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ABSTRACT

A number of researchers have proposed the use of Boolean
satisfiability solvers for verifying C programs. They encode
correctness checks as Boolean formulas using finitization:
loops and recursion are bounded, as is the size of the in-
put instances. The SAT approach has been shown to find
subtle bugs with reasonable resources. However, it does
not scale well; in particular, it lacks the ability to handle
larger bounds. We present SEBAC, which can handle the
same class of programs as the SAT approach, and scales to
bounds that are orders of magnitude higher. The key differ-
ence between SEBAC and SAT techniques is SEBAC’s use
of imperative Boolean sequential circuits, which are Boolean
formulas with memory elements instead of the Boolean for-
mulas which are stateless.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification—for-
mal methods, model checking; F.3.1 [Logics and Meanings
of Programs|: Specifying and Verifying and Reasoning
about Programs—assertions, invariants, mechanical verifi-
cation

General Terms

Verification

Keywords

static analysis, program analysis, verification, model check-
ing

1. INTRODUCTION

Several static analysis techniques have emerged lately ad-
dressing the verification of software programs [9, 17, 32, 31].
Software programs are undecidable and thus static analysis
tools often resort to abstraction and finitization techniques
to render them amenable to model checking. CBMC [9] is
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a bounded model checker for ANSI-C programs that checks
for properties such as pointer safety and array bounds as
well as user assert statements. Given an ANSI-C program
and a bound on the range of variables therein, CBMC com-
putes a Boolean formula that asserts the desired properties
in the program. It does that by unwinding a complex state
machine that describes the program and its properties into
a Boolean formula in conjunctive normal form (CNF) and
checks the formula using a satisfiability (SAT) procedure [13,
26, 6] to look for a counterexample.

SAT solvers often face an exponential blow up in the num-
ber of possible assignments to the atomic propositions. This
problem, known as state explosion, along with the large num-
ber of variables used in the CNF encoding, often limits the
SAT-based CBMC analysis to restricted variable ranges. By
scaling the analysis of ANSI-C programs to larger bounds,
we increase its applicability to real-world designs.

1.1 Sequential circuits for program analysis

While recent advances in SAT have enabled checking de-
signs of real systems, these implementations often need to
be substantially incomplete, leaving out important aspects
of the systems, to enable the analysis to complete. Moreover,
the analysis is typically limited to relatively small bounds,
e.g., fewer than 16 entries in an array sort program as we
will demonstrate in Section 5.

There are three limiting aspects of the current CBMC
analysis. (1.) The translation to CNF depends on the
bounds; a small increase in the bound on the variable ranges
or the loop and recursion unwinding can cause a large in-
crease in the size of the translated CNF formula. (2.) The
SAT solver is restricted to using optimizations that apply at
the level of CNF formulas. Often times when the analyzer
successfully generates a large CNF formula, the underlying
solver times out. (3.) CBMC has to translate the program
into a CNF formula with a higher unwinding bound and
invoke the SAT solver several times in case the unwinding
bound on loops and recursion was not enough.

To extend the applicability of static analysis to a wider
class of programs as well as to check more sophisticated
properties and gain more confidence in the results, we need
to scale the analysis to significantly larger bounds.

The limitations of the CNF encoding motivated us to de-
velop sequential encoding for bounded ANSI-C program anal-
ysis (SEBAC), an algorithm which encodes ANSI-C pro-
grams as sequential circuits and decides them using a se-
quential circuit solver. A sequential circuit can be viewed
as a restricted C++ program, specifically a multi-threaded
program in which all variables are either Boolean-valued or
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Table 1: CBMC transformation of ANSI-C programs into a Boolean formula

integers, whose range is statically bounded, and unbounded
allocation is forbidden [33, 12].

Given an ANSI-C program and a bound, SEBAC auto-
matically derives a sequential circuit and a Boolean variable
therein that serves as an invariant, i.e., the variable can be
set to true if and only if a property that the program asserts
is violated within the bound.

We use SizthSense [23, 34], a tool developed at IBM, to
automatically check invariants in sequential circuits. Sixth-
Sense reads designs expressed in the very high speed in-
tegrated circuit hardware description language (VHDL) [1].
Sequential circuits, as described in the preceding paragraph,
can be translated into VHDL using inlining [11, 12].

In prior work we demonstrated that sequential circuit anal-
ysis scaled to bounds orders of magnitude higher than SAT
analysis for checking satisfaction of formulas expressed in
declarative first order logic (FOL) with transitive closure [33].

We hypothesize that a similar benefit holds for the analy-
sis of imperative programs. We note that there are two key
advantages to compiling ANSI-C programs into sequential
circuits rather than CNF formulas:

Advantage 1 Our encodings are much more succinct than
those generated by CBMC—in cases, CBMC encod-
ing algorithms produce a data structure that uses sev-
eral orders of magnitude more memory. For instance,
CBMC needed a CNF formula with 4.7 million vari-
ables and 18.9 million clauses to encode an array sort-
ing routine with a bound of 16 on the size of the array
and the range of the values for the array entries.

