
Sequential Circuits for Relational Analysis

Fadi Zaraket
IBM Systems & Technology Group

Adnan Aziz Sarfraz Khurshid
The University of Texas at Austin

Abstract

The Alloy tool-set has been gaining popularity as an al-
ternative to traditional manual testing and checking for de-
sign correctness. Alloy uses a first-order relational logic
for modeling designs. The Alloy Analyzer translates Alloy
formulas for a given scope, i.e., a bound on the universe of
discourse, to Boolean formulas in conjunctive normal form
(CNF), which are subsequently checked using propositional
satisfiability solvers.

We present SERA, a novel algorithm that compiles a re-
lational logic formula for a given scope to a sequential cir-
cuit. There are two key advantages of sequential circuits:
they form a more succinct representation than CNF formu-
las, sometimes by several orders of magnitude. Also sequen-
tial circuits are amenable to a range of powerful automatic
analysis techniques that have no counterparts for CNF for-
mulas. Our experiments show that SERA, used in conjunc-
tion with a sequential circuit analyzer, can check formulas
for scopes that are an order of magnitude higher than those
feasible with the Alloy Analyzer.

1 Introduction

As software systems steadily grow in complexity and
size, designing such systems manually becomes more and
more error-prone. The last few years have seen a new gen-
eration of lightweight design tools that allow formulating
designs formally, as well as checking their correctness to
detect crucial flaws that, if not corrected, could lead to mas-
sive failures. The Alloy tool-set is one such design tool that
is rapidly gaining prominence [19, 30]. The user formu-
lates their design in the Alloy language, which is a first-
order logic (with transitive closure) based on relations, and
checks the correctness properties using the Alloy Analyzer.

The Alloy tool-set has been used successfully to check
designs of various applications, such as Microsoft’s Com-
mon Object Modeling interface for interprocess communi-
cation [8], the Intentional Naming System for resource dis-
covery in mobile networks [1], and avionics systems [13],
as well as designs of cancer therapy machines [20].

The Alloy language provides a convenient notation
based on path expressions and quantifiers, which allow a

succinct and intuitive formulation of a range of useful prop-
erties, including rich structural properties of software.

Much of Alloy’s utility, however, comes from its fully
automatic analyzer, which performs a bounded exhaus-
tive analysis using propositional satisfiability (SAT) solvers.
Given an Alloy formula and a scope, i.e., a bound on
the universe of discourse, the analyzer translates the Al-
loy formula into a Boolean formula in conjunctive nor-
mal form (CNF), and solves it using an off-the-shelf SAT
solver [27, 15, 23].

1.1 The case for sequential circuits

While recent advances in SAT have enabled the Alloy
Analyzer to check designs of real systems, these designs
often need to be partial, leaving out important aspects of the
systems, to enable the analysis to complete. Moreover, the
analysis is typically limited to relatively small scopes, e.g.,
fewer than 10 entities in a file system.

There are two limiting aspects of the current Alloy anal-
ysis. (1.) The translation to CNF depends on the scope; a
small increase in the scope can cause a large increase in the
size of the translated CNF formula due to quantifier elim-
ination and transitive closure unrolling, e.g., for an undi-
rected 7-node tree the translation generates a formula with
over 1 million variables and 5 million clauses. (2.) The
SAT solver is restricted to using optimizations that apply at
the level of CNF formulas.Often times when the analyzer
successfully generates a large CNF formula, the underlying
solver chokes.

To increase Alloy’s applicability to a wider class of sys-
tems as well as to checking more sophisticated properties of
designs and gaining more confidence in the results, we need
to scale Alloy’s analysis to significantly larger scopes.

The limitations of the CNF encoding motivated us to de-
velop sequential encoding for relational analysis (SERA),
an algorithm which encodes Alloy formulas as sequential
circuits and decides them using a sequential circuit solver.
A sequential circuit can be viewed as a restricted C++
program, specifically a multi-threaded program in which
all variables are either integers, whose range is statically
bounded, or Boolean-valued, and dynamic allocation is for-
bidden [14].

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Given an Alloy formula and a scope, SERA automat-
ically derives a sequential circuit and a Boolean variable
therein that serves as an invariant, i.e., the variable can be
set to true if and only if the Alloy formula is satisfiable
within the scope. (For ease of exposition, we will some-
times refer to the output of SERA as a circuit, with the in-
variant being implicit.)

