
Testing an Intentional Naming Scheme Using

Genetic Algorithms

Sarfraz Khurshid

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139
khurshid@lcs.mit.edu

Abstract. Various attempts have been made to use genetic algorithms

(GAs) for software testing, a problem that consumes a large amount
of time and e�ort in software development. We demonstrate the use of

GAs in automating testing of complex data structures and methods for

manipulating them, which to our knowledge has not been successfully
displayed before on non-trivial software structures. We evaluate the ef-

fectiveness of our GA-based test suite generation technique by applying

it to test the design and implementation of the Intentional Naming Sys-
tem (INS), a new scheme for resource discovery and service location in a

dynamic networked environment. Our analysis using GAs reveals serious

problems with both the design of INS and its inventors' implementation.

1 Introduction

Genetic algorithms [7] are a family of computational models inspired by biologi-
cal evolution. These algorithms encode a potential solution to a speci�c problem
on a simple chromosome-like data structure and apply recombination operators
to these structures so as to preserve critical information. Genetic algorithms are
often viewed as function optimizers, although the range of problems to which
they have been applied is quite broad [19].

There have been various attempts ([3], [6], [10], [14], [16], [18], [20]) to use
genetic algorithms in software testing, a problem that is very labor intensive
and expensive [2]. In this paper we explore the use of genetic algorithms in
automating testing of complex data structures used in naming infrastructures
for dynamic networks of computers and devices.

Naming is a fundamental issue in distributed systems that is growing in
importance as the number of directly accessible systems and resources grows to
the point that it is diÆcult to discover the (names of) objects of interest. The
di�erence between a true confederation of computing services and a collection of
networked centralized computing systems lies in the system's ability to provide
a uniform and location independent way of accessing and naming resources.

Testing architectures that provide service location and resource discovery
using location independent names in a worldwide internetwork is clearly a chal-
lenging task.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 358{372, 2001.
c
 Springer-Verlag Berlin Heidelberg 2001

Testing an Intentional Naming Scheme Using Genetic Algorithms 359

1.1 Software Testing

Studies indicate that software testing consumes more than �fty percent of the
cost of software development [2]. This percentage is even higher for critical soft-
ware, such as that used for avionics systems. As software becomes more pervasive
and is used more often to perform critical tasks, it will be required to be of higher
quality. Unless we can �nd more eÆcient ways to perform e�ective testing, the
percentage of development costs devoted to testing will increase signi�cantly.

Generation of test data to satisfy testing requirements is a particularly labor-
intensive component of the testing process. For a given testing requirement, test
data generation techniques try to identify a program input that will satisfy the
selected testing criteria. If the process of test data generation is automated,
signi�cant reductions in the cost of software development could be achieved.

Various test data generation techniques have been automated. Goal-oriented

test data generators select inputs to execute the selected goal irrespective of the
path taken (e.g. [13]). Random test data generators use some distribution to
select random inputs (e.g. [15]). Structural or path-oriented test data generators
make use of the program's control
ow graph to select a particular path, and use
a technique such as symbolic evaluation to generate test data for the selected
path (e.g. [5], [17]). Intelligent test data generators typically guide the search for
new test data using complex analyses of the code (e.g. [4], [14]).

In this paper we present a technique for automating test data generation
using a genetic algorithm, that aims at testing structural properties of the data
structures involved in the program and their associated methods. The genetic
algorithm conducts its search by constructing new test data (next generation)
from previously generated test data (current generation) that are evaluated as
good candidates. The algorithm evaluates the candidate test data based on the
code coverage achieved, the control points of interest executed or avoided, and
the required properties satis�ed.

Our GA-based testing technique has four essential components. The �rst part
is to identify methods to test and global properties of interest concerning these
methods. The second part is to determine a genetic encoding such that each test
datum encodes a sequence of operations of interest and their parameters.

The third component involves computing the �tness of test data and has
three subparts. First, we trivially modify the methods identi�ed in the �rst part
to reward test data that access them by incrementing their score per line of code
executed in a method of interest. Second, we identify control points in code that
are of particular interest and either add a bonus score or a penalty for executing
that point. The rationale for doing so is explained in Section 3.2. Third, we award
bonus points to test data that possess the properties identi�ed in part one. This
bonus or penalty is considerably greater than the score given per statement of
execution in the �rst part.