Advantage 2 Casting the decision problem for a property
of an ANSI-C program as an invariant check on a se-
quential circuit allows us to make use of a number of
powerful automated analysis techniques that we dis-
cuss in Section 3.4 and that have no counterpart in
CNF analysis. Empirically, our results show that SE-
BAC scales to bounds that are orders of magnitude
higher compared to CBMC.

Intuitively, Advantage 1 holds because sequential circuits
are imperative and stateful while CNF formulas are declar-
ative and state-free. For example, sequential circuits can
naturally represent the execution of sequential loops with-
out the need for unwinding. Moreover, sequential circuits
can store and reuse intermediate results in local variables.

We justify Advantage 2 by illustrating some automatic
analysis techniques that SixthSense implements. These di-
rectly apply to sequential circuits generated by SEBAC.

Abstraction. Consider the verification of library code
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L which uses a sophisticated memory allocator for better
performance.

Let the library L* be L with L’s allocator abstracted to
a simpler allocator that nondeterministically selects a block
from the set of free blocks. Since the simpler allocator uses
nondeterminism, if an invariant holds of Lx, it holds of L.
The simpler allocator in L* makes verifying invariants on
Lx easier than verifying the same invariants on L.

While there exist efficient algorithms for automatically

identifying components for abstraction in sequential circuits [22,

23], abstraction for CNF formulas is much harder. This is
because there is no structure in a CNF formula to guide the
abstraction algorithm—the clauses are unordered.

Note that an invariant may fail on Lx, but hold of L,
e.g., L’s code makes use of details from the implementation
of the allocator beyond those exported from the abstract
interface. SixthSense will automatically identify a negative
as false, and roll back the abstraction [22, 23].

Compositional minimization. Consider the verifica-
tion of a spanning tree algorithm 7" which uses a balanced
search tree (BST) to manipulate sets.

With respect to its abstract interface, a BST implementa-
tion of sets is functionally equivalent to a list implementation
of sets. Let spanning tree algorithm 7" be T with sets im-
plemented using lists. Because a BST is more complex than
a list, verification of T" is easier than verification of T'. Since
the list and BST representations of sets are equivalent with
respect to their abstract interface, an invariant holds of T
iff it holds of T".

There exist several techniques for automatically identi-
fying components and minimizing them in sequential cir-
cuits [7, 34, 3]. These techniques are based on the notion of
equivalent states [18]. Analogous techniques do not exist for
CNF formulas, as there is no notion of state.

Logic optimizations. There is an arsenal of techniques
for automatically optimizing sequential circuits; examples
include variable minimization via retiming [20], common
subexpression extraction [8], and exploiting reduced observ-
ability and controllability at internal components [2, 28].

SixthSense automatically iterates through the techniques
described above as well as some other techniques, to sim-
plify its input sequential circuit. It decides the simplified
circuit using a variety of techniques, such as bounded model
checking, circuit SAT solving, invariant enlargement, and
semi-formal search [25, 26, 16, 5, 23].

We make the following key contributions:

1. Sequential analysis: We enable the use of sequential
circuit verification including many powerful reduction
techniques for ANSI-C model checking.
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Figure 1: Sequential circuit encoding versus the CBMC Boolean formula

2. Create verification flow for existing encoding:
We enable a software static analysis flow from SPARK,
a fully automated hardware high-level synthesis tool
that translates C to sequential circuits [14]. SPARK
has not been used for verification purposes before.

3. New encoding for ANSI-C programs: We pro-
pose SEBAC, a novel algorithm to encode an ANSI-C
program with a bound on ranges of variables into a se-
quential circuit. The SEBAC encoding is more optimal
for verification purposes than the SPARK encoding as
the latter targets optimizations such as time multi-
plexing and circuit area reduction on the expense of
increasing the number of variables in the circuit.

4. Evaluate TBYV for C programs: We evaluate TBV
analysis of C programs by comparing SPARK and SE-
BAC coupled with a TBV solver against CBMC cou-
pled with SAT. We apply these techniques to find real
and subtle code bugs that were reported by Adam Barr
from Microsoft as challenging and require careful code
inspection to be revealed [4]. As our results show, se-
quential analysis techniques scale to bounds orders of
magnitude higher than CNF and SAT techniques.

The rest of this paper is structured as follows. In Section 2
we illustrate our motivation using an example from [9]. In
Section 3 we illustrate CBMC, sequential circuits, SPARK,
and describe how SixthSense works. We introduce SEBAC
and argue for its correctness in Section 4 We evaluate our
approach in Section 5 and conclude in Section 6.

