
Program Slicing for Declarative Models

Engin Uzuncaova and Sarfraz Khurshid
The University of Texas at Austin

Austin, TX 78712
{uzuncaov, khurshid}@ece.utexas.edu

ABSTRACT
The declarative modeling language Alloy and its automatic an-
alyzer provide an effective tool-set for building designs of sys-
tems and checking their properties. The Alloy Analyzer performs
bounded exhaustive analysis using off-the-shelf SAT solvers. The
analyzer’s performance hinges on the complexity of the models and
so far, its feasibility has been shown only within small bounds.
With the growing popularity of analyzable declarative modeling
languages, in general, and Alloy, in particular, it is imperative to
develop new techniques that allow the underlying solvers to scale
to real systems.

We present Kato, a novel technique that defines program slicing
for declarative models and enables efficient analyses using existing
analyzers, such as the Alloy Analyzer. Given a declarative model,
Kato identifies a slice, which represents the model’s core: a satisfy-
ing solution to the slice can be systematically extended to generate
a solution for the entire model, while unsatisfiability of the core im-
plies unsatisfiability of the entire model. The experimental results
show that it is possible to achieve a significant improvement in the
solving time.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

1. INTRODUCTION
As software systems grow in complexity, the need for efficient au-
tomated techniques for design, testing and verification becomes
even more critical. The declarative modeling language Alloy [3]
and its fully automatic analyzer [4] provide an effective tool-set for
building designs of systems and checking their properties.

Alloy is a first-order relational logic with transitive closure, which
allows expressing rich structural properties using succinct and in-
tuitive path expressions. The Alloy Analyzer translates Alloy mod-
els into boolean formulas using a scope—bound on the universe of
discourse—provided by the user, and uses off-the-shelf SAT tech-
nology to solve the resulting boolean formulas.

For practical examples, Alloy’s analysis is often limited to small
scopes, which can be impractically small for modeling realistic
systems. The Alloy Analyzer already incorporates a variety of
optimizations, such as symmetry-breaking, partial functions, type-
based reduction of variables, and guidelines for manual rewriting of
Alloy formulas [6] to optimize the solving time. In past work [5],
we presented a suite of optimizations inspired by traditional com-
piler optimizations, such as common subexpression elimination and
loop unrolling, to perform source-to-source translations on Alloy
models to enable the SAT solvers to perform more efficiently.

In this paper, we present a new class of optimizations, which are
inspired by program slicing for imperative languages [7] but are
applicable to analyzable declarative languages, in general, and Al-
loy, in particular. We present Kato, a novel algorithm for slicing
declarative models. Given an Alloy model, Kato identifies a slice,
which represents the model’s core: a satisfying instance for the core
can systematically be extended into a satisfying instance for the en-
tire model, while unsatisfiability of the core implies unsatisfiability
of the entire model.

2. Kato: PROGRAM SLICING FOR ALLOY
Kato performs a static analysis of the given model to identify its
core. The static analysis traverses the abstract syntax tree of the
given Alloy formula, which is a conjunction of several sub-formulas,
to build a use-set of relations that appear in each sub-formula. Kato
uses these use-sets to compute the set of core relations. We take the
model slice that consists of the core relations and the constraints
that apply to only these relations, and use the Alloy Analyzer to
find a satisfying instance for the model’s core. Since the model slice
typically consists of only a strict subset of the original model, the
slice translates to smaller boolean formulas with fewer variables,
which improves the performance of the underlying SAT solvers.

We have evaluated the potential speedup in solving time that Kato
can provide using a suite of benchmark examples that model struc-
turally complex data. The results evince the existence of opportu-
nities for significant performance gains. For the binary search tree
example, we observe maximum speed-up of 19.13X and for the
linked-list example, a maximum speed-up of 6.16X.

2.1 Core and Derived Relations
We partition the set of relations declared in an Alloy model into
two sets: core and derived. We use core relations to define a slice
of the given Alloy model, which is analyzed first using SAT. Next,
we use the constraints on the derived relations to extend satisfying
instances of core relations into satisfying instances of the complete
model.

Definition 1. Let R be the set of all relations. Let C and D
partition R. Let fC be the formulas in f that only involve relations
in C. Let I be the set of all instances of f . Let IC be the set of all
valuations to relations in C and ID be the set of all valuations to
relations in D. C is a core set if and only if:

∀iC ∈ IC | fC(iC) ⇒ ∃iD ∈ ID | f(iC + +iD)

Definition 2. A relation r is core if and only if there exists a core
set and r belongs to that set. Similarly, a relation r is derived if and
only if a core set exists and r is not in the core set.

