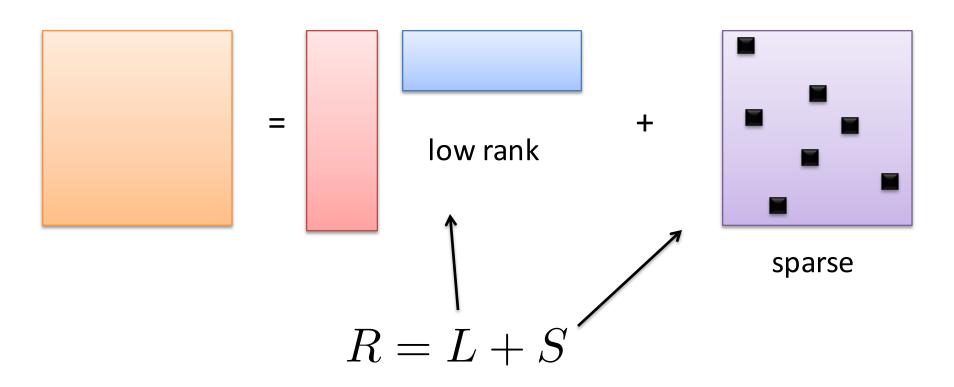
- » If X is rank-r, A satisfies Matrix-RIP, and y = A(x),
- » Then X will be the optimum of (P3)

» Uniqueness:

- » There are multiple matrices that satisfy the problem (P3), but only one will be low rank
- » Other Assumptions? (yes incoherence on rows/cols of R)

Sparse + Low Rank Matrix Decomposition

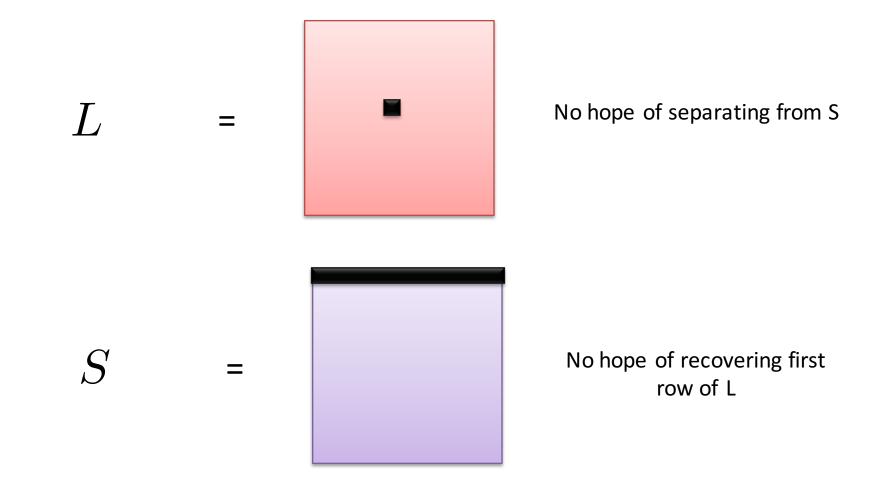
» Low rank matrix corrupted by sparse errors



- » Task: Given R, find L and S exactly
 - » (not well-defined in general)

