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Abstract—Embedded systems typically consist of a composition
of a set of hardware and software IP modules. Each module
is heavily optimized by itself. However, when these modules
are composed together, significant additional opportunities for
optimizations are introduced because only a subset of the entire
functionality is actually used. We propose COSE—a technique
to jointly optimize such designs. We use symbolic execution to
compute invariants in each component of the design. We propa-
gate these invariants as constraints to other modules using global
flow analysis of the composition of the design. This captures
optimizations that go beyond, and are qualitatively different
than, those achievable by compiler optimization techniques such
as common subexpression elimination, which are localized. We
again employ static analysis techniques to perform optimizations
subject to these constraints. We implemented COSE in the
Metropolis platform and achieved significant optimizations using
reasonable computational resources.

I. INTRODUCTION

An embedded system performs one or more dedicated tasks
using one or more processors that communicate with other
dedicated devices, without being referred to as a computer [1],
[2]. Embedded systems arise in many applications: examples
include communications, image processing, and automotive
electronics [2].

Embedded systems are heterogeneous by nature. For ex-
ample, they combine application specific integrated circuits
(ASICs) and field programmable gate arrays (FPGAs) with
embedded software. A diversity of platforms try to employ and
integrate different models of computation (MoC) to address
the co-design problem of embedded systems. The platforms
need to provide tools to specify, synthesize, and validate an
embedded design.

Metropolis is an example of a design tool for embed-
ded systems. The designer specifies the system using the
Metropolis Metamodel (MMM) and Metropolis synthesizes
the design by configuring parametrized architectural elements,
dynamic scheduling algorithms, interface blocks, as well as
final software and hardware implementation. Many techniques
exist to optimize each of these components as well as the
underlying communication network [3], [4], [5]. However,
there is a need for developing new techniques that can perform
optimizations across hierarchical boundaries.

We present co-optimization using symbolic execution
(COSE), a novel technique that works across components of
an embedded design to optimize structures therein. COSE
automatically detects opportunities for optimization thereby
avoiding labor on the part of the designer who would otherwise
have to manually select the subset of functionality used. COSE
detects invariants that the designer may not know or may
not recognize as useful for optimizing other components.
Furthermore, there is anecdotal evidence that having a designer

manually simplify components using knowledge of their en-
vironments is a buggy process; we use a formal technique to
compute opportunities for optimization, thereby guaranteeing
the optimized and original designs are functionally equivalent.

Key to our approach is symbolic execution (SE) [6], [7]. We
use SE to analyze software components and define a limited
set of values that software feeds hardware as constraints. SE
explores all possible paths of execution of the code specifying
a component. It does this by accumulating path conditions
(PCs) and annotating them to the corresponding segments
of the component. A PC is associated with a branch of
code and consists of the conjunction of conditions over input
and state variables necessary and sufficient for the branch
to execute. These PCs define constraints that limit the set
of values that software feeds hardware. We propagate these
constraints across the networks of the design and use static
analysis techniques such as constant propagation, redundancy
removal, and don’t care optimizations to reduce the hardware
components.

SE performs particularly well in the context of simple
inequality checks and mapping assignments. This makes it
suitable for our problem of detecting invariants that raise from
different configurations and parameterizations of hardware
components in software. COSE applies Juzi [6], an SE tool,
to extract PCs for every line of code in an MMM component.
Juzi uses CVC-lite [8] to solve or simplify PCs. CVC-Lite is a
theorem prover for the Satisfiability Modulo Theory problem
and it operates on logics that can express equality, inequality,
and arithmetic operations.

We make the following key contributions:
1) We develop COSE—a technique that crosses software

and hardware boundaries to perform joint optimizations.
2) We use SE to detect opportunities for optimization that

are qualitatively different from those detectable with
localized compiler optimizations and computationally
infeasible with pure Boolean netlist analysis.

3) We implemented a prototype for COSE in the Metropo-
lis framework and achieved significant results on two
designs with significant complexity—a realtime image
processing system and a switch fabric supporting mixed-
mode traffic.

Our paper is structured as follows: we present a motivating
example in Section II. In Section III-A we introduce Metropo-
lis and the MMM. We illustrate SE with an example and
elaborate on its advantages and limitations in Section III-B.
In Section IV we present our prototype implementation. We
present two case studies in Section V. We discuss related work
in Section VI, and we finally conclude in Section VII.

