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Abstract. We present Shekoosh, a novel framework for constraint-based gener-
ation of structurally complex inputs of large sizes. Given a Java predicate that
represents the desired structural integrity constraints, Shekoosh systematically
explores the input space of the predicate and generates inputs that satisfy the
given constraints. While the problem of generating an input that satisfies all the
given constraints is hard, generating a structure at random, which may not satisfy
the constraints but has a desired number of objects is straightforward. Indeed,
a structure generated at random is highly unlikely to satisfy any of the desired
constraints. However, it can be repaired to transform it so that it satisfies all the
desired constraints.

Experiments show that Shekoosh can efficiently generate structures that are
up to 100 times larger than those possible with previous algorithms, including
those that are based on a dedicated search and also those that use off-the-shelf
enumerating SAT solvers.

Keywords: Constraint-based Generation, Software Testing, Data Structure Re-
pair, Integer Constraint Solving.

1 Introduction

Software systems are steadily growing in complexity and size. At the same time, relia-
bility is becoming a more and more vital concern. Software failures already cost the US
economy tens of billions of dollars annually [1]. To meet the ever-increasing demand for
reliability, a great deal of progress is required in improving the current state-of-the-art
to deliver higher quality software at a lower cost.

Software testing, the most commonly used technique for validating the quality of
software, is a labor intensive process, and typically accounts for about half the total cost
of software development and maintenance [2]. Automating testing would not only re-
duce the cost of producing software but also increase the reliability of modern software.

While testing is a conceptually simple process—just create a test suite, i.e., a set
of test inputs, run them against the program, and check if each output is correct—the
current approaches to testing remain expensive and ineffective. The key issue with the
current practice of testing is the need to manually generate test suites.

For programs that take as inputs structurally complex data, which pervade mod-
ern software, test generation is particularly hard. Desired inputs must satisfy complex
structural integrity constraints that characterize valid structures. Examples of structures
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include text-book data structures, such as red-black trees that characterize balanced bi-
nary search trees [3], which are widely used as library classes, as well as various other
structures, such as fault-trees that characterize failures of mission-critical systems [4]
and intentional names that characterize properties of services in a dynamic networked
environment [5], which are implemented in stand-alone applications.

There are two fundamental approaches for generating structurally complex tests:
one, representation-level generation by explicitly allocating objects and setting val-
ues of their fields such that the underlying constraints are satisfied; two, abstract-level
generation by a sequence of method invocations using the API. The two approaches
are complementary and have their advantages and disadvantages. For example, while
concrete-level generation requires the user to a priori provide constraints, abstract-level
generation requires the user to first correctly implement the methods used in a sequence.

Recent years have seen a significant progress in automating both these approaches.
Constraint-based techniques are able to provide efficient test enumeration at the repre-
sentation level using off-the-shelf SAT solvers [6] as well as using novel search algo-
rithms [7,8,9]. Efficient state matching algorithms are able to provide test enumeration
at the abstract level by pruning redundant method sequences [11, 12, 10].

Much of the prior work, however, has focused on systematic generation of small
structures. The motivation—inspired by traditional model checking—for that is to en-
able bounded exhaustive testing, where a program is tested on all (in-equivalent) inputs
within a small input size. While bounded exhaustive testing does increase a developer’s
confidence in their software, it is not prudent to altogether ignore testing the program on
larger inputs. The existing test generation techniques do not provide an efficient way to
generate large structures. Note that the ability to generate large structures even enables
a systematic approach to test the performance of the software.

This paper presents a novel algorithm for constraint-based generation of large inputs
that represent structurally complex data. We view structures as object graphs whose
nodes represent objects and edges represent fields. A key observation behind our algo-
rithm is that while generating an object-graph that satisfies desired structural constraints
is hard, generation of a connected graph at random with a desired number of nodes is
straightforward. Of course, a graph generated at random is highly unlikely to satisfy any
of the desired constraints and would therefore represent an invalid structure. However,
we can systematically repair such a graph such that it satisfies all the constraints.

Our algorithm deploys an efficient repair routine that we have developed in our pre-
vious work on error recovery [13]. Given a structure that violates desired integrity
constraints, the repair routine performs repair actions, which mutate the structure to
transform it into a valid structure. The repair routine performs a systematic state-space
exploration of a neighborhood of the given structure and uses symbolic execution [14]
as well as heuristics to perform efficient and effective repair.

We have evaluated our test generation algorithm on a variety of data structure sub-
jects, including those from the Java Collection Framework. Experimental results using
our prototype implementation, Shekoosh, show that our algorithm can generate struc-
tures that are 100 times larger than those possible with previous constraint-based gen-
eration techniques, such as Korat [7] that implements a dedicated search, or TestEra [6]
that uses the Alloy Analyzer [15] and off-the-shelf SAT solvers, such as mChaff [16].
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We make the following contributions:

– Repair for generation. We introduce the idea of using data structure repair to
generate structurally complex tests.

– Algorithm to generate large inputs. We present an efficient algorithm for
constraint-based generation of large inputs that represent structurally complex data.

– Implementation. We present the Shekoosh tool that implements our test generation
algorithm.

– Evaluation. We evaluate our implementation using a variety of subjects and present
experimental results that show two orders of magnitude improvement over the pre-
vious state-of-the-art.

2 Example

This section describes an example that illustrates our test generation algorithm. Con-
sider the following class declaration that declares a binary search tree, i.e., an acyclic
graph that satisfies the search constraints on the values of its nodes:

c l a s s B i n a r y S e a r c h T r e e {
Node r o o t ;
i n t s i z e ;

s t a t i c c l a s s Node {
i n t elem ;
Node l e f t ;
Node r i g h t ;

}
}

Each BinarySearchTree object has a root node and stores the number of nodes
in the field size. Each Node object has an integer value, called elem, and has a left
and a right child. The structural constraints of a binary search tree can be written
as a predicate that returns true if and only if its input satisfies all the constraints. Fol-
lowing the literature, we term such predicates repOk methods and for object-oriented
programs, we term structural invariants class invariants [17].

