EE225A Lecture 21
Compressed Sensing Potpourri

Jon Tamir

“Sparse plants on pumice plain, Mt Rainier” https://www.flickr.com/photos/jeffbottman/808868906 3/



Logistics
1. Problem Set 5— Now Due Friday

1. Problem Set 6 Out Soon



Problem on board

Particle Filtering: Example 7.4.2



Outline for Today

1. Application of LMS — System Identification

2. Introductionto Modern Compressed Sensing Topics
» Phase Transition Curves
» Low Rank Matrix Recovery
» Low Rank + Sparse
» Multi-scale Low Rank
» Dictionary Learning



LMS and System ID

» LMS: Stochastic gradient descent for Wiener-Hopf Equations

» Special Case: Wiener Filter Deconvolution
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» Need to know F(z)...



LMS and System ID

» If we don’t know F(z), we can use LMS to learn it

» Case 1: F(z) is FIR(K), have access to input
» At convergence, error should be zero
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LMS and System ID

» If we don’t know F(z), we can use LMS to learn it

» Case 2: F(z) is an AR(K) process, do not have access to input
» At convergence, error should equal theinnovation
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Phase Transition Curves

» Recall: Compressed Sensing Recipe Y= Az
1. Signal is k-sparse y - Rn
2. Incoherent and sufficient sampling N
3. Non-linear reconstruction Tr < R
|zllo < K
» Goal: Recover x exactly from measurementsy

» Setup: A N N(O, 1/n)

’n,/N — 5 (undersampling fraction)

k'/n — P (measure of sparsity)

Donoho, Maleki, Montanari, “Message-passing algorithms for compressed sensing”



Phase Transition Curves

» Goal: Recover x exactly from the measurements y

» Question: When will compressed sensing fail?
» Dependson P, §, andthe specificalgorithm

» Forl1-minimization (as in homework),

minimize ||x||;
(P1) z

subject to Ax =y

(convex relaxation of true problem of interest)



FIGURE 3. Compressed Sensing from random Fourier measure-
ments. Shaded attribute: fraction of realizations in which
¢1minimization (1.2) reconstructs an image accurate to within six
digits. Horizontal axis: undersampling fraction 6 = n/N. Vertical
axis: sparsity fraction p = k/n.

Donoho, Tanner, “Observed universality of phase transitions in high-dimensional geometry...”



Best Phase Transition

» Each reconstruction algorithm has a sharp phase transition
curve

» Below the curve is exact recovery! Above the curve is total failure!

Comparison of Different Algorithms
T T T T

0.9

IHT

IST

0.8 ——Tuned TST
—=—|LARS

——OMP Convex optimization
0.7H — Theoretical L solution /:
06
p 05
C‘_04

0.3

0.2

o Iterative soft thresholding (pset 4)

0 1 1 1 1
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 5
8




Beating IST: Approximate Message Passing
» Compressed Sensing LASSO: |1 minimization
. 1 5
(P2) minimize §Hy — Az||5 + Al|z||1
T
» Simple Algorithm: Iterative Soft Thresholding
20 — ( AT () .:z;<i>)
20 = Ag®

» Convergesto (P2), but onlyto (P1) in certain cases...
» Computationally cheap



Beating IST: Approximate Message Passing

» Approximate Message Passing (AMP)
» Add a “correction factor” to error vector
» Correction term makes noise statistics look Gaussian at each iteration
» Sparsesignal + Gaussian noise fits the sparse denoisingassumptions

G SN ( AT () x(z’))
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» Convergesto (P1)! 9
» Still computationally cheap



Comparison of Different Algorithms
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Fig. 3. Observed phase transitions of reconstruction algorithms. Red curve,
AMP; green curve, iterative soft thresholding (IST); blue curve, theoretical
£1 transition. Parameters of IST tuned for best possible phase transition (3).
Reconstructionssignal length N = 1,000. T = 1, 000 iterations. Empirical phase
transition is value of p at which success rate is 50%. Details are in S/ Appendix.



AMP in Practice

% data gen
N = 1000;

n = 500;
delta = n/N;
k = 50;

% sensing matrix
A = 1/sqrt(n)*randn(n,N);

% signal
x = [zeros(N-k, 1); randn(k,1)]; x = x(randperm(N));
y = AxX;

for i=2:nitr
% IST
xts_ista(:,i) = SoftThresh(xts_ista(:,i-1) + mu_ist*A'x(y - Asxts_ista(:,i-1)), mu_istxlambda_ist);
mse_ista(i) = norm(xts_ista(:,i) = x);
% AMP
% calculate x_{t+1}
gamma_amp = xts_amp(:,i-1) + A'xzts_amp(:,i-1);
tmp = sort(abs(gamma_amp), ‘'descend');
lambdas_amp(i) = tmp(n);
xts_amp(:,1i) = SoftThresh(gamma_amp, lambdas_amp(i));
% calculate z_{t+1}
zts_amp(:,i) = (y - Asxts_amp(:,1i)) + ...
zts_amp(:,i-1)/nxsum(abs(gamma_amp) > lambdas_amp(i));
mse_amp(i) = norm(xts_amp(:,i) = x);