We convey the key ideas behind COSE using examples and
high-level description and rely on the Metropolis metamodel
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Fig. 1. Modified seat belt

to formalize the different techniques we use as well as their
compatibility. We use the informal style for pedagogical
reasons, as well as the 8 page submission limit.

II. EXAMPLE

The state diagram in Figure 1(a) describes the classical seat
belt controller of [9]. The controller waits for at most 32
seconds after the car key is turned on for the seat belt to be
locked. If the seat belt was not locked, then the alarm will be
on. Figure 1(b) shows the counter that implements the timer.
Since it counts till 32, then at least 5 state bits are needed in
the hardware implementation.

Suppose the car manufacturer decides to add a new safety
feature and a designer implements it in a new component as
shown in Figure 1(c). The new component monitors the same
timer signal and forces the car to turn off if the seat belt was
not locked before 6 seconds have elapsed. All we need to count
for now is 6, and thus we only need 3 bits. However, we can
see the potential for this reduction only when we co-optimize.

The same phenomenon is routinely faced in embedded sys-
tem design. Examples include bus controllers with preemptive
logic used in non-preemptive applications, cache IP that has
pollution logic used in an application that never invalidates
the data, an Internet Protocol processor that supports IPv6
used in a router that drops all IPv6 packets at the ingress,
a microprocessor core that supports multiplication used in an
application that is purely control dominated, etc.

III. BASIC CONCEPTS

In this chapter we review the Metropolis development
environment. Metropolis provides a framework that integrates
a set of tools to operate and manipulate a common design rep-
resentation. We then introduce and illustrate the SE technique
with an example.

A. Metropolis Overview

Metropolis provides a metamodel to support existing MoCs
and accommodate new ones. Similar to other platforms like
Polis [10], Ptolemy [11], SystemC [12], and SpecC [13].
Metropolis allows concurrent design of multiple processes and
uses channels to communicate between them. It is different
in that it introduces orthogonalities between (1.) computation
versus communication, (2.) functionality versus architecture,
and (3.) behavior versus performance. These processes are
orthogonal since computation refinement is usually a manual
process, functional and architectural specifications are decided
by different groups, and performance constraints are specified
by a group other than the behavior designers.

Metro Shell

Front End

Back End

Abstract Syntax Tree

Meta Model

Back End Back End Back End Back End

Meta Model
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Function
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Fig. 2. Metropolis platform

The tools integrated in Metropolis allow designers to spec-
ify, partition, synthesize, and validate an embedded system.
By partition we mean to decide which parts of the design get
implemented by software that runs on programmable compo-
nents and which parts get implemented directly in dedicated
hardware devices. Synthesis compiles the software to opti-
mized object code and hardware into optimized configurations
of logic gate libraries. Validation checks whether the final
implementation meets the properties in the specifications [14].

Metropolis uses MMM, an extension of the Java program-
ming language with access restriction paradigms, as the design
description language.

The diagram in Figure 2 shows the different components
of the Metropolis platform. Metropolis provides several tools
to manipulate the design. The two most commonly used are
the Elaborator and the SystemC [12] code generator. The
Elaborator parses the MMM specifications and generates an
abstract syntax tree (AST). All the other tools in the Metropo-
lis framework operate on the AST. The SystemC generator
provides a path to simulation, verification, and synthesis.
Metropolis also has another verification path to the SPIN [15]
model checker.

1) Design Methodology: Metropolis allows a recursive
design cycle with three phases. In Phase 1, the designer
specifies the functional behavior of the design. This uses one
or more MoC to describe (1.) the computation components,
(2.) the communication components, (3.) the connections, and
(4.) the hierarchy of the design. In MMM these are referred
to as processes, media, interfaces and netlists respectively.

In Phase 2, the designer describes the target architecture
platform of the design as a library of services. In Phase 3, the
designer maps the functional specifications to the architecture
services. In summary, the mapping is an intersection operation
that constrains a functional interface to an architectural one.