The �nal component of our framework is to apply standard genetic operators
of evaluation, crossover, and mutation on the genetic representation of test data
in the current generation and move onto the next generation.

360 Sarfraz Khurshid

An advantage of our approach is that since the genetic representation of each
test datum represents a sequence of operations of interest, it is straightforward
to test the behavior of a program when such operations are interleaved.

Another bene�t is due to the idea of using barriers (i.e. awarding a large
negative penalty for executing certain control points) as this induces new test
data to evolve and identify bugs that have not already been discovered, without
having to �x the ones previously found.

Our framework applied to generate automated test data for the Intentional
Naming System (INS) [1] (Section 2), a new scheme for resource discovery and
service location in a dynamic networked environment, reveals serious
aws in
both the design and implementation [21] of INS. These
aws, to our knowledge,
were not previously known to the INS inventors. In particular, we establish that
in the INS naming architecture, addition of a new service can cause a situation
where the system makes valid services inaccessible to clients seeking them.

In the next section, the background on INS is given. Then, the genetic al-
gorithm for test data generation is described. Following that, the results from
testing the INS implementation are presented. Next, the technique presented is
compared to related work. Finally, conclusions and future work are given.

2 INS Background

One particular service discovery solution in dynamic networked environments is
the Intentional Naming System (INS) [1], which allows services to describe and
refer to each other using names which are intentional. These names describe a
set of properties that the services should have rather than specify a low-level
network location. The idea is to allow applications to refer to what service they
want rather than where in the network topology the service resides. It also allows
applications to communicate seamlessly with end-nodes, despite changes in the
mapping from name to end-node addresses during the session.

INS comprises applications and intentional name resolvers (INRs). Applica-
tions may be clients or services with services providing the functionality or data
required by clients. Like IP routers or conventional name servers, INRs route re-
quests from clients to appropriate locations, using a database that maps service
descriptions to their physical network locations.

An INR provides a few fundamental operations. When a service wants to
advertise itself { because, for example, it has come online after being down, or
because its functionality has been extended { it calls the Add-Name operation
to register the service against an advertisement describing it. Applications make
queries by calling the resolvers Lookup-Name operation.

Intentional names are implemented in INS using name-speci�ers that repre-
sent both queries and advertisements. A name-speci�er (Figure 1) is an arrange-
ment of alternating levels of attributes and values in a tree structure. In Figure
1, hollow circles identify attributes and �lled circles identify values. Attributes
represent categories in which an object can be classi�ed. Each attribute has a

Testing an Intentional Naming Scheme Using Genetic Algorithms 361

name−specifier

service

camera

building

NE−43

servicebuilding

NE−43

name−tree

camera printer

R0

R1

Lookup−Name (name−tree, name−specifier) = {R0}

Fig. 1. Example of a Lookup-Name operation

corresponding value that is the objects classi�cation within that category. A
wild-card may be used in place of a value to show that any value is acceptable.

An attribute together with its value form an av-pair; each av-pair has a set
of child av-pairs that specialize it to further describe the object. Orthogonal av-
pairs specializing the same av-pair are siblings in the tree. The name-speci�er in
Figure 1 describes an object in building NE-43 that provides a camera service.

An INR stores its information in a database called a name-tree (Figure 1).
A name-tree resembles a super-positioning of several name-speci�ers, and stores
the correspondence between name-speci�ers and name-records, which include the
IP addresses of services advertising the name.

A name-tree also has two fundamental building blocks, an attribute-node

and a value-node. A value-node can have several attribute-nodes as children.
Similarly, an attribute-node can have several value-nodes as children, each rep-
resenting a distinct value the name-tree knows.

A value-node that corresponds to a leaf av-pair of an advertised name-
speci�er also contains a pointer to the relevant name-record. In Figure 1 this
is represented by broken arrows, and the name-tree shown stores two objects,
one (i.e. R0) that provides a camera service in NE-43 and the other one (i.e. R1)
that provides a printer service in the same building.

The name-records for a name-speci�er are retrieved from a name-tree using
the Lookup-Name operation. An algorithm for this operation is given in pseudo-
code in the published description of INS [1], and is replicated in Appendix A.
When it is invoked on the name-speci�er and name-tree in Figure 1, R0 is re-
turned since the value of attribute 'service' sought by the client (i.e. camera)
does not match that provided by R1 (i.e. printer).

