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Abstract—Index coding, initially introduced within theoretical
computer science to address a specialized class of problems, has
gained significant interest within communications and network-
ing communities in recent years. Index coding has been shown to
be analogous to a large class of challenging wired network coding
and wireless multi-terminal problems, the latter class being of
primary interest in this paper. Here, a (relaxed) rank minimiza-
tion based analytic framework is presented for wireless index
coding, which represents a first step in a systematic algorithmic
approach to index coding for practical use. Further, the paper
demonstrates its applicability over a real-world wireless testbed.
The scheme operates at the network layer, and can be understood
as a (non-trivial) generalization of existing principles of random
linear network coding. Experimental results demonstrate that, for
a class of network topologies, the rank-minimized index coding
system presents a throughput gain of 50 to 100 percent greater
than random linear coding for this system.

Index Terms—Downlink Communications, Wireless Protocol
Design, Network Coding

I. INTRODUCTION

Index coding forms a fairly well-studied body of research

across multiple communities. Initially formulated as determin-

ing the throughput of a wired bottleneck network [1], there are

multiple sources and destinations, none of which are directly

connected to each other, and are instead connected through

a bottleneck link. However, each destination is implicitly

connected to some sources, and may use this side information
in a decoding strategy. The goal of index coding is to derive

structured coding strategies that will maximize the sum capac-

ity of the entire network. As illustrated in [2], structured linear

coding strategies can outperform time-division multiplexing

(TDM) schemes, and determining the optimal coding strategy

for the bottleneck link is referred to as the Index Coding
problem.

Although specific index coding problems can be solved

using techniques such as exhaustive search or interference

alignment [2], the general network topologies problem is open.

Indeed, index coding includes as its special cases, the general

multiple unicast problem [3], [4] as well as a general k ≥ 3
satisfiability problem [5], meaning that it is not only an open

problem, but even when a solution is known to exist, finding

it may be NP-hard. Thus, there is a growing literature on

identifying classes of index coding problems where exact or

approximate solutions can be found. [2], [6].

Index coding has recently found applications over wireless

systems [2], [5], anycasting over networks as well as in

efficient data storage. Specifically, in [6], the authors show a

strong connection between the index coding problem and the

multiple unicast problem with network coding. More recently,

authors in [2] demonstrate the direct link between index coding

and interference alignment, providing constructive examples

where the concepts of interference alignment can be used to

facilitate index coding.

In a relatively parallel line of work, the use of coding for

wireless bottleneck networks has been studied, particularly for

the case of interchange and downlink transmissions. In [7]

among many other related papers, the authors demonstrate the

benefits of random network coding (RNC) in enhancing the

throughput of wireless bottleneck networks. In this existing

body of work, network coding is performed in terms of choos-

ing random coefficients for linear combinations of packets that

are subsequently transmitted. The primary contribution of our

work is to understand the benefits of choosing structured and

not random combinations of packets using the index coding

with interference alignment perspective. We refer to such a

strategy as wireless index coding.

In this paper, our goal is to achieve efficient communication

over a multi-way interchange wireless network setting, as illus-

trated by Figure 1. This setup consists of one access point/base

station (AP) connected to multiple terminals wirelessly, both

on the uplink (to the AP from the terminals) and downlink (to

the terminals from the AP). Traditionally, for such a scenario,

the AP may be understood as performing a round-robin based

TDM in order to ensure that the right message is received by

the appropriate destination. For example, Figure 1 shows the

result of one such round, in which messages are received at

some nodes (indicated by a �) and erased at others (indicated

by an ×). Such a time-division scheme has been shown to

be suboptimal for the two-party and multi-party interchange

channel by many authors. Indeed, coded mechanisms for a

multi-way exchange are known to minimize the number of

transmissions required for the exchange channel and thus

enhance throughput.

However, a static, pre-fixed coded strategy for the exchange

channel can be inefficient in channels faced with errors and

erasures. When transmissions may be corrupted and there-

fore, erased, it can prove beneficial to derive an incremental
structure that exploits knowledge of those packets that are

successfully received by destinations within the network. This

concept corresponds to solving the wireless index coding prob-

lem for this exchange network, and we explain the problem

formulation, its solution, and resulting throughput benefits in
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greater detail in subsequent sections of the paper.