The class invariant of BinarySearchTree can be formulated as follows.

boolean repOk ( ) {
i f ( ! i s A c y c l i c ( ) ) re tu rn f a l s e ;
i f ( ! s i zeOk ( ) ) re tu rn f a l s e ;
i f ( ! s e a r c h C o n s t r a i n t s O k ( ) ) re tu rn f a l s e ;
re tu rn tru e ;

}

When invoked on a BinarySearchTree object o, the predicate repOk traverses the
object graph rooted at o and checks all the constraints that define a binary search tree.
If any constraint is violated the predicate returns false; otherwise, it returns true. The
helper methods are implemented as standard work-list-based algorithms that keep track
of visited nodes [18] (Appendix A gives an implementation of the helper methods).
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To generate tests, our prototype Shekoosh takes as inputs the class declarations, the
repOk predicate and a desired structure size. For this example, for size 100, Shekoosh
takes 32 milliseconds (on average) to generate a valid binary search tree; for size 10000
(respectively 100000), Shekoosh generates a structure in less than one (respectively
three) seconds (on average). In comparison, TestEra [6], which uses the Alloy Analyzer
fails to generate a binary search tree with twenty nodes, due to the analyzer’s inability
to translate the structural invariant from Alloy to a propositional formula given twenty
minutes. Korat [7], which implements a specialized search fails to generate a binary
search tree with thirty nodes in twenty minutes. Section 5 presents a detailed compari-
son for a variety of subject structures.

3 Background: Forward Symbolic Execution

Forward symbolic execution is a technique for executing a program on symbolic values
[14]. There are two fundamental aspects of symbolic execution: (1) defining semantics
of operations that are originally defined for concrete values and (2) maintaining a path
condition for the current program path being executed. A path condition specifies nec-
essary constraints on input variables that must be satisfied to execute the corresponding
path. As an example, consider the following program that returns the absolute value of
its input:

i n t abs ( i n t i ) {
L1 . i n t r e s u l t ;
L2 . i f ( i < 0)
L3 . r e s u l t = −1 ∗ i ;
L4 . e l s e r e s u l t = i ;
L5 . re tu rn r e s u l t ;

}

To symbolically execute this program, we consider its behavior on a primitive integer
input, say I . We make no assumptions about the value of I (except what can be deduced
from the type declaration). So, when we encounter a conditional statement, we consider
both possible outcomes of the condition. To perform operations on symbols, we treat
them simply as variables, e.g., the statement on L3 updates the value of result to be
−1 ∗ I . Of course, a tool for symbolic execution needs to modify the type of result to
note updates involving symbols and to provide support for manipulating expressions,
such as −1 ∗ I . Symbolic execution of the above program explores the following two
paths:

p a t h 1 :
[ I < 0] L1 −> L2 −> L3 −> L5
p a t h 2 :
[ I >= 0] L1 −> L2 −> L4 −> L5

Note that for each path that is explored, there is a corresponding path condition
(shown in square brackets). While execution on a concrete input would have followed
exactly one of these two paths, symbolic execution explores both.
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4 Algorithm

This section describes our test generation algorithm. Our prototype implementation,
Shekoosh, has three main modules: Egor, a random graph generator, Juzi++, an opti-
mized repair framework based on our previous work on error recovery [13], and Dicos,
a solver for difference constraints [3].

We describe the algorithm for generating a structure that has a unique root; struc-
tures that have more than one root are handled similarly [7]. Figure 1 shows the gen-
eration framework, which takes three inputs: (1) clazz that represents the class of the
structure’s root, (2) predicate repOk that represents the structural integrity constraints,
and (3) size, a set of pairs, which defines the number of objects for each class in the
structure. To illustrate, consider the declaration of the class BinarySearchTree from
Section 2. To generate tree objects with 100 nodes, we set size = {<BinarySearch
Tree, 1>, <Node, 100>}.

Shekoosh performs the following steps:

– Allocate appropriate objects using the field declarations in clazz and generate a
random graph using these objects; indeed, this graph may not satisfy any of the
desired constraints yet;

– Repair the reference fields of the random graph such that all constraints on these
fields are satisfied; Juzi++ returns the constraints on the primitive variables;

– Solve the data constraints; Dicos returns a complete solution;
– Assign each data field its value; the resulting graph represents a concrete object-

graph that satisfies all the desired invariants.

The rest of this section describes the details of the algorithm and its main modules.

4.1 Egor: Random Graph Generator

Egor takes an object representing the class declaration of the structure’s root class, and
the desired size as inputs, and generates a random graph that is allocated on the heap.

Primitives

Random 
Graph

Repair Framework
(Juzi)

Scope
(size) (repOk)

Method
Predicate

Random Graph
Generator (Egor)

Constraint Solver
(Dicos)

ConstraintsGenerated
Structure on Primitives

Class

(clazz)
Declaration Values to

Fig. 1. Shekoosh framework for test input generation
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O b j e c t genera teRandomGraph ( C l a s s c l a z z , Set<P a i r<Clas s , in t>> s i z e ) {

Random rand = new Random ( ) ;
L i n k e d L i s t l i v e O b j e c t W o r k L i s t = new L i n k e d L i s t ( ) ;
S e t d e a d O b j e c t S e t = new HashSet ( ) ;
L i v e F i e l d C o u n t l i v e F i e l d C o u n t = new L i v e F i e l d C o u n t ( c l a z z ) ;
C u r r e n t S i z e c u r r e n t S i z e = new C u r r e n t S i z e ( c l a z z ) ;

O b j e c t r o o t = c l a z z . n e w I n s t a n c e ( ) ;
l i v e O b j e c t W o r k L i s t . add ( r o o t ) ;
l i v e F i e l d C o u n t . u p d a t e ( r o o t ) ;

whi le ( ! l i v e O b j e c t W o r k L i s t . isEmpty ( ) ) {
O b j e c t o = l i v e O b j e c t W o r k L i s t . r e m o v e F i r s t ( ) ;

f o r ( F i e l d f : f i e l d s ( o ) ) {
l i v e F i e l d C o u n t . dec remen t ( f ) ;
i f ( c u r r e n t S i z e . g e t ( f ) == d e s i r e d S i z e ( f , s i z e ) ) {

i n t i = rand . n e x t I n t ( 2 ) ;
i f ( i == 0) f . s e t V a l u e ( n u l l ) ;
i f ( i == 1) f . s e t V a l u e ( getRandomObject ( d e a d O b j e c t S e t ) ) ;

}
e l s e {

i f ( l i v e F i e l d C o u n t . g e t ( f ) == 0 ) {
O b j e c t o’ = newInstance(f);
f.setValue(o’ ) ;
l i v e O b j e c t W o r k L i s t . add ( o’);
liveFieldCount.update(o’ )
c u r r e n t S i z e . u p d a t e ( f ) ;

}
e l s e {

i n t i = rand . n e x t I n t ( 3 ) ;
i f ( i == 0) f . s e t V a l u e ( n u l l ) ;
i f ( i == 1) f . s e t V a l u e ( getRandomObject ( d e a d O b j e c t S e t ) ) ;
i f ( i == 2) {

O b j e c t o’ = newInstance(f);
f.setValue(o’ ) ;
l i v e O b j e c t W o r k L i s t . add ( o’);
liveFieldCount.update(o’ ) ;
c u r r e n t S i z e . u p d a t e ( f ) ;

}
}

}
}
d e a d O b j e c t S e t . add ( o ) ;

}
}

Fig. 2. The Egor algorithm for generating random graphs

The vertices of the graph are new objects of the given classes. The edges of the graph
represent the reference fields. Figure 2 shows the pseudo-code for the Egor random
graph generation algorithm.