2. ILLUSTRATIVE EXAMPLE

We show in Column (a) of Table 1 the same example code
used to illustrate the CBMC translation from ANSI-C into
CNF in [9]. The first step is to transform the code into
a static single assignment form where each variable is as-
signed only once. This is done by introducing new vari-
ables through variable renaming and the result is shown in
Column (b) of Table 1. Then CBMC computes a set of
constraints C and properties P and builds a Boolean for-
mula C A =P by treating variables as bit vectors. A sat-
isfying valuation to variables of this formula represents a
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counterexample. We show the combinational circuit corre-
sponding to C A =P in Figure 1(b). The formula is then
flattened into CNF which has only two levels of logical hi-
erarchy (A;, \/j-, li;j where n is the number of clauses, m;
is the number of variables in clause 4, and [;; is a literal
expressing either the variable indexed by j in clause i or
its negation). In the process, the structure of the circuit
is lost. In contrast, the sequential circuit encoding shown
in Figure 1(a) introduces no new variables and keeps the
hierarchy of the program.

Note that in case the code in Table 1(a) was enclosed in
a loop, CBMC would assume an unwinding bound w and
eventually replicate the same circuit in Figure 1(b) w times
with new variables each time. If the check on the CNF
formula resulting from the unwinding with w fails because
the unwinding was not enough, CBMC would increase w
and re-encode the CNF formula. In contrast, the sequential
circuit encoding in Figure 1(a) stays intact and expresses the
loop via updating the state of 2 through executing the circuit
as much steps as needed per the bounded model checker.

3. CBMC, SEQUENTIAL CIRCUIT
ANALYSIS, AND SPARK

In this section we introduce the CBMC analysis of ANSI-
C programs. We briefly introduce sequential circuits. We
compare our encoding in SEBAC, which targets optimiza-
tions useful for static analysis, to the output of SPARK [14];
a fully automated high-level synthesis tool that generates
sequential circuits out of restricted C programs. SEBAC
performs better since it infers the sequential structures from
within the program while SPARK treats every statement as
a sequential step and uses various techniques to find state-
ments that can be executed concurrently. Finally, we de-
scribe how transformation-based verification checks proper-
ties of sequential circuits.

3.1 CBMC

CBMC reduces the problem of checking a property of an
ANSI-C program with bound N on the range of variables
and with a vector of bounds W on the number of loop and
recursion unwindings to the problem of determining the sat-



isfiability of a Boolean formula. To translate an ANSI-C
program, CBMC unwinds loop constructs that can occur as
for and while loops, backward-jump goto statements, as well
as recursive function calls.

The for and while loops are unwound w; times where w;
is the unwinding bound and ¢ is the index of the loop into
the vector of bounds W. An assertion is added to the last
copy to ensure that the loop does not need more iterations to
complete the computation. An unwinding assertion guides
CBMC to increase w; for a certain loop in case the unwind-
ing assertion fails. Recursive function calls are assumed to
recurse to a bounded depth and an assertion similar to the
loop unwinding assertion is added to ensure that depth is
enough. The backward-jump goto statements inducing loops
are handled similarly.

Function calls are inlined within the calling function. The
return statements are replaced by assignments and goto state-
ments pointing to the end of the function expansion. This
construction results into a simplified program with if, for-
ward goto, assignment, assertion, and arithmetic statements
as well as labels defining branching targets.

Table 1 illustrates through an example the translation
from the simplified ANSI-C program into a static single as-
signment form. Column (a) in Table 1 shows a simplified
piece of code. CBMC renames the variables so that each
variable is assigned only once and the result is shown in
Column (b) of Table 1. In the process variables x1,z2 and
xs were added. Then CBMC computes a set of constraints
C on all the variables, including the ones it introduced, and
a set of properties P deduced from the assertions in the
simplified program.

CBMC translates the formula C A =P into a CNF formula
by considering each variable as a bit vector with sufficient
width to represent the bound on the variable range.

When CBMC introduces new variables in the so-called
renaming transformation, it is actually embedding internal
hierarchical nodes in the structure of the program as illus-
trated in Figure 1(b). However, CBMC loses this hierarchy
when it translates C A =P into CNF because CNF is a flat
Boolean formula with only two levels of hierarchy (AND of
ORs). Also CBMC needs may need to introduce new vari-
ables to represent the internal nodes since its final target
(CNF) is stateless.

3.2 Sequential circuits

In Figure 1(a) we show a sequential circuit encoding of the
ANSI-C program from Table 1. It keeps the exact hierarchy
of the ANSI-C program and does not require additional vari-
ables since it has register variables; memory elements that
keep the state of the circuit.

A sequential circuit is easily understood as a C++ ob-
ject with Boolean variables describing its states and member
functions describing its output and computation.
class SequentialCircuit {

Boolean registerVariables[];

Boolean done;

void initialState( Boolean inputs[]);
void nextState( Boolean inputs[]);
Boolean outputFunction(Boolean inputs([]);

Boolean executeCircuit(Boolean inputs[]){
initialState(inputs);
while(!done)
nextState(inputs);
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Figure 2: SPARK control flow circuit

return outputFunction(inputs);
}
}

The class SequentialCircuit has a set of register variables
that describe its state along with the done variable that de-
notes the completion of the computation. It also accepts
primary input variables as parameters to its functions.