The functional and architectural netlists may be developed
by Metropolis designers and may also be provided as libraries.
A platform vendor, for instance, may provide an architecture
MMM of an FPGA to its customers. Similarly, a design team
may develop a standard library of commonly used functional
processes to promote reuse.
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(c) Juzi instrumented code

[A > B, B − A > 0] infeasible

[A > B ] y = A + B − B = A

[A > B ] x = A + B − A = B

x=A, y=B

[A > B , B − A <= 0] end[A <= B] end

[A > B] x=A + B

     A > ? B

[A > B ] B − A > ? 0

end

1: int x,y;

5:    x = x − y;

4:    y = x − y;

3:    x = x + y;

2: if (x > y) {

6:    if (x − y >  0 )

7:        assert( false );
8: } }

SymbolicInt x,y;

    if( x.subt(y).if_cmpgt(0)) 

    y.assign( x.subt(y));

    x.assign( x.subt(y));  

    x.assign( x.add(y));

if( x.if_cmpgt(y)){

        assert(false);

(a) original code (b) SE execution with annotated PCs

Fig. 3. Symbolic execution

2) The Meta Model: Metropolis uses a meta model to
represent a design. Like the tagged-signal model [16], MMM
is not tied to a particular MoC. MMM provides a set of
computation and communication building blocks that can be
customized to describe the semantics of many different MoCs
thus enabling the modeling of heterogeneous systems.

MMM builds on the syntax and semantics of the Java
programming language. It restricts itself to a subset of Java that
includes inheritance, basic logical and arithmetic operators,
loops, and conditionals. MMM introduces special class speci-
fiers such as process, media, and quantity and supports method
and field access control using modifiers like eval, update,
and port. It also supports logical implication and equivalence
operators in its embedded linear temporal logic (LTL) [17]
used to specify constraints.

Processes are the active elements of the design and are
typically used to perform computations via executing their
thread methods. To decouple communication from computa-
tion, processes do not communicate directly with each other,
they connect through interface ports and media. This allows
the communication semantics to change without the need to
change the processes.

Media are the communication components of the design and
facilitate communication between processes and other media.
They are passive, meaning they do not perform computation,
but they may contain data and state.

The Metamodel supports two constraint formula types:
LTL and logic of constraints (LOC). In addition, often LTL
constraints form mappings expressing the equivalence between
functional and architectural components.

A netlist connects the Metamodel components. Functional
netlists usually consist of processes and media, while ar-
chitectural netlists consist of processes, media, quantities,
and constraints. Netlists may be connected hierarchically. A
mapping netlist, for instance, can contain a functional netlist,
an architectural netlist, and constraints between the two.

B. Symbolic Execution

SE is a technique that explores all possible executions of a
program by traversing all possible branching conditions while
bookkeeping symbolic values for all variables involved in the
program at each atomic step. For every branch, SE adds the
condition for the branch it takes to a PC in conjunction. Upon
completion, all PCs are evaluated. Some of the accumulated
PCs may be proved unsatisfiable, and thus the code these

PCs annotate is proved dead since there is no setting for the
program variables that satisfies its PC.

In Figure 3(b) we show the symbolic execution of the
generic code in Figure 3(a). SE techniques start by initializing
variables x and y to symbolic values A and B. At the first
branch on line 2, the two choices are valid so they are both
considered. The first, A ≤ B, exits the block. The second,
A > B, enters the body of the conditional statement. The
values of x and y are updated at each line until the next
branch is reached on line 6. At that point the first condition,
B − A ≤ 0, exits the block. The second, B − A > 0, leads
to the assert statement. However the PC, accumulated from
the branch on line 2, conflicts with the symbolic check on
the values of x and y. Thus we can conclude that the assert
statement is not accessible.

This shows how the SE technique can effectively detect
dead code in control and data flow dominated circuits. With
SE we can also annotate each line of code with all the PCs that
allow the line to be executed. The tool Juzi [6] implements SE
for Java code. It does so by instrumenting the Java-byte code
of the Java class in question to use symbolic implementations
for its variables. Figure 3(c) shows the Java code equivalent to
the automatic Juzi instrumentation for the code in Figure 3(a).
The variables x and y are declared as SymbolicInt variables and
the arithmetic and Boolean operations and conditions applied
to them are replaced by symbolic operations. The symbolic
assign, add, and subt operations update the correspondence be-
tween x and y and the symbolic values A and B respectively.
The if cmpgt updates and checks the PC with the different
choices it makes. Juzi also introduces lazy initialization where
it initializes a variable only when it is actually used rather
than when it is declared. Juzi supports dynamically allocated
structures and data structures with self-loops – e.g., linked
lists, and respects method preconditions.