Intuitively, the algorithm starts with an empty graph. It then allocates new objects as
required to generate a graph of the desired size. For each object, the algorithm randomly
assigns values to the object’s reference fields, ensuring at each step that the graph can
further be extended if necessary. The algorithm terminates when the graph has the de-
sired number of objects and all the reference fields of the allocated objects have been
initialized.
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To explain the algorithm, we first explain the notation we use in Figure 2:

– clazz is an object representing the container class of the structure (for example
the BinarySearchTree class).

– size is a set of pairs representing the desired size of every class in the structure.
Egor provides a helper method desiredSize that takes a field f and size, and
returns the desired size of the class that is the declared type of f.

– liveObjectWorkList is a list of objects whose reference fields are yet to be
assigned a value.

– deadObjectSet is a set of objects whose reference fields have already been as-
signed a value. Egor provides a helper method getRandomObject that randomly
returns an object from the deadObjectSet

– LiveFieldCount is a class that represents for each class the number of object
fields, i.e., live count, that have not yet been assigned values in the structure. The live
count of every class is initially set to zero. LiveFieldCount provides three helper
methods: get, update, and decrement. The method get takes a field object and
returns the live count of the field’s declared class; update takes an object, and for
each of its fields, increments the live count of the field’s declared class; decrement
takes a field object, and decrements the live count value of the field’s declared class.

– CurrentSize is a class that represents the number of objects for each class in the
structure. For each class, the current size is initially zero. The class CurrentSize
provides two helper methods: get and update. The method get takes a field and
returns the current size of the field’s declared class; update takes a field and incre-
ments the size for the field’s declared class.

The Egor generation algorithm first initializes its variables. Next, it creates an in-
stance of the root class (clazz), adds it to the liveObjectWorkList, and updates
the liveFieldCount. Next, Egor iterates until the liveObjectWorkList is empty.
In each iteration, Egor removes the first object from the liveObjectWorkList and
assigns values to each of the object’s reference fields as follows. When assigning a
field f of type t, Egor first checks the currentSize, and the desiredSize for t.
If currentSize is equal to the desiredSize, Egor randomly assigns f to null, or
to an object from the deadObjectSet since new objects of class t can no longer be
added to the graph. If the current size is less than the desired size, Egor checks t’s
liveFieldCount. If it is zero, i.e., the graph can only be extended further by assign-
ing a new object to f , Egor allocates a new object o′ of type t, assigns o′ to f , and
updates the liveFieldCount and currentSize for t. If the live field count is greater
than zero, Egor randomly assigns f to null, an object from the deadObjectSet, or a
new object of a compatible type. After assigning all the fields of an object, Egor adds
the object to the deadObjectSet. Figure 3 illustrates the generation of a
BinarySearchTree with two nodes.

The generated graph satisfies two key properties: reachability, i.e., all the objects
allocated are reachable from the root object, and randomness, i.e., the assignment to
each field is made at random (using the Java API). Note that primitive data is left unini-
tialized. Determining the values for the primitive fields is performed using Dicos after
the random structure is repaired by Juzi++. Figure 4 shows an example of a six node
BinarySearchTree graph generated using Egor.
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Fig. 3. Egor illustration: generating a random BinarySearchTree object with two nodes.
The algorithm takes three iterations of the while-loop. The algorithm state at the beginning of
each iteration as well as the resulting object-graph are shown. The reference fields are labeled
appropriately; a ‘?’ indicates the field has not yet been assigned a value by the algorithm; fields
that have the value null are omitted for clarity. Each node is labeled with its identity (N0 or N1)
and a symbolic integer value (i0 or i1).
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Fig. 4. Random graph with six nodes generated by Egor

4.2 Juzi++: Repair Framework

Juzi++ takes as inputs the random graph generated by Egor and repOk, and performs
repair actions on the graph. Each repair action assigns a new value to an object field.
Juzi++ transforms the graph so that it satisfies the desired constraints on the reference
fields, and returns a set of constraints on the primitive fields of the structure. Juzi++
builds on our previous work on data structure repair and introduces new heuristics that
enable repair to scale to large structures that may have a large number of corruptions.
Juzi++ introduces two key heuristics: prioritizing values to use in repair as well as
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prioritizing fields to repair. We first describe our basic repair algorithm Juzi [13], and
then explain the heuristics that Juzi++ implements.

Juzi. This section describes the basic Juzi [13] repair algorithm. Given a structure s

that is to be repaired and a predicate repOk that represents the structural constraints,
the algorithm:

– invokes s.repOk().
– monitors execution of repOk to note the order in which fields of objects in s are

accessed1.
– if repOk returns false

– backtracks and mutates s by toggling the value of the last field that was accessed
by repOk (while maintaining the values of all other fields), and re-executes repOk

– else
– outputs s (which now has been repaired)

The first invocation of repOk (which is on the given corrupt structure) simply follows
the Java semantics. When repOk returns false, the repair algorithm mutates the given
structure, by changing the value of the last accessed field, which is non-deterministically
assigned:

– null, if the field value was not originally null;
– an object (of a compatible type) that was encountered during the last execution of
repOk on the corrupt structure, if the field was not originally pointing to this object;

– a new object (of a compatible type), unless the object that the field originally
pointed to was different from all objects in the structure encountered during the
last execution of repOk;

When all the choices for a field assignment have been explored, Juzi resets the value
of the last field accessed to its initial value and systematically backtracks to modify the
value of the second-last field accessed and so on.