Sparse + Low Rank Matrix Decomposition

» Base Cases



Sparse + Low Rank Matrix Decomposition

» Under certain assumptions, we can recover L and S through

minimize
$$||L||_* + \lambda ||S||_1$$

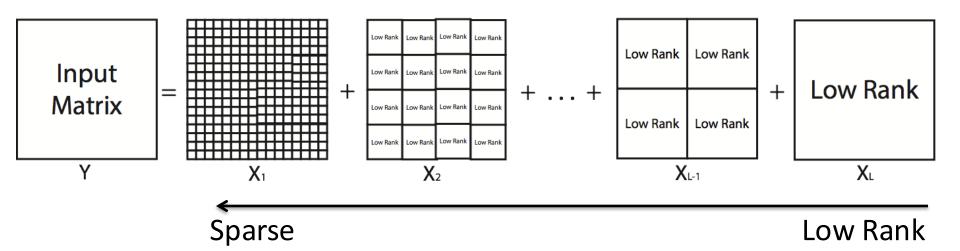
subject to $R = L + S$

Input Video

Low Rank + Sparse

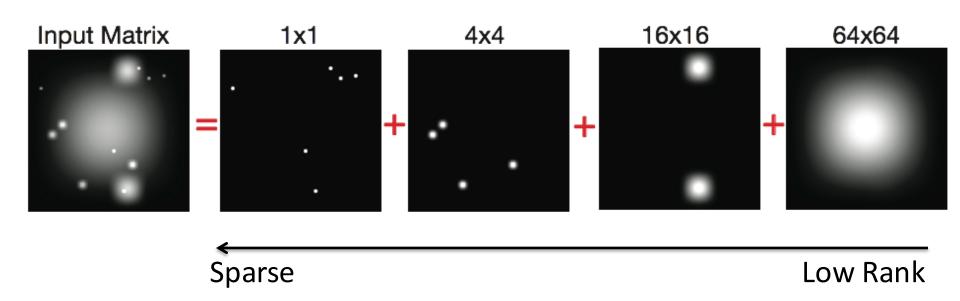
Beyond Low Rank + Sparse: Multi-scale Low Rank Modeling

- » Sum of matrices with increasing scales of correlation
 - » Exploit **all** scales of correlation



Beyond Low Rank + Sparse: Multi-scale Low Rank Modeling

- » Sum of matrices with increasing scales of correlation
 - » Exploit **all** scales of correlation



Input Video

Multi-scale Low Rank

Work by Frank Ong

Multi-scale Low Rank Decomposition

minimize
$$\sum_{i=0}^{L-1} \lambda_i \|X_i\|_{(i)}$$
 subject to $Y = \sum_{i=0}^{L-1} X_i$

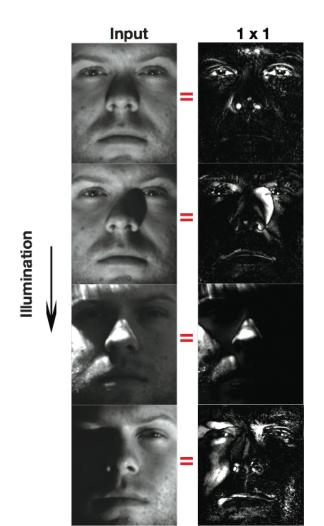
» POCS Algorithm:

- 1. Enforce block low rank for each X_i (Block-wise SVD + IST)
- 2. Enforce data consistency

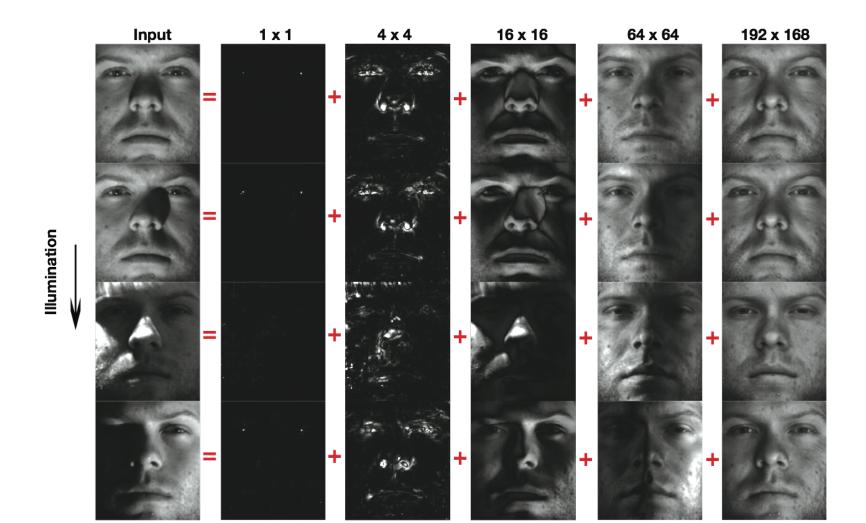
- » Given: face images with different illuminations
- » Want to remove shadows
- » Faces are low rank
- » Shadows are not