In summary, the key contributions of this paper are as

follows:

1) We formulate efficient communication over a multi-way

interchange network as a wireless index coding problem,

combining linear coding of packets with interference

alignment.

2) We implement our solution over a hardware testbed and

show a substantial benefit is obtained over both TDM

and RNC by using structured coding.

II. SYSTEM MODEL

Consider a wireless erasure network in which an AP broad-

casts a set of messages W = {W1, . . . ,WT } ⊆ F in discrete

timeslots to K terminals. Each node Rk, k = 1, . . . ,K,

desires a strict subset of the messages, WRk
⊂ W , has

a probability εk of dropping a transmission, and has side

information Ak ⊆ W \ WRk
. Throughout this paper, we

assume WRk
= {Wk} and F = R. Although it is common to

formulate index coding over a finite alphabet, we have found

that relaxing the problem to the reals, which is then truncated

to a subset of the rationals for practical implementation, leads

to algorithms that approximate the finite alphabet problem

effectively, as evident by the experimental results in Section V.

In this setup, the AP gains knowledge of which transmis-

sions are successful and/or erased within the network at the

end of a transmission. In other words, both an acknowledgment

(ACK) and a negative acknowledgment (NACK) are assumed

for each case to be generated by the receivers and successfully

received by the AP prior to its next transmission. We refer to

this setup as a multi-way interchange network, since the entire

goal is to perform a (generalized) exchange of data between

nodes within the network. Such a model may be used to denote

multiple categories of networks including sensor networks and

relay-assisted multi-peer networks.

We represent such a network by the directed graph

G(W,A), where the vertex k ≡ Wk ∈ W represents the

destination for message Wk and there is a directed edge from i
to j if Ri possesses knowledge of the message the AP intends

to send to Rj , i.e. if Wj ∈ Ai. This model is also considered

for wireline networks in [8].

Fig. 1. AP broadcasts to K = 4 terminals over an erasure network using
TDM. A � indicates a received message and an × indicates an erasure.

III. INDEX CODES

To generalize the coding scheme to arbitrary networks, we

begin with notation modified from [8]:

Definition 1 (Index Code [8]): An index code for G(W,A)
is given by

1) A set of codewords, S = {S1, S2, . . . , Sm}
2) An encoding function E : W → S
3) Decoding functions D1, . . . , DK such that

Dk(E(W),Ak) = Wk for all k ∈ {1, . . . ,K}.

The length of the index code is |S| = m.

Definition 2 (Index Coding Matrix [8]): The matrix

X = (xij) is an index coding matrix for G(W,A), denoted

X ∈ X (W,A), if

1) xii �= 0
2) xij = 0 if Wj �∈ Ai

X is the space of all index coding matrices for G.

Figure 2 shows the structure of an index coding matrix

for the network in Figure 1 (after the initial TDM round)

with received messages serving as side information for the

next transmission. The numbers of X are fixed to satisfy the

definition of an index coding matrix for G, while the boxes

can be arbitrarily chosen numbers.

X =

⎛
⎜⎜⎜⎜⎝

W1 W2 W3 W4

R1 1 � � 0

R2 � 1 0 �
R3 0 0 1 �
R4 � � 0 1

⎞
⎟⎟⎟⎟⎠

Fig. 2. Index coding matrix for G in Figure 1. The numbers are fixed, while
the boxes are arbitrary.

We see that any X ∈ X fully defines G — any linear

combination of the form Xw, where w =
[
W1 · · · WK

]T
,

will enable all nodes to decode their desired message. Row

i in X represents the message coefficients observed by Ri.

Because Ri desires Wi, it must have a non-zero coefficient

in the i’th dimension. Similarly, if Ri does not have Wj as

side information, it must have zero contribution in the j’th

dimension. Any message available as side information has an

arbitrary coefficient since it can be nulled out.