Generation of large structures requires highly efficient repair. Notice that Juzi uses
backtracking to perform repair. Thus, Juzi repeatedly invokes repOk until the predicate
returns true. The performance of repair depends on the number of times repOk is exe-
cuted. When repairing a graph generated at random, the number of invocations can be
prohibitively expensive. For such a graph, the number of faults are likely to be propor-
tional to its size. Therefore, the number of times repOk is executed, which equals the
total number of repair actions performed, is very high and the basic Juzi approach does
not scale, say to repairing large structures, say consisting of 10000 nodes, that have a
large number of faults.

Juzi++. We introduce two heuristics for prioritizing repairs to enable an efficient repair
framework, which we use in Shekoosh. The heuristics are aimed to optimize repair.
However they do not compromise completeness (Section 6).

1 Execution of repOk is monitored by replacing field accesses with invocations of ”get” methods
and adding new boolean fields that are set on the first access of the corresponding field. Details
are available elsewhere [13, 19].
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Fig. 5. (a) BinarySearchTree object repaired by Juzi++; primitive fields have symbolic val-
ues. (b) Difference constraints on primitive fields computed by Juzi++. (c) Solution to the con-
straints generated by Dicos used to assign values to the primitive fields.

The first heuristics is based on building and solving constraints on references. Juzi++
identifies equality constraint patterns of the form:

i f ( f i e l d != v a l u e ) re tu rn f a l s e ;

The solution of such constraints is embedded in the negation of the condition. Juzi++
detects and directly solves such constraints without using nondeterministic assignment.
This optimization enables highly efficient solving of a variety of local constraints. To
illustrate, the parent-child relation of a binary tree takes the following form:

Node l e f t = c u r r e n t . l e f t ;
i f ( l e f t . p a r e n t != c u r r e n t ) re tu rn f a l s e ;

Juzi++ keeps track of the last equality comparison between a reference field and a
value, and selects the value as the first candidate to try. Thus, for the above example,
Juzi++ needs to try only one value for repairing the parent field of a node.

The second heuristics is based on a lightweight dynamic analysis [20] of the struc-
ture. Unlike Juzi, which for each field uses the same order of nondeterministic choices,
we use a dynamic ordering. The analysis identifies a set of core fields—fields that are
used primarily to traverse the structure. When repairing core fields, our algorithm gives
higher priority to selecting a new node or null, over selecting an already visited node.
This optimization guarantees that the reachability of the structure is preserved by repair,
and reduces the number of attempts required to find the repaired structure.

These two heuristics dramatically improve the performance of repair (Section 5). The
search uses the most likely values first, which enables generation of large structures.
Note that prioritization of constraints does not compromise the completeness of the
algorithm: if a solution to the constraints represented by repOk exists for the desired
size, our algorithm will generate it. Moreover, the optimizations allow Juzi++ to fix
more than one corrupt field using a single execution of repOk—an optimization that is
essential to scale repair based on imperative constraints.

To illustrate repair, recall the structure shown in Figure 4. Figure 5(a) shows the
corresponding repaired structure.



258 B. Elkarablieh, Y. Zayour, and S. Khurshid

S

1 11

(a) (b)

1
1

1

1
1

1

1

1
   

1

?
? ? ? ?

?

11
i1 i5 i3 i0 i2 i4

2 3 4 5
6

 i1  i5  i0  i4 i2 i3

S

1

Fig. 6. (a) Data constraint graph based on the constraints from Figure 5 (b); the edges labeled
with weight 1 arise from the difference constraints; s is the new reference node and edges labeled
with ‘?’ indicate the new edges. (b) Solution for the difference constrains; each ‘?’ has been
replaced with the value of the longest distance from s.

Juzi++ repairs the structural constraints and returns a set of data constraints, which
constrain the primitive fields of the resulting structure. Juzi++ extracts the data con-
straints using symbolic execution. To illustrate, Figure 5(b) shows the data constraints
extracted from the BinarySearchTree in Figure 5(a). The constraints returned by
Juzi++ are solved by Dicos (Section 4.3), which determines an appropriate value for
each primitive field.

4.3 Dicos: Data Constraint Solver

This section describes a technique for generating data values that satisfy the data con-
straints of the subject structure. A simple approach for generating data values is to
assign the values randomly. While generating random values for the primitive fields is
straightforward, such an approach is unlikely to give a valid solution in the presence of
any constraints on data.

We have developed Dicos, a difference constraint solver for constraints on primitive
integers. Our current implementation handles difference constraints that take the form
x < y and x ≤ y as well as equality constraints. Following a textbook algorithm [3],
Dicos builds a constraint graph where the vertices are the primitive fields, and the edges
are the difference constraints. Once the graph is built, the problem simplifies to finding
the topological order of the nodes in the graph. The primitive values are the longest
distances from a new reference node. For a directed acyclic graph with n nodes and e
edges, we can compute the primitive values in O(n + e) using a topological sort.

To illustrate, consider the constraints shown in Figure 5(b). Figure 6(a) shows the
corresponding constraint graph. The solution of this constraint graph is shown in Fig-
ure 6(b). The values for the nodes are the longest distances from the reference node
added during the graph construction.

We use the solution returned by Dicos to assign values to the data fields of the struc-
ture (Figure 5(c)).

5 Experiments

In this section we evaluate the performance of Shekoosh in generating large data struc-
tures. We first describe our experimental methodology. We present different subject
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structures with various complex structural and data integrity constraints. We use
Shekoosh to generate the subject structures, and we compare our results with related
techniques in automatic test input generation. Finally, we discuss the scalability of
Shekoosh in terms of the size and the complexity of the generated structures.

5.1 Methodology

We evaluate Shekoosh by applying it to generate ten subject structures. For each subject,
we evaluate the time it takes to generate one valid structure for sizes: 10, 100, 1000,
10000, and 100000. We repeat the generation using 50 different randomization seeds
and report the average generation time.

Our subjects are divided into three categories: (1) subjects with simple constraints on
the structure only, (2) subjects with simple constraints on both the structure as well as
the primitive data (3) and subjects with highly complex structural and data constraints.
Subjects in category (1) can be generated without using our constraint solver Dicos, i.e.,
without the need for symbolic execution for primitives, while subjects in category (2)
and (3) require its use.

For solving purely structural constraints, two of the previous tools that have been
shown to provide efficient solving are TestEra [6], which uses the Alloy Analyzer [21]
and off-the-shelf SAT technology, and Korat [7], which implements an imperative con-
straint solver. For the benchmarks in category (1), we present a comparison of Shekoosh
with these two tools. For the benchmarks in categories (2) and (3), TestEra and Korat are
unable to compete with Shekoosh because they require explicit enumeration of primi-
tive values and checking of their constraints—the two tools do not use any dedicated
solver of constraints on primitives. We have conducted experiments to generate the
structures in categories (2) and (3) using Korat and TestEra. We gave Korat and TestEra
20 minutes to generate one structure. Korat and TestEra failed to generate structures
with 25 nodes within the given time. The comparison with TestEra and Korat shows
that Shekoosh can generate structures of sizes that are 100 times larger.