AMP in Practice
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Phase Transition Curves Summary

» For a particular matrix A and reconstruction algorithm:

1. Choose p, 0

2. Monte Carlosimulationof many probleminstances
3. Countratioofsuccesses vs. total probleminstances
4. Repeat

» Extensive theory for phase transitions

» Deep connections between compressed sensingand denoising
»  Provable optimality of Approximate Message Passing
» (i.e.it’snot all simulation)

» Framework for testing other sparse models/algorithms



» This slide intentionally left blank.



Extending Sparsity

» Original Compressed Sensing formulation

» Recover a sparsesignal x from incoherent measurementsy

» Are there other notions of sparsity?
» Block-sparse vector
» Low rank matrix
» Permutation matrix
» Sign vector



»

»

»

»

General Notion of Sparsity

“Low-dimensional subspace embedded in high-dimensional signal“

Atomic Norm Decomposition

» Signal can be decomposed as a linear combination of building blocks

Sparse Vectors: linear combination of standard basis

X = E C; €i

7
Low Rank Matrices: linear combination of rank-1 matrices

X = E Cf,;uiViT
1

“The Convex Geometry of Linear Inverse Problems,” Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan Willsky



“Netflix Problem”

» After you watch a cool movie or TV show, you rate the it on a
scaleof1to5
» House of Cards:5
» Orangeisthe New Black: 3
» Real World: 1

» ...

» Based on your (and others’) ratings, can | predict how you
(and others) will rate a movie/show you haven’t seen?



Collaborative Filtering

» Predict ratings for movies across all users

Movies

2 3 7 7 5 77

RecRm*n |17 7 47 3
< 7 732 7 5] °°F
47 37 2 4

» Only know Rij for (i,75) € Q

» Don’t haveratings for every movie from every user

http://www.ece.ust.hk/~palomar/ELEC5470 lectures/17/slides_low_rank_matrix_optim.pdf



Low Rank Matrix Decomposition

» Can “explain” a movie rating by a small (k) number of features

» Actors, genre, storyline, length, year, ...

» Each user has a preference for the features

Uj

Feature vector User i’s rating of movie |

T
Ri; = u; v;

User’s interest in each feature



Low Rank Matrix Decomposition

» Can “explain” a movie rating by a small (k) number of features

» Actors, genre, storyline, length, year, ...
» Each user has a preference for the features
» Matrix R is low rank, with rank k << m, k<< n

VT c Ran

R=UV?T 7 ¢ RmxF



Low Rank Matrix Completion

» Given that the true Ris low rank, find a matrix X that is low
rank and agrees with R at the observed entries:

minimize rank X
X

subject to A(X) =y

(Xij = Ri; V(i,j) € Q)



Low Rank Matrix Completion

» Given that the true Ris low rank, find a matrix X that is low
rank and agrees with R at the observed entries:

minimize || X«
(P3) X

subject to A(X) =y

Convex Relaxation

HX| ‘* — Z O; (sum of singular values)
)



Low Rank Matrix Completion

» How can we solve the low rank matrix completion problem?

» Intuition:
» A low rankmatrix has a small number of non-zero singularvalues
» We see a linear mixture of these singular values (through SVD)
» How aboutwe applyIST onthe singularvalues of X?

» POCS Algorithm:

1. TaketheSVD: X = pY.Q! <€ Not low rank

2. Soft Threshold: 3 = §, (%)

3. Form Matrix: Y — PZA]QT <€ \I;\,C:rrl\ rjantI;but inconsistent
4. Enforcedataconsistency:

Xq;j = Rij V(Z,]) e ()



»

),

v

»

»

When Does the Algorithm Work?

Matrix Restricted Isometry Property (RIP):
» An operator A satisfies Matrix-RIP if, for all X with rank X at

most r,

(1 - el Xz < [JAX)IZ < (1+ )l X]|F

» (describes theincoherence of the measurement operator A)

Theorem:
» If Xis rank-r, A satisfies Matrix-RIP,and y = A(x),
» Then X will be the optimum of (P3)

Uniqueness:

» Thereare multiple matrices that satisfy the problem (P3), but only one

will be lowrank

Other Assumptions? (yes — incoherence on rows/cols of R)

(Recht, Fazel, Parrilo)



Sparse + Low Rank Matrix Decomposition

» Low rank matrix corrupted by sparse errors

I
+

K
K

low rank et

\ / sparse

R=L+S5

» Task: GivenR, find L and S exactly

» (notwell-definedin general)