Theorem 1 ([8]): The optimum (shortest) linear index code

for G is m = min
X∈X

rankX .

Since we can view the boxes in Figure 2 as missing entries,

Theorem 1 establishes a direct connection to low-rank matrix

completion theory [9], [10]. We wish to choose the arbitrary

entries of X in a way that minimizes its rank, and thus

minimizes the number of required transmissions. In a real-

world environment, where packet losses are often correlated

due to co-channel interference and fading [11], X is often

low-rank. In this situation, multiple receivers share the same

side information, which can lead to linearly dependent rows in

the index coding matrix. For example, the boxes in Figure 2

can be chosen so that rankX = 2.
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The transmission strategy consists of an encoding scheme

and a decoding scheme. For each k ∈ {1, . . . ,K}, define

ak :=
[
ak1 ak2 · · · akK

]T
, (1)

where aki = Wi if Wi ∈ Ak and zero otherwise. Let X ∈ X ,

and let m = rankX . Since X ∈ R
K×K , m ≤ K. Decompose

X into two matrices, V,U ∈ R
m×K , so that

X = UTV. (2)

V represents a matrix of coefficients for m symbols, i.e.

E(W) = Vw. U is a zero-forcing matrix to ensure that

X ∈ X . Let uk denote the k’th column vector of U . Then,

uk
TVw − uk

TV ak = xkkWk k = 1, . . . ,K. (3)

By construction, Wk is uniquely determined up to a (known)

constant. That is,

xkk = uk
Tvk, (4)

where vk is the k’th column vector of V .

We now use (1) – (3) and Theorem 1 to design our trans-

mission scheme.

Transmission Strategy:
Encoding: Design V and U to satisfy (2), where

X = argmin
X′∈X

rankX ′.

Decoding: Dk(E(W),Ak) ∝ uk
TVw − uk

TV ak

This transmission strategy fully defines an index code for

G. The decoding scheme works for any V and U that satisfy

(2). However, the AP requires knowledge of A for encoding

and the terminals require knowledge of V for decoding. In

practice, this requires sending the rows of V in the preambles

of the symbols, resulting in some overhead, as well as sending

ACK/NACK messages. Notice it is not necessary to send U ,

since it can be computed (if it exists) by

Vkuk = 0, k = 1, . . . ,K, (5)

where Vk is a submatrix of V corresponding to the concate-

nation of all column vectors that interfere with Rk. That is,

vi ∈ Vk if Wi �∈ Ak ∪ {Wk}, i ∈ {1, . . . ,K}. (6)

In addition to (5), we require

uk
Tvk �= 0 (7)

so that Wk can be normalized by (4).

IV. ENCODING SCHEME AND TRANSMISSION ALGORITHM

Section III establishes that the optimal transmission strategy

fits the framework of low-rank matrix completion. This section

describes an encoding scheme in this framework and the full

transmission algorithm used in the implementation described

in Section V.

We find a suitable X through low-rank matrix completion:

R1(m) :=
minimize
X′∈RK×K

∥∥PΩ(X
′)− b

∥∥
2

subject to rankX ′ ≤ m
. (8)

Here, PΩ : RK×K → R
p represents the sampling operator

[9], [10]. The set Ω corresponds to the indices that define

an index coding matrix, and b = PΩ(X ) specifies the defining

constraints for any X ∈ X . Let

X =

K∑
i=1

σiũiṽ
T
i (9)

be the singular value decomposition (SVD) of the solution to

(8). Since the rank of X is m,

X =

m∑
i=1

σiũiṽ
T
i � ŨΣṼ T . (10)

Let

V =Ṽ T , (11)

U =(ŨΣ)T . (12)

Equations (11) and (12) satisfy (2).
Routine R1 is in general NP-hard, but it can be relaxed to a

convex program [10] and solved using greedy algorithms. For

this work we implemented R1 using “Atomic Decomposition

for Minimum Rank Approximation” (ADMiRA) [9], which is

in the family of matching pursuit methods. In each iteration,

ADMiRA finds rank-m and rank-2m matrix approximations

via SVD, as well as solving a linear least-squares problem via

conjugate gradient descent. The complexity is polynomial in

the index code length.
Algorithm 1 shows the full transmission strategy for broad-

casting the message set W to K nodes with side information

A. The first inner loop (lines 7–10) uses the routine R1 to

choose m and design a rank-m index coding matrix with

largest acceptable error (controlled by λ). The second inner

loop (lines 13–17) transmits a single symbol at a time until

either all m symbols are transmitted or a node indicates

successful decoding, i.e.