An implementation of the naming architecture of INS appears in [21]. About
1400 lines of Java code implement Lookup-Name and Add-Name and the relevant
data structures and methods, and another 900 lines constitute the testing code
used by INS inventors.

362 Sarfraz Khurshid

3 The Stochastic Approach

A genetic algorithm is an optimization heuristic that emulates natural processes
like selection and mutation in natural evolution. It evolves solutions to problems
that have large solution spaces and are not amenable to traditional search or
optimization techniques. Genetic algorithms have been applied to a broad range
of learning and optimization problems [19] since their inception by Holland [7].

Typically a genetic algorithm starts with a random population of solutions
(chromosomes). Through a recombination process and mutation operators it
evolves the population toward an optimal solution. Achieving an optimal so-
lution is not guaranteed and the task is to design the process to maximize the
likelihood of generating such a solution. The �rst step is the evaluation of �tness
of solutions in the current population to act as parents in the next generation.
Solutions are considered more �t than others if they are closer to an optimal.

Upon evaluation, several solutions are selected and solutions with a higher
value of �tness are more likely to get selected. After selection, the parents are
recombined and mutated to generate o�springs. The new population is thus
formed and the cycle is repeated.

The processes of evaluation, selection, recombination and mutation are usu-
ally performed many times in a genetic algorithm. Selection, recombination,
and mutation are generic operations in any genetic algorithm and have been
throughly investigated in literature. On the other hand, evaluation is problem
speci�c and relates directly to the structure of the solutions. Therefore, in a
genetic algorithm a major issue is to design the structure of solutions and the
method of evaluation. Among other issues are size of the population, portion of
population taking part in recombination, and mutation rate.

Our GA-based testing technique has four essential components:

� identi�cation of methods to test and their global properties of interest;
� framing a genetic encoding such that each chromosome represents a sequence
of operations of interest and their parameters;

� formulation of the �tness function, which has three subparts:
�� (trivial) modi�cation of the methods identi�ed in part one to reward
chromosomes that access them by incrementing the score of a chromo-
some per line of code it executes in such a method;

�� identi�cation of control points of interest in code and addition of either
a bonus score or a penalty for causing execution of that point;

�� awarding bonus points to chromosomes that possess the properties iden-
ti�ed in part one. The bonus or penalty is considerably greater than the
score given per statement of execution in the �rst part;

� application of standard evaluation, crossover, and mutation operators on the
chromosomes in the current generation and move onto the next generation.

An optimal chromosome would therefore encode a test suite that invokes a se-
quence of operations of interest, and satis�es the desired properties with regards
to that sequence, executes or avoids executing control points of interest as re-
quired, and gives maximal code coverage. The following sections explain these
notions in detail.

Testing an Intentional Naming Scheme Using Genetic Algorithms 363

Name−Specifier 0 Name−Specifier 1 Name−Specifier 2 Name−Specifier 3 Name−Specifier 4

0 170

Fig. 2. Representation of a test suite

3.1 Genetic Encoding

As a very �rst step of our testing technique we identify methods that we want
to test. The most interesting operations in the naming architecture of INS are
Lookup-Name and Add-Name. These methods in turn determine the genetic en-
coding and �tness function that evaluates the chromosomes.

The most obvious way to test the behavior of operations is to have a chro-
mosome represent which operation to perform along with its parameters. So if
we were to test name resolution of INS, a chromosome could encode a Lookup-

Name or Add-Name operation along with the name-tree and the name-speci�er
on which to perform that operation.

A problem with this representation is that it is not immediate how to observe
the combined e�ect of a sequence of dependent operations. For example, in INS,
if for a given name-tree we want to determine the e�ect of repeated additions
on the resolution of a �xed name-speci�er in the resulting name-trees, it would
not be feasible to do so.

An alternative representation is to have a chromosome denote a sequence
of operations with some parameter having an implicit representation. In the
case of INS, a chromosome could then encode successive Lookup-Name and Add-

Name operations with only one parameter. It represents that sequence of oper-
ations starting from an empty name-tree. So for example it could encode1

add N1; lookup N2; add N3; add N4; lookup N5

to represent a sequence of operations that starts with a new name-tree T0, adds
N1 to T0 to result in name-tree T1, resolves N2 with respect to T1, and so on.
This way we could evaluate how a chromosome performs based on the results
generated by each of the Add-Name or Lookup-Name operation that it induces.