The initialState function assigns the initial state of the
sequential circuit by assigning values to its register vari-
ables that are restricted to be combinational functions of
the inputs. The nextState function updates the state of the
sequential circuit by assigning values to the register vari-
ables that are combinational functions of the inputs and the
registerVariables themselves. The nextState function per-
forms the computational function of the sequential circuit
and assigns done to a true value once it completes.

The function executeCircuit actually executes the circuit
by calling the initialState function to initialize it and then
calling nextState to perform the computation. It then re-
turns the output of the computation via calling the output-
Function. The while in executeCircuit models time where
each iteration is a step.

The semantics of a sequential circuit are defined with re-
spect to input sequences, where an input sequence is a se-
quence of assignments to inputs.

Given an input sequence and an initial state, the resulting
trace is a sequence of Boolean assignments to all Boolean
register variables in the circuit. A transition happens when
an assignment changes at a specific step. The output of the
circuit is justifiable if there is an input sequence which when
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Figure 3: SPARK data flow circuit

applied to an initial state will result in the outputFunction
returning the value true.

The sequential circuit in Figure 1(a) has one register vari-
able z and two input variables y and z. The initial state of
r sets x to a nondeterministic value, and the next state is a
function of x, y, and z. The sequential circuit needs one step
to complete and the output function returns the assertion
in Column (a) of Table 1.

We compare that to Figure 1(b) which shows the Boolean
formula CBMC generates before translating it to CNF. No-
tice that this formula has yet to be flattened into CNF and
thus more variables may be introduced to transform it into
two levels of hierarchy only.

3.3 C to sequential circuits using SPARK

SPARK is a fully automated high-level synthesis tool [14]
that is designed for implementing systems and not for ver-
ifying them. It takes a subset of ANSI-C constructs and
bounds on variable ranges as input and produces a synthesiz-
able register-transfer level VHDL that describes a sequential
circuit as output.

Briefly, SPARK recognizes atomic statements in the ANSI-
C code and constructs a state machine that executes the
program a statement per step. Then SPARK uses high-
level synthesis techniques to schedule the execution of these
statements in order to optimize performance, reduce the
area of the circuit, or better utilize the limited hardware
resources [14, 15].

SPARK performs renaming techniques and a set of heuris-
tic transformations called code motions to move and merge
the execution of the atomic statements inside and outside
of conditionals and loop constructs. By doing so SPARK
introduces new sequential elements to the ANSI-C program
by assuming the execution of one statement per step. Then
it tries to reduce the number of steps it needs to execute
the ANSI-C program via heuristics that allow concurrent
executions of independent atomic statement.

In Figures 2 and 3 we show how SPARK translates the
example in Table 1 into a sequential circuit. Figure 2 shows
the control flow circuit that implements the schedule com-
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puted by SPARK. Figure 3 shows the data flow circuit that
executes the atomic computation statements. One can think
of the two figures as two processes that execute concurrently
and share variables. The variable state transitions between
states So,..., S5, and done. SPARK introduced one bit-
vector valued variable that encodes the state of the circuit
and controls the schedule of execution. This is substantially
less than the variables CBMC introduces.

The optimizations and transformations SPARK performs
are not targeted to obtain a sequential circuit that is bet-
ter amenable for static analysis. SPARK targets optimiza-
tions like choosing between complex structures such as rip-
ple carry versus tree adders, reducing gate delays, and time
multiplexing operations onto a few functional units. For
example, we see that in Figure 3 SPARK minimized the
logical depth of all combinational functions on the expense
of needing more steps to complete the computation. We
also observe that SPARK introduces additional sequential
behavior to the program through its separate schedule state
machine in order to provide a flexible infrastructure for the
so called code motion transformations. For example, and
without going into details, some code motions can be done
by simply assigning new encodings for the states Sy through
S5 to allow the execution of more than one statement at the
same time.

3.4 Transformation-based verification

TBYV applies reduction techniques iteratively on a sequen-
tial circuit to reduce the verification complexity by reduc-
ing the number of logical operations, register variables, and
inputs in the circuit. Then it attempts to solve the prob-
lem via decision techniques such as bounded model checkers,
circuit SAT solvers, or semi-formal searches. The decision
techniques aim to find a satisfying trace, that is an assign-
ment to the initial value functions of the register variables
and a sequence of input valuations that result in asserting
the output function to a true value at the last step of the
trace. In Table 2, we briefly describe various transforms that
were used in the context of this work and comment on their
efficiency. SEBAC automatically found successful flows of
transforms using techniques in [23].

Sequential circuits can be analyzed with public domain
tools with TBV capabilities such as SIS [29] and VIS [24].