Under the hood, Juzi uses CVC-lite to decide a PC or
to simplify it into an equivalent more compact PC. CVC-
lite is a validity checker for typed first order logic with
interpreted theories. It supports integer and real arithmetic,
equality and inequalities, predicate subtypes, partial functions,
uninterpreted functions, arrays, records, bitvectors, and quanti-
fiers [8]. COSE leverages these capabilities to work on a high
level of abstraction and detect invariants that are qualitatively
different than those detected at the Boolean level.
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IV. OUR APPROACH

Before we proceed to present the technical solution, we
discuss two fundamental questions. First, one may question
whether software can be developed before hardware is com-
mitted. Second, new versions of software may try to use
hardware that was optimized away.

The software dependence on ready hardware question is
methodology specific. The MMM assumes a complete design
at every level of abstraction, and thus the reductions obtained
by co-optimization apply only to that level. At any refinement,
reductions need to be discarded and co-optimization can
be applied again. The flexibility question is inherent in all
models and is specific to the co-optimization technique. COSE
provides the sets of constraints it detected and used to optimize
other components. Thus it allows the designers to either stay
within the framework of the optimizations or to discard the
optimizations and run COSE again in case new conflicting
constraints were found.

A. COSE Overview

Figure 4 shows how COSE is integrated into the Metropolis
framework. COSE is an iterative process that uses SE and
static analysis techniques to optimize a design at hand. It takes
as input an MMM netlist Φ, and a starting PC σ that could be
empty. It selects one interesting process Π in Φ, and it uses
Juzi to symbolically execute the thread function in Π, with σ
as the starting PC.

COSE uses Juzi and CVC-lite to perform SE. This is
convenient since MMM is an extension to Java with access
restrictions. COSE translates Π to Java and calls it ΠJava. The
translation to Java is straightforward and works with inlining
method calls and substituting ports by variables with Boolean
validity guards to control read and write operations and allow
a run-time protection mechanism. Then COSE compiles ΠJava
into byte-code, ΠBC , and feeds that to the Juzi instrumentor
class. COSE then symbolically executes the instrumented class
and gathers the generated PCs.

COSE follows the usage of ports in the process and joins
all the path conditions annotated to the code of the ports in
disjunction into σport

i . Then each σport
i is treated as a con-

straint to the port and is propagated through the corresponding

connections in Φ. COSE repeats these steps for every medium
and process that connects to Π through a constrained port.

B. COSE Optimizations

We annotate each line of MMM code with the disjunction
of the PCs generated for it from Juzi. We resolve and compact
the PCs using CVC-lite. A PC that evaluates to false is
infeasible and the code it annotates is dead-code and thus can
be optimized away.

COSE can also perform range restriction optimizations. If,
for example, COSE detects PCs restricting all indexes reading
and writing into an array to a specific range, it can resize the
array and use a smaller number of bits for the indexes.

COSE also checks for mutually exclusive blocks of code
via evaluating the PCs of interesting blocks of code that use
the same ports. Once two mutually exclusive blocks of code
are detected, COSE adds a constraint to the netlist connecting
the two blocks of code to declare they are mutually exclu-
sive. Synthesis tools can use this to optimize communication
between ports depending on the underlying MoC [18].

COSE generates optimized MMM modules that are an-
notated with detected and simplified PCs. In addition to
conditional statements, COSE embeds the PCs it detected on
ports as LTL constraints in the MMM module describing the
netlist connections of the design. We pass the optimized and
constrained MMM to a synthesis tool where we target reduc-
tions achieved by static analysis such as constant propagation,
redundancy removal [19], [20], and observability don’t care
optimizations [21].

COSE operates only on the MMM level. It uses the netlist
connecting the different components of a design only to follow
the connections regardless of the semantics of the underlying
MoC. Thus the optimizations and constraints computed by
COSE are valid regardless of the underlying MoC.