We use a slight modi�cation of this representation in our framework for
testing INS. In particular, a chromosome denotes �ve name-speci�ers, last four of
which are to be inserted in an empty name-tree one by one, and the �rst one is to
be resolved following each insertion. So, for example, the chromosome in Figure
2 would start execution by creating a new name-tree, then N1 would be added
to the name-tree, followed by resolution of N0, addition of N2, resolution of N0,
and so on. Notice that this structure is particularly well suited for investigating
the e�ect that addition has on resolution, and there is no need to have an explicit
encoding for a name-tree.

1 For convenience, we write Ni for Name-Speci�er i

364 Sarfraz Khurshid

n1 a a a v v v n2 a a a v v v a a a v v v n3 n3 a a a v v v a a a v v v

0 33

Fig. 3. Genetic representation of a name-speci�er

In order to represent a name-speci�er we need to determine a suitable number
of bits that capture the behavior of methods under scrutiny. Due to the recursive
nature of Lookup-Name and Add-Name it is necessary to have a representation
that induces some recursive calls. We use two way branching at the top level
and allow one of the children to branch two way, while the other child may only
have one further child.

The name-speci�er in the top right corner of Figure 5 depicts a full name-
speci�er that can be encoded like this. Moreover, we select the attributes and
values from a pool of 8 attributes, fa0,: : :,a7g, and 8 values, fv0,: : :,v7g. This
gives us suÆcient freedom to perform our testing using diverse test cases.

We use 34 bits (Figure 3) to represent a name-speci�er and thus, a chromo-
some can be represented using 170 bits as is shown in Figure 2. In Figure 3,
'n1' represents 1 or 2 way branching at top level, 'n2' determines whether the
�rst child has a child, 'n3n3' determines whether the second child has 0,1, or 2
children. The sequence 'aaa' contains an attribute and 'vvv' contains a value.

Figure 4 illustrates a sample chromosome and presents the results of the
test sequence it would induce. Name-speci�ers1{4 are inserted one by one into
an empty name-tree to get the name-tree shown in the bottom right corner.
Name-speci�er0 is resolved after each addition and the resulting name-records
are displayed in the bottom line. Notice that during this execution as more ad-
vertisements are added to the name-tree, resolution returns more name-records2.

3.2 Fitness Function

To evaluate the performance of a chromosome, we de�ne our �tness function
to have two components. The �rst component, Fs, only computes the number
of statements that are executed while simulating the sequence of operations
encoded in a chromosome. In the case of INS, we add a statement of the form
score++; with every statement of the Lookup-Name procedure. This step can
easily be automated. Notice, that based solely on this �tness function we can
start our experimentation and the �ttest chromosomes would try to maximize
code coverage of this method.

However, simply achieving maximal code coverage is not our goal. The second
component of our �tness function,Fd, is determined by the kind of tests we would
like to perform. It uses two simple ideas.

Firstly, in order to induce chromosomes to explore certain aspects of the sys-
tem being tested, we award bonus reward to chromosomes that do so. This could

2 The result of Lookup-Name is treated empty if it is fg or f*g

Testing an Intentional Naming Scheme Using Genetic Algorithms 365

name−specifier2
to Add

a2

v0

a7

v2

a3

v2

a5

v3

a7

v6

name−specifier4
to Add

a0

v3

v4

a2

name−specifier3
to Add

a7

v6

a6

v2

a5

v6

name−specifier1
to Add

a6

v1

name−specifier0
to Lookup

name−tree
after above additions

a1

v4

a6

v1

a7

v6

a7 a2

v6

a0

v3

v0 v4

a7 a5 a6

v2 v6 v2

a3

v2

a5

v3

a0

v3

R0 R1 R2 R3

Lookup1 = {*}, Lookup2 = {*},
Lookup3 = {R2}, Lookup4 = {R2,R3},

Fig. 4. Visualisation of a sam-
ple chromosome to test INS.
Lookupi denotes the result of ith
call to Lookup-Name .

a3

v7

name−specifier1
to Add

v1

a1

name−specifier2
to Add

a5

v1

a2

v2

name−specifier3
to Add

a1

v7

a1

v1

a6

v4 v4

a4

name−specifier4
to Add

v3

v1

a2 a0

v1

a4

v3

v2

a6

to Lookup
name−specifier

a1

name−tree
after additions

a1

v7v1

a6

v4

v1

a2

v2

a4 a5a3

v7 v1

a2 a0

v4v3

R0 R1 R2 R3

Lookup1 = {*}, Lookup2 = {R1},
Lookup3 = {R1}, Lookup4 = {*}

Fig. 5. Revealing a
aw in the
INS implementation

involve control points in the code that are more susceptible to lead to run-time
errors, or global properties of the test sequence represented by a chromosome like
for example, rewarding chromosomes that result in di�ering results of Lookup-
Name operation. The chromosome presented in Figure 4 was in fact produced
by rewarding 10 extra points per pairwise di�erent Lookup-Name results that it
produced.