WD := {Wk : Rk decodes Wk} �= ∅. (13)

The outer loop repeats this process until all messages are

decoded.
This strategy lends itself to a hardware implementation at

the network layer for several reasons. First, the method takes

advantage of existing ACK/NACK signals to update the system

at the AP after each index coding iteration. Secondly, as in

the case of RNC, a solution is guaranteed after each node

receives K symbols. Thus, the worst-case encoding/decoding

complexity depends only on the number of nodes and is

equivalent to the case of RNC.

V. HARDWARE IMPLEMENTATION

To test the index coding transmission strategy, we designed

and implemented a wireless testbed consisting of TinyOS-

based sensor motes. We implemented the wireless sensor

network downlink scenario, where nodes are paired and com-

municate through the AP, and we compared the throughput

gains to those achieved using TDM and RNC. In this scenario,

each node has its own message available as side information

and the goal is to receive its corresponding pair’s message.
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Algorithm 1 Broadcast Index Coding Transmission Strategy

Input: W , A = {A1, . . . ,AK}, λ > 0
1: t ← 0
2: while |W| > 0 do
3: t ← t+ 1
4: X(t) ← ∅
5: X ← X (W,A)
6: m ← 0

7: while
∥∥∥∥PΩ

(
X(t)

)
− PΩ (X )

∥∥∥∥
2

> λ do

8: m ← m+ 1
9:

(
V (t), U (t), X(t)

)
← R1(m)

10: end while
11: S ← V (t)w
12: i ← 0
13: while |WD| = 0 and i < m do
14: i ← i+ 1
15: Transmit Si

16: WD ← decoded messages

17: end while
18: W ← W \WD

19: K ← K − |WD|
20: end while

A. Experimental Setup

The hardware setup is shown in Figure 3 and consists of

the following three components:

1) AP Host: The AP Host is a desktop computer that

uses the messages and side information to perform the first

inner loop of Algorithm 1. Routine R1 was implemented in

Python for quick prototyping and ease of interfacing with the

TinyOS network stack. This by no means represents a real-time

implementation, which can leverage dedicated processing and

algorithms.

2) AP Target: After computing S = Vw, the AP Host

transmits a single symbol Si to the AP Target through a direct

Ethernet connection. The AP Target is a MICAz radio mote

[12] attached to the MIB600 Ethernet Interface Board. The

MIB600 enables direct Ethernet connection to the AP Host

for both programming and collecting experimental results.

3) Terminal Mote: After the AP Target receives a symbol

from the AP Host, it broadcasts the symbol to the Terminal

Motes in the wireless network via the TinyOS protocol. The

terminals, which are MICAz radio motes scattered around the

AP Target at varying distances, attempt to decode their desired

message after each broadcast symbol and respond to the AP

Target via ACK/NACK signals. The terminals implement the

decoding scheme (5) using SVD. Note that for a real-time,

scalable implementation, the terminals could alternatively use

Gaussian elimination similar to [13].

Given the motes’ limited computational capabilities, we

implement the computationally demanding greedy alignment

encoding scheme (Section IV) on the AP Host. Although this

does not represent a true real-time implementation, we argue

that the testbed unequivocally demonstrates an index-coding

Fig. 3. Communication diagram.