C. Dependency Map and Constraint Propagation

COSE propagates constraints through ports. A port has an
interface type and allows access to methods declared in the
interface. More than one process may own ports with the same
interface type, and media implement the interface methods.
COSE follows the port declarations and usages in the entire
netlist Φ and forms a dependency graph. The nodes of the
dependency graph are processes, media, and interfaces. The
arcs are connected ports. All the connections in MMM are
done with the connect keyword which facilitates building such
a map. Connections in MMM have to be resolved statically
and are done at the netlist level. This helps run SE on
the component level only and helps COSE scale to large
compositions. A PC is coded into a conditional constraint and
is annotated either to the thread method of a process, or to the
implementation of an interface method in a media.

D. Synthesis Reduction Techniques

COSE can use the native synthesis tools in Metropolis
or can run public domain synthesis optimization tools like
SIS [21] to optimize the components with the computed
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Fig. 5. Switch fabric design

constraints. We obtain the best optimization gains when COSE
detects dead code that instantiates or activates other compo-
nents of the netlist. Constraint based optimizations intersect
with sequential don’t care reductions. As previously stated,
COSE has the advantage of detecting invariants on a level
of abstraction higher than classical don’t care optimization
techniques which use Boolean constraints. This is mainly
because COSE uses SE which produces PC expressed with
equality, inequality and arithmetic logic.

E. Illustration on the Seat Belt Example

For the modified seat belt example described in Section II,
in a single iteration COSE propagated a PC that constrains the
counter port to ≤ 6 in the timer. If the timer is implemented in
hardware, this is enough to set the two most significant state
bits of the counter to 0. Constant propagation techniques can
propagate the 0 values and drop the constant state bits. Juzi
instrumented and symbolically executed the seat belt example
in less than 5 seconds.

V. CASE STUDIES

In this section, we apply COSE to reduce two designs with
significant complexity. The first is a switch fabric for mixed IP
and ATM traffic that can be deployed in several configurations
such as an IP-only traffic application. The second is an image
processing system that identifies objects in real time pictures
and it also can be used in different configuration such as
military usages and home video surveillance.

A. Switch Fabric

In Figure 5 we show the organization of a shared-memory
switch fabric [22] for mixed ATM and IP traffic. The switch
fabric receives packets of data on its input ports and correctly
forwards them to their destination ports. A packet can be
described as a data structure composed of a protocol field, a
class field, a destination address and a payload stream of data.
Input ports are modeled by queued buffers of packets. Output
ports are assumed to hold the data for immediate consumption.

When two packets arrive which need to be forwarded to the
same output port, one is stored in the packet buffer. Pooling the

sf_netlist

SFOutputSchedule

SFATMLookupTable

LookupTableIfc

SFUpdateTablesProc

InputIfc PacketIfc OutputIfc

SFPktBuffer

SFComputeScheduleProc SFPerformTransferProc

ScheduleIfc

SFInputSchedule

SFIPLookupTable

. . .

Fig. 6. Class diagram for switch fabric metamodel

packet memory leads to better buffer utilization [23], and high-
end core routers, such as the Juniper M-series are organized
in this fashion [24].

The switch fabric in Figure 5 supports both IP and ATM
traffic. It implements class-of-service: each packet has a class-
of-service field which identifies its priority. The control pro-
cessor computes two schedules, taking into account the free
packet buffers: the input schedule maps input ports to available
packet buffers, and the output schedule maps valid packet
buffers to output ports. The physical transfer of packets is
performed via the crossbars after the schedule is computed.

The design is configured using in-band signaling through IP
and ATM packets specially marked with a control code in the
first byte of the packet payload. A control packet contains a
destination and a port number and instructs the switch fabric
node to update the forwarding table to map the destination to
the output port. The design in Figure 5 implements this via two
lookup tables for the protocols it supports. The lookup tables
are used later to map data packets with destination addresses
to the correct ports.