Secondly, we introduce barriers in the form of penalty points for chromosomes
that execute parts of the code that we have already determined no longer to be
interesting from the point of view of further testing. This concept of using barrier
functions turns out to be a very powerful idea as we demonstrate in the next
section.

The fact that we can use it to evolve chromosomes that do not visit certain
parts of the code means that once we discover a bug, we do not have to �x it
immediately in order to proceed with our testing. Instead we can just introduce
a negative score at that control point and the testing system would evolve to test
other parts of the code that can be executed independently of this buggy point.

366 Sarfraz Khurshid

These two components together form our �tness function

F = Fs +Fd

and we demonstrate its utility in the next section where we test INS.

4 Analysis

In this section we use our testing technique to analyze the Java implementation
of INS that is given in [21]. There are various properties that we can test of
a naming scheme. For example, whether the name resolution mechanism ever
returns objects that have functionality con
icting what an application seeks, or
whether it returns all objects that conform to a request.

We test a fundamental property that we believe is essential for the correctness
of a naming scheme. In particular, we see if addition behaves monotonically in
INS, i.e. performing the Lookup-Name operation after an addition results in at
least the name-records that result if the same name-speci�er is resolved before
that addition.

In order to test this property we modify our �tness function to reward chro-
mosomes that are able to violate it. This is achieved by comparing the elements
of the sequence R1; : : : ;R4 of results produced by the Lookup-Name operations
performed after each Add-Name operation that the chromosome induces3. If this
sequence is found to have elements Ri and Rj for i > j such that Ri � Rj , we
reward such a chromosome with an additional score of 100 points for each such
pair.

After incorporating this change we execute our system and let it evolve to
see if any of the chromosomes can actually result in such behavior. The evo-
lution stabilizes in about 110 generations and the highest scoring chromosome
represents the name-speci�ers illustrated in Figure 5. As we see from the results
of Lookup-Name operations, the last Lookup-Name operation produces no name-
records, despite the fact that before the �nal addition was performed, a valid
service, namely R1, was returned.

Careful examination of the INS code reveals that the inventors of INS use
a (boolean)
ag to indicate whether a set contains all elements of a domain,
instead of actually inserting those elements into it at the time of its creation
(line 1 of pseudo-code in the Appendix). This
ag representation later causes
problems when set unions are performed, and results in loss of information. In
Figure 5 this happens after the �nal addition when an attribute corresponding
to a4 in the name-speci�er to lookup is searched in the name-tree. This is an
extremely subtle
aw, and our system quickly evolves to detect it and generates
our �rst counterexample.

We next explore the question if this violation of a fundamental property is
solely due to the use of this
ag based representation. Our task now is to induce

3 We writeRi for Lookupi, to represent a set of name-records resulting by an execution
of Lookup-Name after the i

th addition

Testing an Intentional Naming Scheme Using Genetic Algorithms 367

name−specifier2
to Add

a5

v3

a7

v2

v6

a1

name−specifier1
to Add

a7

v6

a2

v5

a0 a3

v5 v2

a1

v6

name−specifier3
to Add

v4

a4

v3

a5

v6

a0

v2

v6

a7

to Lookup
name−specifier0

a1

a3

v3

name−tree
after additions

v6

a2

v5

a7a1

v6

a0 a3

v2v5

a5

v3

a4 a7

v2v4

R0 R1 R2

Lookup1 = {R0}, Lookup2 = {R0}, Lookup3 = {}

Fig. 6. Another
aw in the INS
implementation

name−specifier1
to Add

a2

v1

a1

v7

v3

a5

v7

a2

v1

v0

a7

to Lookup
name−specifier0

a1

a0

v0

name−tree
after additions

a1

v1

a2 a5

v3v1

v7 v0

a7

R0 R1

v1

a1

name−specifier2
to Add

a7

v0

Lookup1 = {R0}, Lookup2 = {}

Fig. 7. Non-monotonicity of the
Add-Name operation in INS

our system to evolve away from using any union operation that leads to this
e�ect. To achieve this, we introduce a negative reward for any chromosome that
causes an execution of the union operation when exactly one of the sets involved
has its
ag set and the other one is non-empty. We subtract 200 points from the

score of such a chromosome.