TABLE 1
PACKET STRUCTURE

Packet/Field Type # of Bits Description

SymbolMsg and HostToTargetMsg:
V_coeff nx_float[K] 32×K Message coefficients
data nx_float[B] 32×B Symbol data

messageid nx_uint16 16 TDM destination
c_row nx_uint16 16 Synchronization

AckMsg:
nodeid nx_uint16 16 Responding node
ack_type nx_uint16 16 Decoding status
c_row nx_uint16 16 Synchronization

TargetToHostMsg:
ack_type nx_uint16[K] 16×K All node ACKs
c_row nx_uint16 16 Synchronization

setup which can be extended to a full real-time implementation

with a single AP component. Further, recent advances in low-

rank matrix completion, e.g. iterative soft-thresholding, have

led to algorithms with reduced complexity [10].

We tested several spatial topologies throughout our exper-

iments; however, the placement of the terminals generally

formed a semicircular arc around the AP Target. The radius

at which the terminals were placed varied so as to modify the

erasure probabilities in the network. Operating statistics could

then be collected across a broad range of erasure probabilities.

Prior to running the index coding part of the experiment, the

AP Host generates random messages and distributes them to

the corresponding terminals through a TDM scheme. For each

successive round, new messages are generated which requires

new side information to be sent to each terminal. Thus, the

redistribution of side information to the terminals each round

also enables computation of TDM metrics, such as the network

erasures and number of transmissions.

Computationally, a number of matrix data structures must

be initialized on the motes so that symbols sent by the AP

Target can be used for decoding. When a mote receives

its side information (indicating a new TDM round), it must

reinitialize its data structures. Table 1 shows the data structures

comprising the three packets communicated over the network.

The AP Host sends to the AP Target a HostToTargetMsg
packet, which contains the current symbol and the coefficients

used to generate the symbol. The AP Target then broadcasts

this packet to the nodes as a SymbolMsg. While coefficients
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V_coeff and message symbols data are truncated from

double to single precision floating-point values for transmis-

sion, we found that finite precision effects did not hinder the

ability to decode messages at the receivers. Note that RNC

is easily incorporated in this setup by randomly sampling

V_coeff from a standard normal distribution. The current

transmission/time slot is tracked to ensure that the motes are

operating synchronously. The proportion of header information

to raw data in the SymbolMsg packet is variable depending

on the initial number of motes in the network, K, and the

number of 32-bit words per message, B. We define the data

efficiency, φK
B , as the proportion of raw data to total data:

φK
B =

B

K +B + 2
. (14)

For an eight-mote setup with four words per message, the

efficiency is φ8
4 = 2

7 . Although this efficiency is low, a

robust implementation will code over several kilobytes of data,

making the header information negligible in size.

After each SymbolMsg transmission, the motes send an

AckMsg packet to the AP Target. The ACK/NACK setup is

designed such that a node sets ack_type to ‘1’ if it received

the symbol and was able to decode, and ‘0’ if it received the

symbol but was unable to decode. If the AP Target does not

receive an AckMsg from a node, it defaults ack_type to

‘2’ to indicate a NACK. Based on this setup, the erasures are

two-sided.

The AP Target aggregates all ACKS and NACKs

from the nodes and sends them to the AP Host in a

TargetToHostMsg packet. The AP Host uses this informa-

tion to estimate erasure probabilities at each node and update

its list of nodes still in the network. After all nodes decode

their message (and exit the system), the AP Host logs the

transmission statistics and prepares the testbed for a new round

by generating new messages and switching to TDM mode.

B. Experimental Results

We determine the performance of index coding over TDM

as the ratio of number of transmissions at a particular mea-

sured erasure probability ε averaged over all K nodes. For a

particular (ε,K) pair, define the index coding gain as

ηKε :=
# of transmissions using TDM

# of transmissions using index coding
, (15)

and similarly define νKε as the corresponding RNC gain.

In our experiments, the network size K varied from 4

to 12 nodes while the transmission time slot was fixed at

2 seconds. Testing was conducted in an office setting with

several reflective surfaces and RF interference sources. Several

network topologies and distances were used to produce a range

of erasure probabilities. Data size was adjusted by changing B,

the number of 32-bit words per message, to attain reasonable

values of ε as follows: B = 1 for K = 12, B ∈ {1, 4} for

K = 8, and B ∈ {4, 6} for K = 4. Topologies included

a semicircular setup with each node less than 0.5 m from

the transmitter, a semicircular setup with nodes 2 m from

the transmitter, placement throughout a room with transmitter

distances of 0.5 m - 4 m, and a paired topology where paired

nodes were placed on opposite ends of the transmitter at a

distance of 2 m. While the data rates and packet sizes are

scaled down, this setup is a reasonable step toward low-

bandwidth sensor network applications.