1) MMM for Switch Fabric: Figure 6 shows the MMM
class diagram of the switch fabric design. Boxes denote
process classes, dotted boxes denote interfaces, ellipses show
media classes, and filled and empty arrows denote ownership
and inheritance relations respectively. The design is connected
through the netlist object sf netlist. The input and output
schedules are media objects that implement the ScheduleIfc
interface. The IP and ATM lookup tables are media objects that
implement the LookupTableIfc interface. The internal memory
is a two dimensional array of the SFPktBuffer media which
implements the PacketIfc interface. The sf netlist has input
and output port interfaces that also implement the PacketIfc
interface. The computational elements of the switch fabric de-
sign are expressed in three processes. The SFUpdateTablesProc
process receives control input packets and updates the lookup
tables. SFComputeScheduleProc looks at the input and output
ports and the internal memory through PacketIfc and updates
the input and output schedules. SFPerformTransferProc is the
third process and it actually reads the schedules and performs
the data transfer accordingly.
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2) Results for Switch Fabric: We assumed the deployment
of the switch fabric design in Figure 5 in multiple scenarios.
The first scenario is with network elements that produce IP
only traffic. The second scenario was with local network
elements that are limited to the use of few output ports.

We modeled the IP-only traffic by a CreateInputs process. The
following fragment of pseudo code from CreateInputs shows
how the protocol field is set to IP PROTOCOL for valid inputs.
int inIdx;
for ( inIdx = 0 ; inIdx < NUM_IN; inIdx++ ) {
inBuff[inIdx].valid = chooseBoolean();

if(inBuff[inIdx].valid == 1){
// if (chooseBoolean() == 1)

inBuff[inIdx].pkt.protocol = IP_PROTOCOL;
//else
// inBuff[inIdx].pkt.protocol = ATM_PROTOCOL;
... }

Similar to Figure 3, COSE instruments all fields of
the pkt as SymbolicInt and thus detects the path condition
PCprtcl, inBuff[inIdx].protocol == IP PROTOCOL, in all exe-
cution branches of the CreateInputs process. COSE propagates
PCprtcl to SFComputeSchedule through the InputIfc ports.
COSE was able to determine that all blocks of code condi-
tioned with if(inBuff[inIdx].protocol == ATM PROTOCOL) are
infeasible in all branches of execution of SFComputeSchedule.
COSE annotates all these blocks of code with an if(false)
PC and thus optimizes them out. In addition, COSE an-
notated the PacketIfc and the ScheduleIfc interfaces with
PCprtcl since it still holds across all execution branches
in SFComputeSchedule. Then in turn, COSE propagated the
PCprtcl to the SFPerformTransferProc process. All blocks
of code therein conditioned with if(inBuff[inIdx].protocol ==
ATM PROTOCOL) were optimized out.

With 4 input ports, 4 output ports, and an 8 × 16 internal
packet buffer, it took COSE 3 hours and 12 minutes to com-
plete this optimization with 36, 816 symbolic integer variables
and more than 2 million branches of execution.

We modeled the network with limited output port acces-
sibility with a CreateInputs process that sends control packets
with a limited destination port value.
int inIdx;
for(inIdx = 0; i < NUM_IN; i++){

inBuff[inIdx].valid = chooseBoolean();
if(inBuff[inIdx].valid == 1){
int choiceDataVsControl = chooseBoolean();
if(choiceDataVsCntrl == 1){

inBuff[inIdx].pkt.data[0] = CTRL_PKT;
inBuff[inIdx].pkt.data[1] =

makeDestIPAddress();
inBuff[inIdx].pkt.data[2] =

chooseInt().remainder(4);
...

} else { // setup data packet
...} } }

COSE was able to detect the path condition PCport,
(inBuff[inIdx].pkt. data[0] == CTRL PKT) AND (inBuff[inIdx].pkt.
data[2] ¡ 4). COSE propagated the PCport condition,
through the InputIfc interface, to SFUpdateTablesProc and
then annotated all the LookupTableIfc interfaces with
lookupTable[tableIdx].outputPort ¡ 4. COSE propagated the latter
PC to SFPerformTransferProc and annotated the only block of
code that writes to the output ports with it.
if(outPortIdx < 4){ // COSE ANNOTATION

(res, sel)

edge
detect

edge marks

segment

image

capture <obj, shape, label>

seg,
marks

recognize object
labels

(sel, neigh)

Fig. 7. Flow diagram for the ObjectID application

outBuff.[outPortIdx].valid = 1;
outBuff.[outPortIdx].pkt = getPcktFromScheduleAndMemory();
... } // END COSE ANNOTATION

With this annotation COSE enabled the synthesizer to drop
the 4 output ports that are never written to or validated. COSE
ran with 61, 018 symbolic integer variables and took 4 hours
and 7 minutes to inspect all feasible branches of execution and
compute this optimization.