4. SEBAC

Given an ANSI-C program with assertions therein and a
bound on the ranges of variables, SEBAC produces a sequen-
tial circuit and a Boolean invariant therein such that there
is a trace of the sequential circuit that sets the invariant to
true if and only if an assertion is violated.

Recall that CBMC translates an ANSI-C program with
a bound on the ranges of variables to a Boolean formula
via (1.) introducing new variables and (2.) embedding a
constraint system hierarchy into the program. Then it loses
even that when it flattens the Boolean formula into CNF be-
fore passing it to SAT. SPARK, in contrast, uses less vari-
ables than CBMC to encode the bounded program into a
sequential circuit, it actually introduces state and sequen-
tial elements to the program that are not necessary for its
execution. It also adds scheduling complexity and encodes
the schedule control states in a way that allows flexible code
motions on the expense of adding more Boolean variables.



Table 2: TBYV algorithms in order of increasing complexity top to bottom.

COM merges functionally equivalent logical gates using low complexity analysis [21].

EQV  makes intelligent guesses on equivalency [7] and performs expensive checks that
allow huge gate merging reductions when they pass. It also exploits structural
symmetry detection.

RET  reduces the number of registers by shifting them across combinational gates [20].

BMC attempts a conclusive result within a given limit on steps or resources [25].

PRE performs compositional minimization [34] by isolating a component in the sequen-
tial circuit and detecting equivalent states within the component, and then reduces
the input space of the component.

BIG replaces a target by a re-encoding, i.e., a set of states which will hit that target
within k time steps [23].

LOC  Thisis alocalization based abstraction and refinement engine. It overapproximates
the target by replacing the gates on a boundary with free variables [23].

CUT replaces a set of gates with a simpler yet equivalent sequential circuit; reduces
input count via defining inputs as functions of each other [23].

SCH

conducts a semi-formal search for a target using a hybrid approach of random

simulation, symbolic simulation, and induction [16, 21].

4.1 Overview

Intuitively, SEBAC aims at reducing the number of vari-
ables needed to sequentially encode the ANSI-C program
and at reducing the sequential depth needed for the circuit
to complete execution, thus allowing bounded model check-
ing a better chance to complete the analysis. Unlike CBMC
that uses the assignment statements to build a constraint
hierarchy that gets lost later after translation to CNF, SE-
BAC uses the data structures and the branching logic in the
program to build a circuit hierarchy.

In contrast to SPARK, SEBAC infers sequential elements
from the semantics of the program instead of introducing
sequential elements that are based on the ANSI-C seman-
tics of sequential statements. SEBAC makes use of sequen-
tial elements such as dependent code blocks and loop it-
erators. To achieve this, SEBAC simply ignores high-level
synthesis techniques, and translates the ANSI-C program
into literally syntactically equivalent VHDL processes that
use high-level VHDL constructs such as records, loops, and
overloaded functions to match the ANSI-C high-level con-
structs. It also makes use of VHDL generic parameters to
simplify specifying bounds for the program.

4.2 Correctness of SEBAC

Similar to Clarke et al. [10], we follow the C99 seman-
tics of ANSI-C programs as modeled in [19]. The formal
description and proof of correctness of SEBAC is based on
specifying a grammar for C and sequential circuits, and a re-
cursive algorithm that takes nodes from the parse tree and
the data flow diagram of the C program P and maps them
to a sequential circuit SEBAC(P) with an invariant A(P).
A proof that the invariant A(P) is satisfied if and only if an
assertion is violated in P is based on induction on the length
of the parse tree of P.

We will demonstrate the equivalence of a SEBAC encod-
ing to that of CBMC for those constructs where the encod-
ing differs from or does not match directly with the ANSI-
C semantics as in Boolean and integer arithmetic and as-
signments. As we described in Section 3.1, CBMC assumes
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the program is already preprocessed, and performs a series
of transformations and rewrites to the program. The first
transformations expand function calls and replace break,
continue, switch/case, for, and do/while statements with
equivalent if/else and while statements.

CBMC treats recursive functions and loops inferred from
backward goto statements the same way it treats while loops
by unwinding them. These transformations leave us with an
ANSI-C program that consists of if, assignment, assertions,
and while instructions.

We limit our attention to the correctness of encoding loops
and pointers since the rest of the instructions map directly
to VHDL with the same semantics.

CBMC performs additional transformations such as vari-
able renaming and loop unwinding. A one step unwinding
of while(£){F} will be if (£){F; while(f) {F}}. After many
unwinding steps the tailing while (£) {F} loop is replaced with
an assertion assert(!f). The assertion is essential to guar-
antee that the unwinding was enough. If the assertion fails
for any possible execution, then the number of unwindings
is increased until it is big enough.

SEBAC builds a sequential component for the same loop
that executes F and evaluates f and sets its done property
only when £ evaluates to false. The semantics are similar to
while(!done){ whileLoop.nextState();} with nextState(){
if ('done){ F; done = !e;}} where each iteration is a cycle
as described in Section 3.2. The encoding is equivalent to
the original loop with a simple expansion of the body of
nextState and a substitution of done with the right handside
of the assignment.