Having set the parameters this way, we restart the evolution of our testing
system and observe the behavior of the highest ranked chromosome. Around gen-
eration number 98 the system stabilizes and the best chromosome in that state
is presented in Figure 6. We only illustrate the �rst four name-speci�ers since
the desired e�ect is observed then. Notice that the third addition contradicts
the monotonicity property.

An analysis of the behavior of Lookup-Name on this test suite reveals that
the INS implementation does not handle a value mismatch correctly. When at-
tributes match at a certain level but no corresponding value matches, the imple-

368 Sarfraz Khurshid

0

100

200

300

400

500

600

0 20 40 60 80 100 120

"BuggyStar.data"
"ValueMismatch.data"

"NonMonotonicAdd.data"

Fig. 8. Performance

mentation behaves in a fashion that once again leads to this erratic behavior. In
Figure 6 this happens after the third addition, when a value corresponding to v2
in name-speci�er0 is searched in the name-tree among the children value-nodes
of the attribute-node a0. It should be noted here that this behavior is not due
to the bug discovered above.

Having identi�ed another cause of failure of the fundamental property of
monotonicity in INS we once again use the idea of introducing a penalty function
to discourage chromosomes from causing execution paths that lead to already
discovered bugs. We now add an additional penalty of 100 points at the control
point in Lookup-Name that handles a value mismatch.

This time our system evolves to a stable state in about 65 generations. Fig-
ure 7 displays part of the highest scoring chromosome in that generation. The
second addition triggers o� the required e�ect. It is interesting to note that this
behavior is independent of the bugs discovered above with the INS inventors
implementation.

In fact, this problem is due to a
aw in the semantics of INS. INS inventors
de�ned missing attributes to act as wild-cards [1] and the Lookup-Name algo-
rithm tries to incorporate that feature. However, this leads to INS displaying this
highly undesirable behavior and there is no consistent notion of what it means
for a name-record to conform to a name-speci�er.

Figure 8 shows the performance of our testing system in producing each
of the three counterexamples discussed in this section. We plot the score of
the best test suite in a generation (on the vertical axis) against the genera-
tion number. \BuggyStar.data" shows the results of experiment that resulted in
the chromosome in Figure 5, \ValueMismatch.data" for that in Figure 6, and
\NonMonotonicAdd.data" for the chromosome in Figure 7.

Testing an Intentional Naming Scheme Using Genetic Algorithms 369

All the tests took less than 1 minute on an Intel Celeron 400 MHz processor.
Throughout the experiments our genetic algorithm used a population size of 200
chromosomes with the �ttest 100 parenting o�springs, mutation rate of 0.05 and
a single-point crossover. It took fewer than 120 generations for the system to
stabilize in each testing scenario.

5 Related Work

Other researchers have investigated the use of genetic algorithms for automating
test data generation, but most work has focused on achieving maximal code or
branch coverage.

McGraw et al. [14] explore their use in dynamic test data generation where
the problem of test data generation is reduced to one of minimizing a function.
They provide an implementation of Korel's function minimization approach to
test data generation using a genetic algorithm. A stated goal of their approach
is to cover all branches in a program.

Pargas et al. [16] present a goal-oriented technique for automatic test data
generation using a genetic algorithm that is guided by the control dependencies
in the program. They aim at achieving statement and branch coverage.

The GA-based framework of Roper et al. [18] tests C programs by instru-
menting them with probes that provide feedback on the coverage achieved.

Jones et al. [10] have used genetic algorithms to generate test sets auto-
matically that satisfy the requirements for test data set adequacy of structural
testing. A recent paper by Bueno et al. [3] builds on their work and presents a
tool for the automation of test data generation and infeasible path identi�cation.
Their focus is also to perform structural software testing.

Grob [6] argues that genetic algorithms make Dynamic Timing Analysis of
systems feasible, and give accurate predictions of a system's run-time behavior
through their analysis of the interactions of the program's input parameters.