Work by Frank Ong

Low Rank + Sparse



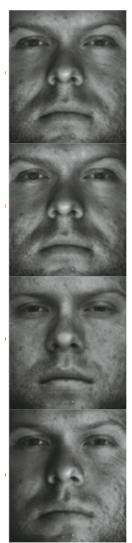
Multi-scale Low Rank



Input

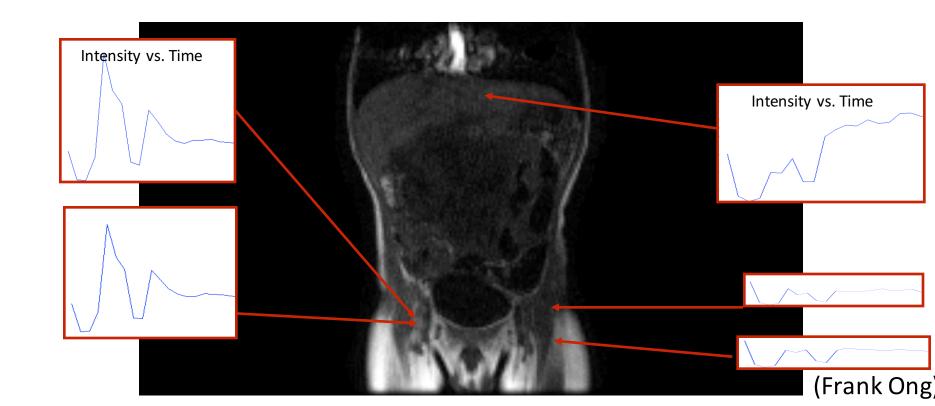
Low Rank + Sparse

Multi-scale Low Rank

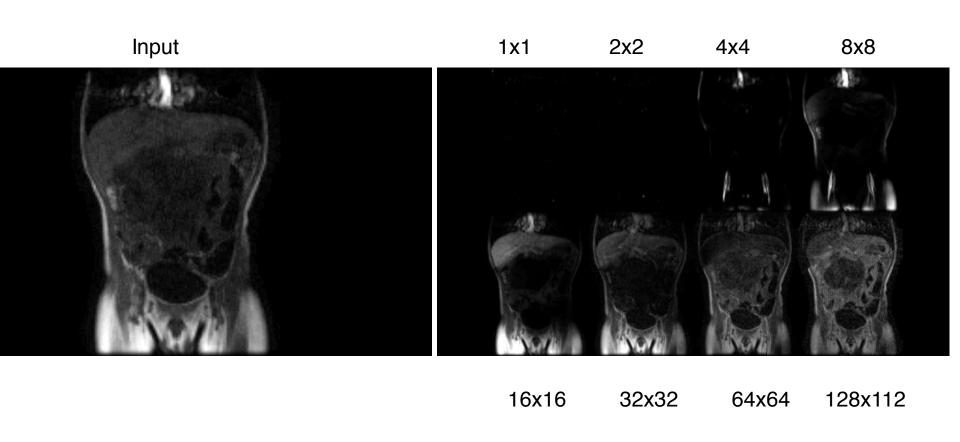


Application: Dynamic Contrast Enhanced MRI

- » Contrast agent injected into patient
- » A series of images are acquired over time
- » Different blood permeability gives different signature signal