5.2 Experimental Results

We next describe the data structure subjects and the generation results. All experiments
used a 1.7 GHZ Pentium M processor with 512 MB RAM.

Category (1). Subjects in this category only have simple constraints on the structure,
and no constraints on primitive data. The structural constraints are limited to reachabil-
ity, acyclicity, and transposition. We use these structures to evaluate the performance of
Shekoosh in comparison with TestEra and Korat. The subjects in this category are as
follows:

– Singly-linked acyclic list. A list object has a header node; each list node has a
next field. Structural integrity is acyclicity along next.

– Doubly-linked circular list. A list object has a header node; each list node has
a next and a previous field. Structural integrity is circularity along next and
the transpose relation between next and previous. This subject is based on the
library class java.util.LinkedList.
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Table 1. Results on solving constraints on the structure. Shekoosh is able to generate structures
that are 100 times larger than those feasible with TestEra and Korat. A time of ‘-’ indicates
failure to generate in 20 minutes. All tabulated times are in milliseconds.

Shekoosh Korat TestEra
Singly Linked Generation Repair Total Total Total
List Time(msec) Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 1 2 3 37 3000
100 Nodes 4 4 8 334 -
1000 Nodes 8 14 22 - -
10000 Nodes 30 33 63 - -
100000 Nodes 199 483 682 - -

Doubly Linked Generation Repair Total Total Total
List Time(msec) Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 1 16 17 82 8000
100 Nodes 3 44 43 3204 -
1000 Nodes 14 271 285 - -
10000 Nodes 50 3718 3768 - -
100000 Nodes 396 43174 43570 - -

Binary Tree Generation Repair Total Total Total
Time(msec) Time(msec) Time(msec) Time(msec) Time(msec)

10 Nodes 1 14 15 21 5000
100 Nodes 2 125 127 512 -
1000 Nodes 14 372 386 - -
10000 Nodes 85 3672 3777 - -
100000 Nodes 397 45267 45664 - -

– Binary tree. A binary tree object has a root node; each node has a left and a
right child node. Structural integrity is acyclicity along left and right.

Solving Constraints on Structure. We used Shekoosh to generate the subject struc-
tures of this category with sizes ranging from 10 to 100000 nodes. Table 1 shows the
results for the subjects in category (1). For test generation, Shekoosh’s performance
scales essentially linearly. Singly-linked list has the simplest of the constraints and its
generation is therefore the fastest. Even though doubly-linked list and binary tree have
two fields each, the constraints for doubly-linked list are more complex since they in-
volve two properties (circularity and transpose relation between next and previous)
as opposed to one (acyclicity).

Notice that the generation time is essentially proportional to the number of fields in
the structure. The repair time dominates the generation time as expected. The actual
time to repair depends on the complexity of the underlying structural constraints.

We gave TestEra and Korat 20 minutes to generate one structure. Overall, Korat
performs better than TestEra. However, Korat is unable to generate any subject struc-
ture with more than 800 nodes within the given time. Thus, Shekoosh is able to gen-
erate structures that are up to 100 times larger than those feasible with Korat and
TestEra.
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Table 2. Results on solving constraints on the structure as well as on data. All times are in
milliseconds.

Shekoosh
Sorted Linked Structure Generation Structure Repair Data Generation Total
List Time(msec) Time(msec) Time(msec) Time(msec)
100 Nodes 16 21 5 42
1000 Nodes 22 51 27 100
10000 Nodes 46 210 26 282
100000 Nodes 338 1423 178 1939

Binary Search Structure Generation Structure Repair Data Generation Total
Tree Time(msec) Time(msec) Time(msec) Time(msec)
100 Nodes 10 142 8 160
1000 Nodes 27 422 14 463
10000 Nodes 65 4008 30 4103
100000 Nodes 446 48401 201 49048

Heap Array Structure Generation Structure Repair Data Generation Total
Time(msec) Time(msec) Time(msec) Time(msec)

100 Nodes 10 11 8 29
1000 Nodes 14 37 15 66
10000 Nodes 15 124 29 168
100000 Nodes 55 1084 184 1323

Category (2). Subjects in this category are similar in complexity to those of category
(1) yet they have constraints on the order of primitive data. We use these structures to
evaluate our constraint solver and measure its efficiency in completing the solution. The
subjects in this category are as follows:

– Sorted linked list. A sorted linked list is an acyclic linked list whose nodes have
integer elements. Integrity constraints include acyclicity as well as ordering of ele-
ments: all elements appear in sorted order.

– Binary search tree. A binary search tree is a binary tree whose nodes have integer
keys. Integrity constraints include acyclicity as well as ordering on keys: for each
node, its key is larger than any of the keys in the left sub-tree and smaller than any
of the keys in the right-sub tree.

– Heap arrays. Heap arrays provide an array-based implementation of the binary
heap data structure that is also commonly known as a priority queue. A heap has a
capacity that is the length of the underlying array and a size that is the number
of elements currently in the heap. For a heap element at index i, its left child is at
index 2 ∗ i + 1 and the right child is at index 2 ∗ i + 2. Integrity constraints require
that size <= capacity and the heap satisfies the max-heap property: an element
is larger than both its children.

Solving Constraints on Structure as well as Data. Structures in this category have
constraints on the order of the data. For a sorted list, the elements are ordered in a
strictly increasing/decreasing order along the next field. For a binary search tree the
element in the root of a tree is larger than all the elements in the left sub-tree, and less
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than all the elements in the right sub-tree. For a heap array, an element at a node is larger
than both its children. We used TestEra and Korat to generate these structures, and both
failed to generate the first structure with 30 nodes within 20min. TestEra and Korat use
a search algorithm to solve the reference constraints as well as data constraints where
as in our approach we try to solve the two problems separately if possible (section 6)
which allows us to use a dedicated solver for data constraints.

Table 2 tabulates the results for the subjects in category (2). We point out the ef-
ficiency of our constraint solver Dicos. The performance of Dicos scales essentially
linearly with the size of the generated structures. For test generation, Shekoosh’s per-
formance still scales. Note that the structure repair time includes the time to build the
constraints on the primitives. (Recall, Juzi++ returns these constraints as its result).