SEBAC treats pointers as indices into an array represent-
ing memory. This is correct since in ANSI-C #*p is equivalent
to p[0] and *(p +i) is equivalent to p[i] where p is a pointer
to memory and i is an integer.

4.3 Mapping C to VHDL

We illustrate the process of mapping C to VHDL by look-
ing at a buggy array selection sort algorithm from [4] with
correctness properties checking whether the array is in or-
der and whether an arbitrary entry in the array still exists
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in it after the sort. We highlight interesting constructs and
explain the details of the sort while illustrating the mapping.

Selection sort with bug in ANSI-C

/*! \brief array selection sort routinex/
void selsort (int all, int size) {
int current, j, lowestindex, temp;

for (current=0; current < size - 1; current++) {
lowestindex = current;
/* find the index of the lowest value */
for (j = current + 1; j < size; j++) {
if (alj] < alcurrent]) {
lowestindex = j;

}

if (lowestindex != current) {
/* swap alcurrent] and a[lowestindex]
* since difference exists*/
temp = alcurrent];
al[current] = al[lowestindex];
a[lowestindex] = temp;
}
}
}
/*! \brief checker for array selection sort */
void selsortproperty (int size) {
int a[64];
int i, iTest, jTest, aTest;

if (size == 0) return;

iTest = iTest % size;

jTest = jTest 7, size;

aTest = al[iTest];

selsort (a, size);

/* check if in order */
if (iTest < jTest )
assert ( (a[iTest] <= a[jTest]));

/* check if consistent */

for (i = 0; i < size; i++ )

if (aTest == al[i])
break;
assert(aTest == al[i]);

}

C Function to VHDL entity. SEBAC translates the
selsortproperty function into a VHDL entity. The entity
takes size as an input and bound as a generic parameter
that configures the range of integer variables.

entity selsortproperty is

generic (bound : integer := 64);

port (signal size : integer range O to bound - 1);
end;

The behavior of the entity is described in a corresponding
VHDL architecture.

architecture selsortproperty of selsortproperty is
constant bound_1g2: integer := util_log2(bound);
signal a : IntArray( O to bound - 1);
signal i, iTest, jTest, aTest : integer range O to bound - 1;

signal current: integer range O to bound - 1;
signal currentV, currentVN : std_ulogic_vector(0 to bound_lg2);

Sequential loops. The header section in the architecture
declares signals that represent selsortproperty and selsort
variables as SEBAC inlines function calls. Signal a is de-
clared as an IntArray which is a array of integers defined in
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a custom package we omitted for brevity. Signals currentV
and currentVN are defined as logic vectors.

begin

currentVN <= currentV when currentV = size else currentV + 1;
currentV <= util_latch(currentVN);
current <= util_type_conv(currentV);

Signal currentVN is the next state function of currentV
and is connected to it through a latch function. The sig-

nal current is the only sequential iterator in the selection
sort algorithm and plays the role of a program counter that

schedules the execution of the algorithm. It is connected to
currentV with a type conversion function which means that
it is only a wire and no additional variables are needed for
it.

pl: process(current)
variable lowestindex, j: integer range O to bound - 1;
begin
if (size /= 0 ) then
if (current = 0 ) then
aTest <= a(iTest);
end if;

Function inlining. The VHDL process p1 defines the
variables needed in the inner loop of the selection sort algo-
rithm. Note that lowestindex is declared as a variable and
not as a signal since it does not carry information or state
and is only used within process p1 to compute a value. The
check on Line 27 of selsortproperty that exits the program
with a return statement is translated to the if (size /= 0)
condition that encloses the process body. SEBAC inlines
statements from both functions and thus stores in aTest the
value of an arbitrary entry from the array indexed by iTest
which is left uninitialized to denote a nondeterministic in-
dex.

Loops with dynamic bounds. SEBAC encloses the body
of the loop from Line 5 in a conditional statement. The
lowest index is computed at each execution step through
the translation of the loop on Line 8.

if (current < size - 1) then
lowestindex := current;
for j in O to bound - 1 loop
if (j < current + 1) then
next;
end if;
if (j < size) then
if (a(j) < a(lowestindex)) then
lowestindex := j;
end if;
end if;
end loop;
if (lowestindex /= current) then
a(lowestindex) <= a(current);
a(current) <= a(lowestindex);
end if;
end if;

Since SixthSense does not allow loops with dynamic bounds,
we encode the ANSI-C for statement into a bounded VHDL
for statement with two conditions. The first condition skips
all array entries before current + 1 through a next statement
that is similar to the ANSI-C continue statement. The sec-
ond condition looks at only entries of the array that are
within its size. If the computed lowest index is different
than current then a swap of values is enabled. Notice that
temp is not needed since VHDL statements are executed con-
currently.

