Compressed Sensing: What is It?

Jon Tamir, PhD

www.jtsense.com

Electrical Engineering and Computer Sciences
University of California, Berkeley

ISMRM 27th Annual Meeting May 12, 2019

MRI Background

Patient in MRI scanner

Pulse sequence controls MRI signal

Measurements are collected

Data Redundancy

Redundancy reduces sampling requirements (The more you know, the less you need)

From M. Lustig

- Scan time is proportional to number of measurements
 - Collect less data → scan faster!
 - Under-sampling causes artifacts

image space

- Scan time is proportional to number of measurements
 - Collect less data → scan faster!
 - Under-sampling causes artifacts

image space

Low resolution

(ringing)

- Scan time is proportional to number of measurements
 - Collect less data → scan faster!
 - Under-sampling causes artifacts

image space

Coherent

aliasing

- Scan time is proportional to number of measurements
 - Collect less data → scan faster!
 - Under-sampling causes artifacts

image space

Incoherent

aliasing

Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging

Michael Lustig, ¹* David Donoho,² and John M. Pauly¹

Compressed Sensing MRI

How is this possible?

Compressed sensing recipe

- 1. Sparse signal model
- 2. Incoherent sensing operator
- 3. Non-linear reconstruction algorithm

• A signal is sparse if it is mostly zero

Sparse

volulururuspiikiteleegaapayarustiinistiinistiinistiinistiinistiinistiinistiinistiinistiinistiinistiinistiinist

From J. Trzasko

• To separate sparsity from noise...

...apply a threshold!

1. Under-sampled k-space

2. Image with noise-like artifacts

3. ???

(not sparse!)

1. Under-sampled k-space

Image with noise-like artifacts

Cannot easily remove noise if image is not sparse

(not sparse!)

Most medical images are sparse in an alternative representation

• Most medical images are sparse in an alternative representation

not sparse

sparse wavelet

• Most medical images are sparse in an alternative representation

- 1. Transform the image to a sparse domain
- 2. Apply denoising/thresholding
- 3. Transform back to the image domain

From M. Lustig

Iterative noise removal

- "Noise-like" artifacts are not actually due to noise
- They are due to under-sampling of k-space

Intuitive idea: After denoising the image, compare and fuse the new k-space with our acquired k-space.

Then re-apply the process

Why random sampling?

• Intuition: random sampling causes noise-like aliasing artifacts

Theory: want an incoherent sensing operator

Make N linear measurements

Diagonal system

Make N linear measurements

Fourier measurements

$$\mathbf{y} \in \mathbb{C}^N$$
 $=$ $N \times N$

Sensing operator

$$\mathbf{x} \in \mathbb{C}^N$$

Make N linear measurements

Random measurements

Make N linear measurements

Fourier measurements

Compressed sensing

- Assumption: x is a K-sparse signal (K << N)
 - Make M (K < M < N) incoherent linear measurements

Compressed sensing

Assumption: x is a K-sparse signal (K << N)

 Ma A "good" compressed sensing matrix is incoherent, i.e. approximately orthogonal on-zeros Incoherency preserves information

Fourier compressed sensing

Randomly under-sampled Fourier matrix:

Fourier compressed sensing

Randomly under-sampled Fourier matrix: incoherent

Fourier compressed sensing

Randomly under-sampled Fourier matrix: incoherent

Compressed sensing reconstruction

Intuition: alternate between denoising (thresholding) and data consistency

- Theory: Solve non-linear, iterative inverse problem
 - L1-minimization promotes sparse solutions

$$||\mathbf{x}||_1 = \sum_i |x_i|$$

Basis pursuit denoising
$$\min_{\mathbf{x}} \quad ||\mathbf{T}\mathbf{x}||_1$$

$$\mathrm{subject\ to} \quad ||\mathbf{y}-\mathbf{A}\mathbf{x}||_2 \leq \epsilon$$

Compressed sensing reconstruction

Intuition: alternate between denoising (thresholding) and data consistency

- Theory: Solve non-linear, iterative inverse problem
 - L1-minimization promotes sparse solutions

$$||\mathbf{x}||_1 = \sum_i |x_i|$$

Lasso
$$\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2 + \lambda ||\mathbf{T}\mathbf{x}||_1$$

Compressed sensing reconstruction

Intuition: alternate between denoising (thresholding) and data consistency

- Theory: Solve non-linear, iterative inverse problem
 - L1-minimization promotes sparse solutions
- Application: Combine with parallel imaging and non-Cartesian sampling

BART – MRI reconstruction toolbox

- Software framework for CS MRI
 - Implements parallel imaging and CS
 - Built in parallelism (CPU/GPU)
- Emphasis on
 - Rapid prototyping
 - Clinical feasibility / robustness
 - Collaboration
- Open source, BSD license http://mrirecon.github.io/bart/

UCB alumni, now at Göttingen University

Prof. Martin Uecker

Cardiac-resolved volumetric phase contrast MRI (4D Flow)

Multi-contrast 3D FSE

Randomly shuffled echo trains

Compressed sensing in relaxation dimension

powered by

Multi-contrast 3D FSE

Scan time: 7 minutes

Resolution: 0.8 x 0.8 x 1.2 mm³

Extreme MRI: real-time dynamic imaging

2GB k-space

Abstract # 1176
Multidimensional Signal Encoding Decoding
Thursday, 16 May 2019
Room 710B

Scan time:	4m 40s
Temporal Res	580 ms
Matrix Size	392 x 318 x 165
Spatial Res	1 x 1 x 2.8mm³

100GB Image

Compressed Sensing MRI

- 1. Find a sparse transform representation
 - Apply spatially, temporally, ...

- 2. Sample k-space incoherently (random)
 - Make artifacts look like noise

3. Reconstruct using sparsity-promoting iterative algorithm

Challenges

- Requires modification of the sequence
- Increased noise because of less data
 - Unrelated to "noise-like" artifacts
- Artifacts from sparse denoising
 - Blocking artifacts, over-smoothing, temporal blurring
- Difficulty choosing denoising threshold
- Increased computational complexity in reconstruction

Over-smoothing