B. Case Study: Video Surveillance

Figure 7 shows an image processing video surveillance ap-
plication, also called object identification, that was developed
in an MS project [25]. The system accepts an image and
produces labels of the objects with their coordinates in the
image. One or more edge detectors scan the image and produce
edge marks that are visited by one or more segmentation
algorithms to produce segmentation marks. The segmentation
marks partition the image with the borders of the main shapes
in it. Then a pattern recognition algorithm is used to match
the shapes in the segmented image to a library of objects.
The application instantiates 4 edge detectors and 3 segmentors
and uses them depending on the resolution of the requested
edge and recognition. We assume the system was designed for
military usages that need high resolution analysis, and then it is
used for home surveillance purposes where lower resolutions
are suitable. If only home surveillance resolution is desired,
just two detectors and one segmentor are needed.

1) MMM Model for ObjectId: We implemented the
object identification example in MMM. The system originally
took 16 weeks of work by one designer and is around 4000
lines of C and RTL code. We modeled it with around 1255
lines of MMM code. The diagram in Figure 8(a) shows
the high abstract view of the ObjectID application, and the
diagram in Figure 8(b) shows the detailed class diagram.

The OIDImage media implements OIDImageObjectIfc

which defines interfaces for object identification and inherits
image, edge, and segment interfaces. An OIDEdge process
accesses the OIDImage media through owning a port of type
ImageEdgeIfc. OIDGaussianEdge extends the OIDEdge

process and implements one type of edge detectors which uses
a Gaussian mask to differentiate pixels. We only named one
type of edge detectors for brevity. Other well known tech-
niques for edge detection such as the Sobel, Prewitt, Laplacian
of Guassian (LoG), and the Canny detectors [26] may be
used. Similarly to OIDEdge, OIDSegment owns a port of type
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Fig. 8. Levels of abstraction of the Object ID application

ImageSegmentIfc, and OIDSegmentLinear implements
one type of segmentation algorithms. The OIDFusion medium
owns a CaptureIfc, and an ImageObjectIfc. It also im-
plements the FusionControllerIfc and FusionProcIfc

interfaces. OIDFusionProc owns FusionProcIfc and
RecognizeIfc interfaces. The OIDRecognize process also
owns similar interfaces.

The netlist oid_netlist instantiates 4 OIDGaussionEdge
processes, 2 OIDSegmentLinear processes, one OIDImage

medium, one OIDFusion medium, and one OIDFusionProc

process. It also connects them appropriately through their
owned and implemented ports. CaptureIfc and the object
part of ImageObjectIfc are open to the outside world where
the system can accept controlled input.

2) ObjectID Dependency Map: Figure 9 shows the code
of the ObjectID netlist, OIDFusion, and OIDGaussianEdge.
The arrow on the connect method call in the netlist con-
structor links the usage of the oid fusion ifc port to its im-
plementation in OIDFusion. If the capture and the recognition
interfaces happen to be set to 120 and 105 then the body of the
thread method of the OIDGaussianEdge detectors instantiated
as edge3 and edge4 will be dead code since the first statement
in the condition is going to be always false. The arrows in
the figure show how the dependency map was built from
instantiations and connections in the netlist and usages of ports
in process classes.

3) COSE ObjectID Results: In the ObjectID, we assumed
a capture medium implementation that requires a low reso-
lution. We were able to detect infeasible PCs on lines that
activate the two high resolution edge detectors in one COSE
iteration. In the second iteration and after propagating the
infeasible PCs we were also able to detect dead code for the
lines that activate one of the segmentation processes. We were
able to reduce the system by 2 edge detector components and
one segmentation component. It took COSE 15 minutes to
instrument and symbolically execute the ObjectID code.

VI. RELATED WORK

Compared to sequential optimization techniques from
logic synthesis, specifically, those based on sequential don’t
cares [27], COSE operates at much higher level of abstraction
than Boolean netlists—we treat high-level constructs such as
integer variables, memories, etc., natively. We also make use
of the decomposition of the design into modules. This leads

to more compact models, reducing run-time complexity which
has been a major drawback to sequential logic synthesis.