Assertions. The assertions in selsortproperty should
hold after the search is done. SEBAC encloses the assertions



with the conditional current = size - 1 since the assertions
are evaluated only when selsort completes its computation.

if (current = size - 1) then
if( iTest < jTest) then
assert (a(iTest) < a(jTest) or a(iTest) = a(jTest))
report "order violated" severity error;
end if;
for i in 0 to bound - 1 loop
if (i < size) then
if ( aTest = a(i)) then
exit;
end if;
end if;
end loop;
assert (aTest = a(i))
report "entry not found" severity error;
end if;

The indices iTest and jTest are left uninitialized to de-
note they are nondeterministic. The first assertion checks
whether two array entries that are indexed by ordered inde-
ces are actually ordered. The second checks whether aTest,
the value of an arbitrary array entry that was stored before
the sorting is still found in the array.

SEBAC currently does not handle recursion implied from
branching (goto statements). It can be easily extended to
unwind them with bounds in a fashion similar to CBMC.

We end up with a hierarchical VHDL design with asserted
signals designated as the invariants. We pass the VHDL to
SixthSense which, in case of satisfiability, provides a trace
that satisfies the invariant, otherwise it returns with a proof.

5. RESULTS

To evaluate TBV, we compared SEBAC and SPARK cou-
pled with SixthSense, (TBV:SEBAC) and (TBV:SPARK)

respectively, against CBMC coupled with SAT (SAT:CBMC).

We took 4 challenging examples of C programs from Chap-
ter 3 of [4]. All the three techniques were able to report help-
ful error traces within comparable and reasonable resources
and small bounds (smaller than 8). We fixed the errors in
the 4 programs (for selsort we changed Line 9 to if (al[jl <
allowestindex]) ) and we report on the time that the anal-
ysis took to complete the proofs for a number of bounds in
Table 3. The size column shows the number of variables
and clauses in a CNF formula and the number of registers,
inputs and AND gates (logically complete with inverters) in
a sequential circuit as a measure of their complexity [27].
We report on bounds in powers of two since the analysis de-
pends on bit vector encodings of variables and the bounds
are on the ranges of these variables. We ran all experiments
on a 1.7 GHz Pentium 4 machine with 1 GB memory and
used CBMC version 2.5 and SPARK version 1.3.

By default, CBMC iteratively invokes the SAT solver with
a larger formula that uses a bigger loop and recursion un-
winding bound until no unwinding assertion is violated. The
times reported for CBMC do not include the time needed for
CBMC and SAT to perform these iterative checks. We pro-
vide CBMC through its command line interface with a tight
bound on the loop unwinding to ensure a fair comparison.

5.1 Selection sort

The first example is the selection sort algorithm described
in Section 4 with the bug on Line 9 fixed. We checked both
the order of array entries and the data consistency assertions
at the same time. CBMC was able to complete the check
on the selection sort routine for a bound of 16 on the size of
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the array in 114 minutes. For bounds bigger than 16 CBMC
could not complete before 6 hours. SixthSense was able to
complete the check on the sequential circuit generated with
SPARK for a bound of 64 in 132 minutes. For the same
bound of 64, SixthSense took only 35 minutes to complete
the proof on the sequential circuit generated with SEBAC.

5.2 Linked list insertion

The second example is a routine that inserts a node into
an ordered linked list. List nodes are stored in an array and
they are pointed to by indices. Each node has a key value
and a next node index. The insert routine takes the index
that points to the head of the list and an index that points
to the new node to be inserted in the list and returns an
index to the new head of the list. We check two properties
of the list upon completion of the insertion assuming the
properties held before the insertion.

Properties. The first property checks that the value of
any node in the list is smaller than or equal to the value of its
successor. The second property checks whether the size of
the list is consistent (incremented by one after the insertion).
CBMC was able to complete the analysis of the list insertion
example for a bound of 16 within 164 minutes. However, it
took more than 6 hours on larger bounds without complet-
ing the analysis. The sequential analysis completed on the
sequential circuit generated with SPARK in 196 minutes. It
took only 54 minutes to complete the proof on the circuit
generated with SEBAC for the same bound of 64.

5.3 Linked list removal

The third example is a routine that removes a node from
an ordered list. It takes as input the index to the head
of the list, the key value of the node to be deleted, and a
writable pointer that should be filled with the index of the
deleted node. It returns the index of the new head of the
list. We modeled the writable pointer with a static variable
since SPARK does not handle pointers. We also relaxed
the assertions CBMC generates for pointers to obtain a fair
comparison.

Properties. The properties we checked for the removal
routine are similar to those we checked for the insertion.
We checked whether the order is preserved and whether the
size of the list is consistent. It took CBMC 64 minutes to
complete the proof with a bound of 16. CBMC generated
a CNF formula for a bound of 32 but the analysis did not
complete before 6 hours. We completed the proof on the
sequential circuit generated with SPARK in 143 minutes for
a bound of 64. Sequential analysis performed better with the
circuit generated with SEBAC and completed in 74 minutes
for the same bound.