Category (3). Subjects in this category have more complex structural and data con-
straints than those in categories (1) and (2). These constraints include height balance,
path coloring, sentinel reachability (all nodes should have a pointer to a sentinel node)
and more. These structures are used to measure the scalability of our approach in gener-
ating large data structures, and to discover which phase has the most contribution in the
generation time. Again we tried to use TestEra and Korat to generate these structures,
and both tools couldn’t generate the first structure of 25 nodes within the given 20min
threshold. The subjects in this category are as follows:

– Disjoint set. The Disjoint set data structure is a linked-based implementation of the
fast union-find data structure [3]; this implementation uses both path compression
and rank estimation heuristics to improve efficiency. A Disjoint set object has a
header and a tail node as well as a size field that represents the size of the set;
each set node has a next and a parent field. Structural integrity constraints are
acyclicity and reachability to the sentinel header node (the parent field of each
node should point to the header node).

– TreeMap. TreeMap implements the Map interface using red-black trees. A
TreeMap object has a root node; and stores the number of entries in the size field.
A TreeMap node stores a data element in the field key, has a left and a right

child, and also has a parent pointer. Furthermore, a node has a color, which is ei-
ther RED (false) or BLACK (true). Structural integrity is acyclicity along left and
right, the transpose relation between left, right and parent, and the natural
order on the keys. Furthermore a TreeMap structure should satisfy the following
constraints on the colors of its nodes:

• red entries have black children;
• the number of black entries on any path from the root to a leaf is the same.

– AVL tree. implements the intentional name trees that describe properties of ser-
vices in the Intentional Naming System (INS) [22], an architecture for service lo-
cation in dynamic networks. An AVL tree is a balanced binary search tree. The
integrity constraints are the same as those of the binary search tree as well as the
balance property where the height of the left and the right sub-trees does not differ
by more than one.

– Fibonacci heap. A Fibonacci-Heap is a dynamic data structure that also imple-
ments a heap. A Fibonacci heap object has a min field that points to the minimum
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Table 3. Results on large structures with very complex structural integrity constraints. All times
are in milliseconds.

Shekoosh
Disjoint Structure Generation Structure Repair Data Generation Total
Set Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 4 5 25
100 Nodes 15 63 10 88
1000 Nodes 31 4255 37 4323
5000 Nodes 62 33455 87 33604
10000 Nodes 132 250485 178 250795

AVL Structure Generation Structure Repair Data Generation Total
Tree Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 16 10 42
100 Nodes 33 94 21 148
1000 Nodes 47 3322 48 3397
5000 Nodes 78 23313 121 23424
7000 Nodes 115 455813 201 456297

Fibonacci Structure Generation Structure Repair Data Generation Total
Heap Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 32 7 55
100 Nodes 31 64 9 124
1000 Nodes 47 2140 29 2204
4000 Nodes 62 97952 52 98066
7000 Nodes 94 248828 184 249106

Red Black Structure Generation Structure Repair Data Generation Total
Tree Time(msec) Time(msec) Time(msec) Time(msec)
10 Nodes 16 16 10 42
100 Nodes 43 268 22 333
1000 Nodes 62 6546 53 6661
5000 Nodes 267 315671 149 316087

element in the heap, and a size field that stores the number of nodes. Each Fi-
bonacci heap node has a parent pointer, a child pointer, and a sibling pointer.
A node stores the key element in a key field. Detailed description of the structural
and data integrity constraints of a fibonacci heap are found in [3].

Generating Structurally Complex Subjects. The results for generating the structures
in categories (1) and (2) show that all the components of Shekoosh (Egor, Juzi++, and
Dicos) scale linearly. Yet as expected Juzi++ dominated the time required for genera-
tion. We further test the scalability of Shekoosh when generating structures with very
complex constraints on the structure (complex structures truly determine the efficiency
of the repair algorithm and thus the generation approach).

Table 3 shows the results for generating the structures in category (3). Note that as
the structure size increases, both Egor and Dicos scale linearly , yet the repair algorithm
grows faster. This is due to the complex nature of the structures being generated. The
domination of the repair algorithm over the overall generation time is clearly obvious in
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Fig. 7. Variation in the number of repair actions with the size of the structures. For all the studied
subject structures, the number of repair actions grows essentially linearly with the size of the
structure.

these structures. Even with the complexities, Shekoosh is still able to generate structure
with thousands of nodes.

We point out that although the repair algorithm uses a search based approach (similar
to Korat), it was still able to repair large structures with very complex properties (the
balancing property of the AVL, the path color property of the red-black tree, the sen-
tinel property of the disjoint sets, and the heap property of the fibonacci heap) within
the threshold value that we used before terminating the generation. The next section
will further investigate the scalability of Shekoosh and the performance of the repair
algorithm.

5.3 Scalability of Shekoosh

The experimental results show that the scalability of Shekoosh is highly dependent on
the scalability of the repair algorithm. Recall that the performance of Juzi++ is directly
proportional to the number of repair actions performed while repairing the structure.
We use the number of repair actions as a metric to measure the scalability of Juzi++,
and thus Shekoosh. Figure 7 displays the graphs of the variation of the number of repair
actions with the size of the structures. Unlike what we expected, although the perfor-
mance of Juzi++ is not linear (Section 5.2), the number of repair actions grows linearly
with the size of the structure. These results are justified as follows:
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– First, the number of faults in the structures grows linearly with the size of the struc-
ture due to the random creation of the graph generated by Egor. The random graph
acts as a partial solution that in the worst case satisfies the reachability and the size
constraints of the structure.

– Second, the optimizations that were added to Juzi++ directs the search algorithm
to the most likely value to repair a field, and thus the number of repair actions are
closer to the number of faults as most of the fault are highly likely to be repaired
with only one action.

– Third, and most important, recall that the backtracking algorithm in Juzi++ uses a
stateless search space approach. Basically, with every repair action repOk is called,
the original structure is re-initialized, and the state is built up to the faulty field.
Using this approach the structure is reconstructed with every repair action. This
causes a quadratic effect on the runtime of Juzi++ even though the number of repair
actions grows linearly.

This observation about the number of repair actions shows that for the subject struc-
tures the performance of Juzi++ is more dependent on the backtracking algorithm rather
than the search algorithm. An alternative approach for backtracking is to use a stateful
approach similar to that used in software model checkers like the Java Path Finder
(JPF) [10]. Future versions of Shekoosh will implement a stateful approach which can
allow Shekoosh to generate even larger structures with complex integrity constraints.