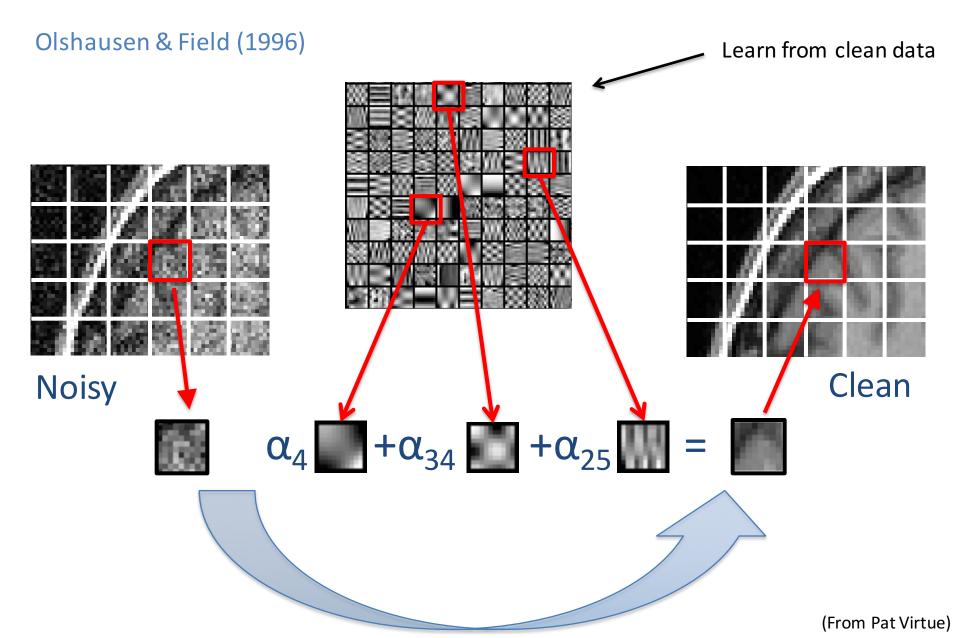
Application: Multi-scale Low Rank MRI



Dictionary Learning

- » So far, we always know how our signal is sparse
 - » Reverberation/communication systems: time domain
 - » Natural/medical images wavelet domain
 - » Low rank matrices singular values
- » What if we don't know how our signal is sparse?
- » **Dictionary Learning** *learn* a sparse representation
 - » Feed in many examples of signals from a class of interest
 - » Learn a sparse representation for all the signals in the class
 - » Often overcomplete representation more elements than unknowns

Dictionary Learning



Dictionary Learning Formulation

» Given training signals

$$\mathbf{Y} = egin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_N \end{bmatrix}$$

» Find (jointly) a dictionary D and coefficients X such that

$$Y = DX$$

- » Where x_i has at most k non-zero elements
- » Many ways to solve: MLE, MAP, alternating minimization, ...

K-SVD: State of the Art Dictionary Learning

Extension of K-means

- K-means: each signal is represented by a single cluster centroid
- » Vector Quantization: each signal is represented by a single cluster centroid, times a weight
- » K-SVD: each signal is represented by a linear combination of a small number of cluster centroids (atoms)

70 % missing pixels



Learned reconstruction MAE: 0.020035 RMSE: 0.055643

Average # coeffs: 3.5623 Average # coeffs: 3.9747 Average # coeffs: 4.0539 MAE: 0.032831

RMSE: 0.097571

Haar reconstructionOverComplete DCT reconstruction

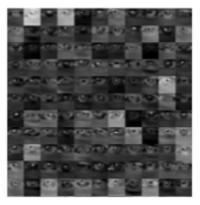
MAE: 0.025001 RMSE: 0.063086

Leveraging Non-stationary Statistics

Registration & local dictionary learning

Face compression

Bryt and Elad. JVCIR, 19(4):270 – 282, 2008.



PCA (10.27) K-SVD (6.45)

- 1. Register faces
- 2. Train different dictionaries at different locations
- 3. (e.g. eye)

Compressed Sensing Potpourri Summary

- » Compressed sensing theory is reaching maturity
 - » Large focus on specialized applications
- » Compressed sensing algorithms in active development
 - » AMP and generalizations
 - » Phase transition theory
- » More general notions of sparsity are still blossoming
 - » Deep connections to high-dimensional statistics
 - » Manifold learning, subspace clustering