Nearly 4000 rounds of experiments were conducted across

all values of K, transmission schemes, and network topologies.

The erasure probabilities for each node varied greatly from

round to round and were often asymmetric during any given

round. For large K, co-channel interference caused a reduced

range of erasure probabilities irrespective of mote placement.

For small K, erasures were much more varied because the link

was more susceptible to ambient RF interference. Iterations of

RNC and index coding were alternated after no more than 150

rounds to ensure consistency of the wireless channel. Coding

gain was calculated by comparing each index coding round to

the TDM transmission immediately preceding it.

Figure 4 shows histograms of the number of transmissions

required to deliver all K = 12 messages using index coding,

RNC, and TDM respectively. Note that both index coding and

RNC have a similar spread; however index coding has a mean

number of transmissions of about 9, whereas the mean for

RNC is about 17. TDM has the largest average number of

transmissions at 25, as well as the largest spread. Thus, index

coding is the most reliable and consistent of the three schemes.

Figure 5 shows average coding gains for each scheme after

the erasure probabilities were binned into intervals of 5%.

Averages were calculated in a bin only if it contained at least

80 data points. Clearly, structured index coding performs better

than RNC in the sensor network case (paired nodes). The

largest average gain for RNC is ν12.475 = 1.76, while the largest

average index coding gain is η12.425 = 3.70. Note the highest

gains occurred for both coding schemes in the 12-node setup.

One can attribute this to the higher co-channel interference,

thus causing correlated erasure probabilities. In addition, the

larger number of nodes enables more opportunities for interfer-

ence alignment as nodes exit the system. Incidentally, erasures

were more variable in the case of index coding, which caused

the curves to appear slightly less smooth than the random

coding plots for the same number of trials.

Note that for high erasure probabilities the coding gain

exceeds 2, the theoretical gain for ε = 0. This is likely due to

positive correlation among erasure probabilities for different

nodes. If different nodes see similar channels, then they are

more likely to receive the same symbols and exit the system

at the same time, reducing the number of transmissions. In

the case of εi independent and identically distributed for each

node, RNC gain decreases as a function of ε and performs

worse than TDM for high erasure probability [14]. Here,

performance improves for both coding schemes, but index

coding allows for greater exploitation of correlated erasures.

Table 2 shows the gain obtained by comparing index coding

to RNC at each erasure bin for each value of K. The largest

coding gain of 1.97 occurs at ε = .35 for K = 4. In this basic

example, index coding has a theoretical maximum advantage
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Fig. 4. Number of transmissions for (a) index coding, (b) RNC, and (c) TDM at K = 12.

TABLE 2
CODING GAIN OVER RANDOM CODING: (ηKε /νKε )

K Erasure Bin (Percent)
0− 5 5− 10 10− 15 15− 20 20− 25 25− 30 30− 35 35− 40 40− 45 45− 50

4 1.49 1.49 1.45 1.47 1.58 1.53 1.97 - - -
8 - - - - 1.55 1.57 1.53 1.70 - -

12 - - - - - - - 1.78 1.72 -
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Fig. 5. Average Coding Gain Over TDM.

over RNC of
ηK0
νK0

=
2(K − 1)

K
. (16)

Experimental data confirms that this advantage is achievable

in a real-world, high erasure setting.

VI. CONCLUSIONS

This paper presents a greedy rank minimization framework

for wireless index coding and demonstrates its applicability to

the multi-way interchange network with a non-trivial hardware

implementation. Using structured transmission strategies, par-

ticularly in the case of correlated erasures, index coding can

provide up to twice the throughput of RNC. Future research

may include more complex network topologies, where differ-

ing side information at each node can be better exploited for

throughput gains.
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