6 Discussion

We next present some characteristics and limitations of Shekoosh and discuss some
promising future directions.

Completeness of Generation. Shekoosh repairs a randomly generated structure in two
steps: repair of structural constraints (using Juzi++) and repair of data constraints (using
Dicos). Doing so enables efficient solving of structural constraints without the overhead
of building data constraints on every execution of repOk. However, due to possible de-
pendencies among different kinds of constraints, it is possible that a structure that sat-
isfies its structural constraints cannot be repaired further to satisfy the data constraints
without modifying the structure. In such cases, Shekoosh systematically backtracks and
uses Juzi++ to generate a different structure. We point out that the algorithm is com-
plete for difference constraints: the given structure size makes the underlying problem
decidable. Even though the initial structure is generated at random, the repair by Juzi++
and Dicos is systematic. If any valid structure of the desired size exists, such a structure
will be returned by Shekoosh; if no such structure exists, Shekoosh notifies the user.

Data Constraint Solving. The current implementation of Shekoosh supports solving
two types of data constraints: difference constraints and equality constraints. Solving a
problem that comprises additional types of constraints requires extending our solver Di-
cos or the use of a more sophisticated solver, such as the CVC-lite theorem prover [23].

Test Case Enumeration. We have illustrated Shekoosh for generating one structure of
a desired size. Shekoosh can also be used to systematically enumerate a given number
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of structures. We expect a typical usage of Shekoosh to be to generate a small set of
large test inputs; for inputs of large size, exhaustive generation is infeasible in principle
due to the enormous number of valid structures.

Sensitivity to repOk. Repair actions performed by our algorithm depend on the for-
mulation of repOk. Recall that Juzi++ backtracks on the last field accessed by repOk
and modifies that field. Therefore, repOks that return false as soon as they determine a
constraint violation without accessing remaining parts of the structure induce faster gen-
eration. Naturally written repOks have been shown to enable efficient generation [18].

Constraint-Based Generation Versus Construction Sequences. As we discussed in
the introduction, an alternative to constraint-based test generation is the complementary
approach of using method sequences to construct structures of a desired size. While this
alternative requires an a priori implementation of the methods used in the construction
sequence as well as their correct functionality, it presents a viable alternative for gen-
erating certain large structures. We have conducted experiments to compare the perfor-
mance of Shekoosh with construction sequences using our subjects (Section 5). For the
subjects in category (1) the performance of both approaches was similar in magnitude.
Subjects in category (1) have no data elements, thus both approaches scaled linearly.
The comparison for subjects in category (2) is more informative. For sorted linked list,
Shekoosh outperforms construction sequences, e.g., for 100000 nodes, construction se-
quence takes 19800 milliseconds, which is 10 times the time Shekoosh takes. For binary
search tree, the times are of a similar magnitude: for 100000 nodes, Shekoosh takes
2372 milliseconds while construction sequences take 1858 milliseconds. For heap ar-
ray, construction sequences outperform Shekoosh, e.g., for 100000 nodes, construction
sequences take 251 milliseconds, which is one-sixth of the time Shekoosh takes. For
the structures in category (3) construction sequences outperforms shekoosh due to the
complexity of the constraints being solved.

The two approaches are complementary and have their advantages and disadvan-
tages. While construction sequences outperform Shekoosh when generating structurally
complex structure, it still requires an a priori correct implementation of the methods
used in the sequence. Shekoosh generically generates the structures from the given
specification, but its performance is sensitive to the complexity of the structures be-
ing generated.

7 Related Work

We discuss how Shekoosh is related to other approaches in test input generation. We
first survey some related work on specification-based testing. We then examine differ-
ent approaches for assertion-based data structure repair. Finally we look at different
methodologies for solving constraints on data.

7.1 Specification-Based Linked Structure Generation

Specification-based testing has been present in the testing literature since decades [24].
Many approaches automate test generation from specification languages such as Z
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specification [25], JML annotations [26], ASML specifications [27], or UML state-
charts [28]. Originally these specifications did not handle complex data structures like
the ones we present in this paper, yet some were extended to handle such structures.

The AsmL Test Generator (ASMLT) [27] was recently extended to handle struc-
turally complex data using a search based approach. ASMLT transforms Asml speci-
fications into finite state machines (FSM), and a search algorithm is performed on the
FSM to generate the test inputs.

Korat [7] is a search-based test generation tool that exhaustively enumerates all non-
isomorphic instances of a complex data structure up to a bound on the size. Unlike
AsmlT, Korat takes the constraint written as a Java predicate. Korat’s approach is highly
favorable by programmers since there is no need to learn a new language (which is
declarative in most of the cases) to write the specification. Yet the performance of Korat
is highly sensitive to the way the Java predicate is written. Korat uses a search based
approach that systematically explores the input space to find all the structures to satisfy
the given predicate.

TestEra [29] is a test generation tool that uses the Alloy Analyzer [15] which in turn
uses off-the-shelf enumerating SAT solvers [16] to generate all the structures that satisfy
the integrity constraints. TestEra translates the class declarations of a structure into an
Alloy model, and the Java predicate into an Alloy formula which is then fed into the
Alloy Analyzer. TestEra is insensitive to the way the specifications are written since the
Alloy Analyzer translates the model into a CNF formula before using a SAT solver to
find the solution. The performance of TestEra is limited to the efficiency of the Alloy
Analyzer when translating the Alloy model, and the performance of the SAT solver to
find the solution.

Handling data constraints is a challenge for both search and SAT based approaches.
Korat treats data members the same way it treats references. TestEra does not provide
an efficient way to handle data elements due to the way integer types are modeled in
Alloy [30].

Our generation tool, Shekoosh, differs from the above approaches as it targets gen-
erating the first structure that satisfies a given Java predicate rather than enumerating
all the test cases. Although Shekoosh uses an approach similar to Korat when repairing
the structures, the algorithm scales due to three factors: (1) the partial solution provided
by the random graph generator (Although the graph generated by egor is random, yet
it still acts as a partial solution which at least satisfies the reachability constraint of the
structure), (2) the optimizations added to the repair algorithm which direct the search
to the most-likely value to repair a structure, and (3) the dedicated solver (Dicos) for
solving the constraints on primitives (unlike Korat).