Given the constructive nature of our definition of core relations
(Definition 2), a simple algorithm suffices to construct the set of
core relations for a given Alloy model. In order to prevent too con-
servative core sets, the relations that appear as the bounds on the
quantifiers are also considered as core relations.

3. CASE-STUDY: BINARY SEARCH TREE
This section presents a case-study of using Kato to slice a model
of binary search trees [1]. The model that we slice with Kato de-
fines the constraints on acyclicity, connectivity, parent relation,
and size relation, and also specifies the ordering property of a
general binary search tree regarding the values in the nodes.

For the boolean formula corresponding to the complete model, the
SAT solver, takes 25.44 seconds (on average) and produces a valid
instance for the binary search tree with 14 nodes. Figure 1(a) illus-
trates this instance with five nodes.

To intuitively see which relations are core, notice that parent re-
lation can be computed, once the left and right relations are deter-
mined. Similarly size and in fact even key can also be computed
given the values for the other relations. Figure 1(b) shows a partial
instance corresponding to the core relations using solid lines; the
dotted lines depict the derived relations. The core relations com-
puted by Kato are left, right and root. The generated core
slice removes the relations key, size and parent and also the
constraints defined on these relations from the complete model.

Running the analyzer for the slice computed by Kato takes only
1.33 seconds (on average) to generate a satisfying instance for the
slice, a 19.13X improvement in SAT solving time. Besides the im-
provements in SAT solving, slicing also enables significant reduc-
tion in compilation time in the Alloy Analyzer.

(a) (b)

Figure 1: The binary search tree instance generated by the an-
alyzer. The tree in (a) presents the complete solution. In (b),
derived properties are indicated by dotted lines.

4. CONCLUSIONS
We have presented Kato, a novel technique that defines program
slicing for declarative models and enables efficient analyses using
existing analyzers, such as the Alloy Analyzer. Given a declarative
model, Kato identifies a slice, which represents the model’s core:
a satisfying solution to the slice can be systematically extended to
generate a solution for the entire model, while unsatisfiability of the
core implies unsatisfiability of the entire model. The experimental
results show that it is possible to achieve a significant improvement
in the solving time for Alloy models. We believe analyses based
on program slicing hold a lot of promise for efficiently checking
declarative specifications.

It is worth pointing that generating boolean formulas that optimize
analysis of underlying SAT solvers is particularly challenging be-
cause the performance of SAT solvers cannot be described in any
simple terms: it is generally based on heuristics and does not al-
ways hold [2]. In the context of Alloy, the problem is even more
interesting because of the optimizations that the Alloy Analyzer
does internally. We plan to systematically explore these issues.

The problem of augmenting a partial solution to represent a com-
plete solution is non-trivial to solve in general; in the most general
case, it is as complex as SAT solving. However, even if the com-
putation of derived relations is expensive, our approach still offers
potential benefits. For example, analysis of just the core slice may
reveal that the whole model is infeasible. In another scenario, it
may turn out that enumerating and augmenting partial instances is
actually faster than directly solving the complete model.

5. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction

to Algorithms. The MIT Press, Cambridge, MA, 1990.

[2] M. K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik.
Combining strengths of circuit-based and CNF-based
algorithms for a high-performance SAT solver. In Proc.
39thConference on Design Automation (DAC), pages
747–750, June 2002.

[3] D. Jackson. Software Abstractions: Logic, Language and
Analysis. The MIT Press, Cambridge, MA, 2006.

[4] D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The
Alloy constraint analyzer. In Proc. 22nd International
Conference on Software Engineering (ICSE), Limerick,
Ireland, June 2000.

[5] D. Marinov, S. Khurshid, S. Bugrara, L. Zhang, and
M. Rinard. Optimizations for compiling declarative models
into boolean formulas. In 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2005),
St.Andrews, Scotland, 2005.

[6] I. Shlyakhter. Declarative Symbolic Pure Logic Model
Checking. PhD thesis, MIT, February 2005.

[7] M. Weiser. Program slicing. In Proc. 5th International
Conference on Software Engineering (ICSE), pages 439–449,
San Diego, California, Mar. 1981. IEEE Computer Society
Press.