Analyzing software components with Boolean methods is
far beyond the reach of current tools—there is too much
state associated with the instruction set. We have in the past
experimented with verifying a switch fabric with VIS [28],
We implemented the scheduling in hardware, and it was con-
siderably simpler than the scheduler employed in this paper.
However, verification still suffered from BDD-blowup, and we
were unable to verify elementary properties of a 2-input 2-
output shared memory switch with 4 packets of buffering, no
control packets, and no support for mixed-mode traffic.

Our SE technique is different from symbolic reachability
analysis [28] in many aspects. First, it does not examine the
transition system of a component in whole and rather looks
at the transition of interleaving variables that define the state
space via executing the code line by line. Also it only considers
reachable states via pruning infeasible PCs.

Prior dead-code detection techniques [29], [30] make use
of conservative static analysis and can therefore erroneously
classify paths as alive; in contrast, SE coupled with a decision
procedure gives more accurate results for programs with
bounded loops and recursion.

Similar to VeriSoft [31], COSE performs a state-less search:
it systematically explores an execution tree, which represents
all execution paths up to a desired bound, and backtracks using
re-execution, ensuring that all (feasible) paths are explored.
This contrasts with the state-full search of SPIN [15], which
stores states using hashing. COSEs use of symbolic execution
also contrasts with VeriSoft and SPIN, who do not use off-
the-shelf decision procedures and require the user to a priori
provide (tight) bounds on integer inputs.

VII. SUMMARY

We introduced the use of SE to co-optimize embedded
systems, presented COSE and implemented a prototype that
uses Java inlining. We integrated COSE in the Metropolis
framework and showed it can lead to significant optimiza-
tions on representative examples. COSE is a co-optimization
mechanism that can find constraints in software and effectively
propagate them to hardware. These constraints may not be
observable by designers and lead to optimizations that are
qualitatively different than reductions possible with localized
compiler optimizations and Boolean level transformations.
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       while( oid_fusion_ifc.resolution() < resolution &&

120

infeasible

...

  ...
105

medium OIDFusion implements FusionControllerIfc {public netlist oid_netlist{
  static final int RESOL = 50;
  ...

  public oid_netlist(String name, int res, int sel, int sense, int neighboors)
  {
    OIDEdgeGaussian edge1 = new OIDEdgeGaussian(RESOL, SELECT);
    OIDEdgeGaussian edge2 = new OIDEdgeGaussian(2*RESOL, SELECT);

    ...

    //connect edge − fuse
    connect(edge1, oid_fusion_ifc, fuse);
    connect(edge2, oid_fusion_ifc, fuse);
    connect(edge3, oid_fusion_ifc, fuse);
    connect(edge4, oid_fusion_ifc, fuse);
  }
}//end of netlist

    OIDFusion fuse = new OIDFusion(REQ_EDG, REQ_SEG);

    OIDEdgeGaussian edge3 = new OIDEdgeGaussian(3*RESOL, 2*SELECT);
    OIDEdgeGaussian edge4 = new OIDEdgeGaussian(4*RESOL, 2*SELECT);

process OIDEdgeGaussian extends OIDEdge
{
  parameter int resolution;

  int m_state = no_op;
  thread()  {
     if(m_state == no_op)

              oid_fusion_ifc.selection() < selectiveness &&
              oid_fusion_ifc.goodtime()){

          int pixels[][] = oid_iem_ifc.refImage();
          int marks[][] =  oid_iem_ifc.refEdge();
          doGaussianMark(pixels, marks, m_state);}

          m_state = mask_on;

    else
       doGaussianMark(oid_iem_ifc.image(),  oid_iem_ifc.edgeMarks());
  ...}

    return max(oid_rec_ifc.res(), oid_cap_ifc.res()); } }
  eval int resolution() {

Fig. 9. Dependency map of ObjectID

Given the different levels of abstractions possible in Metropo-
lis, COSE can accompany the concretization process one step
at a time. COSE guarantees that the result of its optimization
is functionally equivalent to the original design. In the future,
we plan to optimize COSE via integrating it with a native
difference equation solver instead of calling CVC-Lite. We
are also exploring the use of SE to optimize linking programs
across compilable software modules.
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