5.4 Memory allocator and deallocator

Our last example is a memory allocator routine which
takes as input a size of desired memory to allocate, returns
an index into an array of bytes that represents memory, and
signals failure by returning an invalid index (NULL). Inter-
nally memory is allocated in blocks of a constant size. The
memory allocator considers consecutive groups of memory in
the same allocation mode, either allocated or free, as spans.
It tracks the usage of these blocks in another “in use” array.
If a span is free, all its entries in the “in use” array contain a
positive value which is the number of blocks in the span. If
it is allocated, all entries in the “in use” array contain a neg-



Table 3: Comparison of SAT:CBMC, TBV:SPARK and TBV:SEBAC. In the size column, |V| and |C| denote
the number of CNF variables and clauses respectively, and |Z|, |R|, and | ANDs| denote the number of sequential
circuit primary inputs, registers, and AND gates respectively. In the time column oo denotes a time-out of

360 minutes.

Selection sort

Technique Bound Size Time (minutes)
SAT:CBMC 16 |V| =4,753,354; |C| = 18,971,756 114

32 timed out before generating CNF 00
TBV:SPARK 64 |Z| = 392; |R| = 552; |[ANDs| = 30, 334 132
TBV:SEBAC 64 |Z] = 12; |R| = 397; |ANDs| = 92, 320 35

Linked list insertion

Technique Bound Size Time (minutes)
SAT:CBMC 16 |V| =159, 370; |C| = 781, 397 64

32 V] =1,113,832; |C| = 6,402, 757 00
TBV:SPARK 64 |Z] = 611; |R| = 984; |[ANDs| = 22,711 196
TBV:SEBAC 64 |Z] = 18; |R| = 622; |ANDs| = 53, 636 54

Linked list removal

Technique Bound Size Time (minutes)
SAT:CBMC 8 V| =18,322; |C| = 107,422 26

16 timed out before generating CNF 00
TBV:SPARK 64 |Z] = 789; |R| = 1240; |ANDs| = 27, 505 143
TBV:SEBAC 64 |Z] = 24; |R| = 792; |ANDs| = 71,893 74

Memory allocator and deallocator

Technique Bound Size Time (minutes)
SAT:CBMC 16 V] =1,411,745; |C| = 4,958,517 93

32 V] =2,818,813; |[C] = 9,912,211 00
TBV:SPARK 32 |Z] = 1929; |R| = 1084; |[ANDs| = 44, 802 156
TBV:SEBAC 32 |Z] = 59; |R| = 792; |ANDs| = 103, 433 122

ative number which is the negative of the number of blocks
in the span. We also consider a deallocation routine that
takes an index to a memory location and frees it.

Properties. We assume that the memory and the “in
use” array were initialized to be all free and that the indices
passed to the deallocation routine are all aligned correctly
with the block sizes. We run an arbitrary but bounded num-
ber of allocations and deallocations and then check the “in
use” array for consistency with the sizes of allocation and
deallocation operations we performed. CBMC completed
the proof in 93 minutes for a bound of 16. It could not
complete the proof for a bound of 32 in less than 6 hours.
TBV:SPARK took 156 minutes to completed the proof for
a bound of 32. TBV:SEBAC took 122 minutes to complete
the proof for the same bound.

5.5 Discussion

The results in Table 3 show that by keeping the struc-
ture of the program and performing the analysis at the im-
perative sequential level, we were able to scale the analysis
of ANSI-C programs to bounds that are much higher than
those achievable by the stateless and flat hierarchy of SAT
analysis.

TBV techniques were able to scale to the same bounds
and found difficulty going beyond a bound of 64 for both
SPARK and SEBAC. However, sequential circuits generated
with SEBAC had a clear performance advantage against
those generated by SPARK. We attribute the difference to
the effort SixthSense needed to make in order to undo the
scheduling logic and the additional state elements SPARK
introduced to the program for synthesis optimizations and
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for ease of transformation purposes. Note that the sequential
circuits generated by SPARK had more registers and inputs
and less logic (AND gates) since SPARK aims at reducing
the combinational depth of the circuit.

6. SUMMARY AND FUTURE WORK

In this paper we presented SEBAC, a novel static analysis
technique for verifying imperative programs. We introduced
the use of sequential circuits instead of pure combinational
Boolean formulas to encode bounded ANSI-C programs and
thus enabled the use of sequential solvers with reduction po-
tentials that have no counterparts for combinational solvers.
We were able to show that a bound of 64 is feasible with rea-
sonable resources.

In the future we plan to explore how our approach of se-
quential encoding may be extended to other logic specifica-
tions such as S1S [2], and Presburger Arithmetic (PA) [30].
We are also interested in investigating security applications
of PA program equivalence detection.
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