“Sparse and Low-Rank Decompositions,” Chandrasekaran, Sanghavi, Parrilo, Willsky



Sparse + Low Rank Matrix Decomposition

» Base Cases

L — i No hope of separating from S

No hope of recovering first
row of L

s
[




Sparse + Low Rank Matrix Decomposition

» Under certain assumptions, we can recover L and S through

minimize ||Ll||. + A|[S]||1
L.,S

subject to R=L+ S5

Candes E, Li X, Ma Y, Wright J. “Robust principal component analysis? “



Input Video

Low Rank
+

Sparse




Beyond Low Rank + Sparse:
Multi-scale Low Rank Modeling

» Sum of matrices with increasing scales of correlation

» Exploitallscales of correlation

i Low Rank | Low Rank
In ut Low Rank | Low Rank | Low Rank | Low Rank
p. = + + o0+ + | Low Rank
Matrix
Low Rank | Low Rank
Y Xi Xa X XL
<€
Sparse Low Rank

Work by Frank Ong



Beyond Low Rank + Sparse:
Multi-scale Low Rank Modeling

» Sum of matrices with increasing scales of correlation

» Exploitallscales of correlation

Input Matrix 16x16 64x64
Sparse Low Rank

Work by Frank Ong



Input Video

Multi-scale
Low Rank

Work by Frank Ong



Multi-scale Low Rank Decomposition

L—1
minimize Z Ail| Xi|| (4)
i=0

X
L—1
subject to Y = Z X;
i=0

» POCS Algorithm:

1. Enforceblock low rankfor each X; (Block-wise SVD + IST)
2. Enforce dataconsistency

Work by Frank Ong
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»

»

»

Application: Face Shadow Removal

Given: face images with
different illuminations

Want to remove
shadows

Faces are low rank
Shadows are not
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lllumination

Application: Face Shadow Removal

Low Rank + Sparse

192 x 168




lHlumination

Application: Face Shadow Removal

Multi-scale Low Rank




Application: Face Shadow Removal

Input Low Rank + Sparse Multi-scale Low Rank




Application: Dynamic Contrast Enhanced MRI

» Contrast agent injected into patient
» A series of images are acquired over time
» Different blood permeability gives different signature signal

Intensity vs. Time




Application: Multi-scale Low Rank MRI

1x1 2X2 4x4 8x8

Moae MR LW

16x16 32x32 64x64 128x112

(Frank Ong



Dictionary Learning

» So far, we always know how our signal is sparse
» Reverberation/communication systems:time domain
» Natural/medical images— wavelet domain
» Low rank matrices —singularvalues

» What if we don’t know how our signal is sparse?

» Dictionary Learning — /learn a sparse representation
» Feedin manyexamplesofsignalsfrom a class of interest
» Learn a sparse representation for all the signalsin the class
» Often overcomplete representation—more elementsthan unknowns



Dictionary Learning

/ Learn from clean data
N SRS Y
LA i Yl
B LR ;-n::;:

Olshausen & Field (1996)

e DI T T L

(From Pat Virtue)
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Dictionary Learning Formulation

Given training signals

Y = [Y1 YN]

Find (jointly) a dictionary D and coefficients X such that

Y = DX

Where x; has at most k non-zero elements

Many ways to solve: MLE, MAP, alternating minimization, ...



K-SVD: State of the Art Dictionary Learning

» Extension of K-means
» K-means: each signalis represented by a single cluster centroid

» Vector Quantization: each signalis represented by a single cluster
centroid, times a weight

» K-SVD: each signalis represented by a linear combination ofa small
number of cluster centroids (atoms)

Learned reconstruction Haar reconstructionOverComplete DCT reconstruction
Average # coeffs: 3.5623 Average # coeffs: 3.9747 Average # coeffs: 4.0539
MAE: 0.020035 MAE: 0.032831 MAE: 0.025001

70 % missing pixels RMSE: 0.055643 RMSE: 0.097571 RMSE: 0.063086

g reh :.‘.,d_",' \_-.‘.;.

Michal Aharon, Michael Elad, Alfred Bruckstein, “K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation”



Leveraging Non-stationary Statistics

Registration & local dictionary learning

Face compression
Bryt and Elad. JVCIR, 19(4):270 — 282, 2008.

29090

JPEG (15.3) JPEG2000 (12.57) PCA (10.27) K-SVD (6.45)

1. Register faces
2. Train different dictionaries at different locations

3. (e.g. eye)

(From Pat Virtue)



Compressed Sensing Potpourri Summary

» Compressed sensing theory is reaching maturity

» Large focus on specialized applications

» Compressed sensing algorithms in active development
» AMP and generalizations
» Phase transitiontheory

» More general notionsof sparsity are still blossoming
» Deep connectionsto high-dimensional statistics
» Manifold learning, subspace clustering