Schultz et al. [20] apply GA-based machine learning techniques to the general
problem of evaluating an intelligent controller for an autonomous vehicle. Their
approach subjects a vehicle controller to an adaptively chosen set of fault sce-
narios within a vehicle simulator, and searches for combination of faults, using
genetic algorithms, that produce noteworthy performance by the controller.

Our approach contrasts with these in several ways. First, we aim to test
complex data structures and methods for manipulating them, and our primary
concern is not to get the maximal code or branch coverage. Second, we use
the idea of barrier functions (negative reward) which allows us to identify new
bugs without having to �x the ones that we have already discovered. Third, we
are able to test properties concerning interleaving of operations in a real world
system.

Recently [12], we created an object model of the naming infrastructure of INS
in Alloy [8] and analyzed it with the Alloy Analyzer [9] to disprove a published
claim made by the inventors of INS about the equivalence of wild-cards and
missing attributes. Using that model, we also discovered that the published

370 Sarfraz Khurshid

Lookup-Name algorithm [1] failed to handle certain boundary conditions and
gave erratic results. Private communication with the INS inventors revealed that
those boundary cases were �xed in their Java implementation given in [21].

The most important advance over our work in [12] is that the analysis pre-
sented here discovers bugs in the proposed �xes of the inventors, and, moreover,
identi�es a major
aw in the design of the naming semantics of INS and its name
resolution algorithm. In [11] we extend our original Alloy model to reveal the

aws discussed here using the Alloy Analyzer.

Using a model checker to verify properties about a structure of the com-
plexity of INS requires a thorough understanding of the algorithms involved
and changing them necessitates remodeling. A model checker, however, typically
guarantees to �nd a bug if one exists in (small) �nite scope, provided the model
is sound. Also, a model can be constructed without an actual implementation.

Our analysis using genetic algorithms only needs elementary knowledge of
the implementation details of INS. Moreover, since our GA-based framework
manipulates the implementation code directly, the same framework can be used
to incorporate any future changes to the code being tested.

6 Conclusions

We have presented and successfully demonstrated an automated test data gen-
eration framework based on genetic algorithms that can be adapted to test com-
plicated software structures and methods for manipulating them. Our approach
is especially well suited to evaluating other naming schemes in which the corre-
spondence between names and objects is non-trivial.

Care, however, needs to be taken in order to adjust the parameters, espe-
cially the �tness function, so as to induce the chromosomes to evolve to test the
desired features. We decided to set the bonus or penalty points two orders of
magnitude more than the reward for executing a statement of the code, after
some experimentation.

Designing a suitable genetic representation of the test data required some
care. A cursory examination of the description of the data structures involved
would lead to an ineÆcient encoding. The use of a representation that never
encodes a name-tree directly makes it more versatile.

We believe that the use of genetic algorithms in testing has great bene�ts, as
they not only generate quality test data quickly but also can identify structural

aws that are particularly hard to detect otherwise. We view them as comple-
mentary to other standard testing tools. A static analysis tool, for example,
might be used to assist in computing a suitable �tness function.

It is our goal to identify a set of properties that encapsulates the correctness
of a general naming scheme. This would be a �rst step in creating a framework
for testing an arbitrary naming scheme using our GA-based testing technique.

We would also like to explore the possibility of using these ideas in program
slicing and detection of infeasible program paths. The concept of using barriers
while evaluating �tness seems especially promising.

Testing an Intentional Naming Scheme Using Genetic Algorithms 371

Acknowledgement

This research was funded by an Information Technology Research grant from
the National Science Foundation (#0086154), and by a grant from the NTT
Corporation. We would like to thank William Adjie-Winoto for discussions on
INS. We are also grateful to Daniel Jackson, Viktor Kuncak, and Alexandru
Salcianu for detailed comments on earlier drafts of this paper. Ahmad Kamal,
Mehreen Naseem, and Maimoon Nasim kindly helped with the �nal draft while
the author was in Lahore.

References

1. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and
implementation of an intentional naming system. In 17th ACM Symposium on

Operating Systems (SOSP 99), Kiawah Island, December 1999.
2. B. Beizer. Software Testing Techniques. International Thomson Computer Press,

1990.
3. P. M. S. Bueno and M. Jino. Identi�cation of potentially infeasible program paths

by monitoring the search for test data. In Proceedings of the Fifteenth IEEE Inter-

national Conference on Automated Software Engineering (ASE 2000), Grenoble,
France, September 2000.