7.2 Error Recovery

Dynamic error recovery has been part of software systems for a long time [31]. For
example, state-full techniques used checkpointing [32] to recover the program state
in distributed systems, and stateless techniques implemented dedicated repair routines
for special faults [33]. The problem with these approaches is that they require dedicated
special routines to be implemented with each system, and thus it is hard to build a robust
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generic repair framework using such approaches, since the developer must envision all
possible bugs.

Recent work on repair proposes assertion-based techniques to repair a data struc-
ture. Assertions have long been used to describe the properties of code. Many tools and
techniques make use of assertions to check the program correctness statically and dy-
namically [2]. The success of assertion checks in hardware verification [34] motivated
the use of the same approach for software validation [35]. Most of the recent program-
ming languages have special support for assertions, for example the assert keyword
in Java 1.5. Assertions can be used to describe the structural integrity constraints of
a data structure. Such a description can be written in a declarative language like first
order logic, or in an imperative language as a predicate method. Although declarative
languages provide a more succinct method for describing constraints, there is a large
gap between the syntax and grammar of such languages and those of imperative pro-
gramming languages which are commonly used by software developers and testers.

Recent techniques for repair use the structural constraints to dynamically repair data
structures. Demsky and Rinard have recently proposed an constraint-based generic
framework for data structure repair [36]. Given the consistency constraints in a new
declarative language, their algorithm generates repair routines for each of the integrity
constraints.

Juzi [13] is assertion-based framework for data structure repair [13]. However in
Juzi, assertions are written in the host language (Similar to Korat). Given the structural
constraints written as a Java predicate, Juzi systematically searches the neighborhood
of the fault and mutates the structure to satisfy the integrity constraints. Juzi uses a ded-
icated search algorithm [7] to find the correct candidate that repairs an erroneous data
structure. The performance of Juzi depends on the number of faults and the efficiency
of the search algorithm in finding the correct candidate.

Shekoosh builds on the Juzi algorithm; it optimizes the search algorithm in order to
scale for repairing larger structures with more faults.

7.3 Other Test Generation Techniques

Automatic test case generation is a very old idea, and there are large number of tech-
niques on the topic. We select a couple of techniques and compare them with our ap-
proach. A straightforward method for test generation is to build structures using already
existing construction sequences. Godefroid et al. proposed DART [37], an automated
random testing tool that uses both static and dynamic analysis to generate test cases.
Many techniques for test generation use randomized algorithms [38, 39] to generate
input tests. Pargas [40] used genetic algorithms to generate a sequence of construc-
tion calls that builds up a test input. Claessen et al. [41] use specifications written in
Haskell [42] to randomly generate a large number of inputs to test programs written
in Haskell. All these techniques can scale to generate large structures with complex
structural and data integrity constraints.

Shekoosh differs from the above techniques in that it does not require any imple-
mentation of the generated structure. Shekoosh only uses the class declaration and the
predicate method describing the constraints.



Efficiently Generating Structurally Complex Inputs with Thousands of Objects 269

8 Conclusions

We have presented Shekoosh, a novel framework for generating large data structures.
Given a Java predicate that represents the desired structural and data integrity con-
straints, and the size of the structure to be generated, the Shekoosh test generation algo-
rithm generates a structure that has the given size and satisfies all the constraints. Gen-
eration has three phases. The first phase generates a random graph. The second phase
repairs the graph to satisfy the structural constraints using an optimized framework
based on our previous work on error recovery. The third phase solves the constraints on
primitive data and assigns appropriate values to the primitive fields.

Experiments on generating large data structures using subjects with complex struc-
tural and data constraints show that Shekoosh can efficiently generate structures with
thousands of nodes. In comparison with two existing constraint-based generation frame-
works, Shekoosh is able to generate structures that are up to 100 times larger.

We believe Shekoosh presents an exciting new approach to test generation and rep-
resents an important step towards a wider application of constraint-based approaches
for automated testing and error recovery.
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A Structural Invariants for BinarySearchTree

The helper methods used in class invariant of BinarySearchTree can be formulated
as follows.
/ / checks t h e a c y c l i c i t y p r o p e r t y of t h e t r e e
boolean i s A c y c l i c ( ) {

S e t v i s i t e d = new HashSet ( ) ;
v i s i t e d . add ( r o o t ) ;
L i n k e d L i s t w o r k L i s t = new L i n k e d L i s t ( ) ;
w o r k L i s t . add ( r o o t ) ;

whi l e ( ! w o r k L i s t . i sEmpty ( ) ) {
Node c u r r e n t = ( Node ) w o r k L i s t . r e m o v e F i r s t ( ) ;
i f ( c u r r e n t . l e f t != n u l l ) {

i f ( ! v i s i t e d . add ( c u r r e n t . l e f t ) ) re tu rn f a l s e ;
w o r k L i s t . add ( c u r r e n t . l e f t ) ;

}
i f ( c u r r e n t . r i g h t != n u l l ) {

i f ( ! v i s i t e d . add ( c u r r e n t . r i g h t ) ) re tu rn f a l s e ;
w o r k L i s t . add ( c u r r e n t . r i g h t ) ;
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}
}
re tu rn tru e ;

}
/ / checks i f t h e r e a c h a b i l i t y c o n s t r a i n t i s s a t i s f i e d
boolean s i zeOk ( ) {

re tu rn s i z e == numNodes ( r o o t ) ;
}
/ / r e t u r n s t h e number of nodes r e a c h a b l e from t h e r o o t node
i n t numNodes ( Node n ) {

i f ( n == n u l l ) re tu rn 0 ;
re tu rn ( 1 ) + ( numNodes ( n . l e f t ) ) + ( numNodes ( n . r i g h t ) ) ;

}
/ / checks i f t h e t r e e e l e m e n t s s a t i s f y t h e o r d e r c o n s t r a i n t s
boolean s e a r c h C o n s t r a i n t s O k ( ) {

re tu rn i s O r d e r e d ( r o o t , MINUSINFINITY , PLUSINFINITY ) ;
}

boolean i s O r d e r e d ( Node n , O b j e c t min , O b j e c t max ) {
i f ( ( min != n u l l && compare ( n . e l emen t , min ) <=0 ) | |
( max != n u l l && compare ( n . e l emen t , max ) >=0)

re tu rn f a l s e ;
i f ( n . l e f t != n u l l )

i f ( ! i s O r d e r e d ( n . l e f t , min , n . e l e m e n t ) ) re tu rn f a l s e ;
i f ( n . r i g h t != n u l l )

i f ( ! i s O r d e r e d ( n . r i g h t , n . e l ement , max ) ) re tu rn f a l s e ;
re tu rn tru e ;

}
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