4. K-H. Chang, J. H. Cross, W. H. Carlisle, and D. B. Brown. A framework for

intelligent test data generators. In Journal of Intelligent and Robotic Systems {
Theory and Applications, July 1991.

5. L. A. Clarke. A system to generate test data and symbolically execute programs.
In IEEE Transactions on Software Engineering, September 1976.

6. H. Grob. Intelligent timing analysis of real-time software. Internal Report, Uni-
versity of Glamorgan, U.K.

7. J. Holland. Adaption in natural and arti�cial systems. In Ann Arbor: The Uni-
versity of Michigan Press, 1975.

8. D. Jackson. Alloy: A lightweight object modelling notation. Technical Report 797,
MIT Laboratory for Computer Science, Cambridge, MA, February 2000.

9. D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint analyzer.

In Proceedings of the International Conference on Software Engineering, Limerick,
Ireland, June 2000.

10. B. F. Jones, H. H. Sthamer, and D. E. Eyres. Automatic structural testing using
genetic algorithms. Software Engineering Journal, pages 299{306, Sep 1996.

11. S. Khurshid. Exploring the design of an intentional naming scheme with an auto-
matic constraint analyzer. Masters Thesis, MIT Laboratory for Computer Science,

Cambridge, MA, May 2000.
12. S. Khurshid and D. Jackson. Exploring the design of an intentional naming scheme

with an automatic constraint analyzer. In Proc. 15th IEEE International Confer-

ence on Automated Software Engineering (ASE 2000), Grenoble, France, Septem-
ber 2000.

13. B. Korel. Automated software test data generation. In IEEE Transactions on

Software Engineering 16(8):870 { 879, August 1990.
14. G. McGraw, C. Michael, and M. Schatz. Generating software test data by evolu-

tion. Technical Report RSTR-018-97-01, RST Corporation, Sterling, VA, February

1998.

372 Sarfraz Khurshid

15. H. D. Mills, M. D. Dyer, and R. C. Linger. Cleanroom software engineering. In

IEEE Software 4(5): 19-25, September 1999.
16. R. P. Pargas, M. J. Harrold, and R. P. Peck. Test-data generation using genetic

algortihms. In Journal of Software Testing, Veri�cation, and Reliability. Wiley,

1999.
17. C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On the automated generation

of program test data. In IEEE Transactions on Software Engineering 2(4):293 {
300, December 1976.

18. M. Roper, I. Maclean, A. Brooks, J. Miller, and M. Wood. Genetic algorithms and

the automatic generation of test data. Technical Report RR/95/195 [EFoCS-19-
95], University of Strathclyde, Glasgow, U.K., 1995.

19. P. Ross and D. Brown. Applications of genetic algorithms. AISB Quaterly on

Evolutionary Computation, (89):23{30, Autumn 1994.
20. A. C. Schultz, J. J. Grefenstette, and K. A. De Jong. Learning to break things:

adaptive testing of intelligent controllers. In Handbook of Evolutionary Computing.

IOP Publishing Ltd and Oxford University Press, 1995.
21. E. Schwartz. Design and implementation of intentional names. Masters Thesis,

MIT Laboratory for Computer Science, Cambridge, MA, May 1999.

A Pseudo-code for Lookup-Name

The following pseudo-code description of Lookup-Name is taken from [1].

Lookup-Name(T,n)

S <- the set of all possible name-records

for each av-pair p := (na, nv) in n

Ta <- the child of T such that

Ta's attribute = na's attribute

if Ta = null

continue

if nv = * // wild card matching

S' <- empty-set

for each Tv which is a child of Ta

S' <- S' union (all of the name-records in the

subtree rooted at Tv)

S <- S intersection S'

else // normal matching

Tv <- the child of Ta such that

Tv's value = nv's value

if Tv is a leaf node or p is a leaf node

S <- S intersection (the name-records of Tv)

else

S <- S intersection Lookup-Name(Tv, p)

return S union (the name-records of T)

Fig. 9. Lookup-Name algorithm

	Introduction
	Software Testing

	INS Background
	The Stochastic Approach
	Genetic Encoding
	Fitness Function

	Analysis
	Related Work
	Conclusions
	Pseudo-code for Lookup-Name