We use SixthSense [24, 31], a tool developed at IBM, to
automatically check invariants on sequential circuits. Sixth-
Sense reads designs expressed in the VHDL design lan-
guage [2]. Sequential circuits, as described in the preceding
paragraph, can be efficiently translated into VHDL using
inlining [12, 14].

There are two key advantages to compiling Alloy formu-
las into sequential circuits rather than CNF formulas:

Advantage 1 Our encodings are much more succinct than
those generated by Alloy—in cases, Alloy’s encoding
algorithms produce a data structure that uses several
orders of magnitude more memory to represent.

Advantage 2 Casting the decision problem for an Alloy
formula as an invariant check on a sequential circuit
allows us to make use of a number of powerful auto-
mated analysis techniques that have no counterpart in
CNF analysis. Empirically, our implementation scales
to scopes that are an order of magnitude higher com-
pared to the Alloy Analyzer; it also concludes satisfi-
able and unsatisfiable checks faster.

Intuitively, Advantage 1 holds because sequential cir-
cuits are imperative and stateful while CNF formulas are
declarative and state-free. For example, sequential circuits
can represent quantification using loops without the need
for an expansion with respect to the scope. Moreover, se-
quential circuits can store and reuse intermediate results in
local variables.

We justify Advantage 2 by illustrating some automatic
analysis techniques that SixthSense implements. These di-
rectly apply to sequential circuits generated by SERA.

Abstraction. Consider the verification of library code L
which uses a sophisticated memory allocator for perfor-
mance.

Let the library L∗ be L with L’s allocator abstracted to
a simpler allocator that nondeterministically selects a block
from the set of free blocks. Since the simpler allocator uses
nondeterminism, if an invariant holds of L∗, it holds of L.
The simpler allocator in L∗ makes verifying invariants on
L∗ easier than verifying the same invariants on L.

While there exist efficient algorithms for automatically
identifying components for abstraction in sequential cir-
cuits [22, 24], abstraction for CNF formulas is much harder.
This is because there is no structure in a CNF formula to
guide the abstraction algorithm—the clauses are unordered.

Note that an invariant may fail on L∗, but hold of L, e.g.,
L’s code makes use of details from the implementation of
the allocator beyond those exported from the abstract inter-
face. SixthSense will automatically identify a negative as
false, and roll back the abstraction [22, 24].

Compositional minimization. Consider the verification of
a spanning tree algorithm T which uses a balanced search
tree (BST) to manipulate sets.

With respect to its abstract interface, a BST implementa-
tion of sets is functionally equivalent to a list implementa-
tion of sets. Let spanning tree algorithm T ′ be T with sets
implemented using lists. Because a BST is more complex
than a list, verification of T ′ is easier than verification of T .
Since the list and BST representations of sets are equivalent
with respect to their abstract interface, an invariant holds of
T iff it holds of T ′.

There exist several techniques for automatically identi-
fying components and minimizing them in sequential cir-
cuits [7, 31, 4]. These techniques are based on the notion
of equivalent states [17]. Analogous techniques do not exist
for CNF formulas, as there is no notion of state.

Logic optimizations. There are literally hundreds of tech-
niques for automatically optimizing sequential circuits; ex-
amples include variable minimization via retiming [21],
common subexpression extraction [9], and exploiting re-
duced observability and controllability at internal compo-
nents [3, 28].

SixthSense automatically iterates through the techniques
described above as well as some other techniques, to sim-
plify its input sequential circuit. It decides the simplified
circuit using a variety of techniques, such as bounded model
checking, circuit SAT solving, invariant enlargement, and
semi-formal search [26, 27, 16, 5, 24].

We make the following key contributions:

1. New encoding for Alloy: We propose SERA, an al-
gorithm that encodes an Alloy formula and scope as a
sequential circuit.

2. Relational analysis: We enable the use of sequential
circuit verification including many powerful reduction
techniques for relational model checking.

This paper is structured as follows. We first visit an ex-
ample in Section 2 to illustrate Alloy and its Analyzer. In
Section 3, we describe the existing Alloy encoding, review
sequential circuits, and introduce SERA components. We
introduce the SERA encoding in Section 4. We evaluate
our approach in Section 5 and conclude in Section 6.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

2 Alloy Example
We illustrate the key Alloy constructs through an exam-

ple; more details are available elsewhere [19]. Consider a
tree, i.e., a connected, acyclic, undirected graph. There are
various equivalent ways of defining trees. We take five text-
book definitions [11], model them in Alloy, and check their
equivalence using the Alloy Analyzer.

Let G = (V, E) be an undirected graph, where V is a set
of vertices and E is a binary relation on V . The following
statements are equivalent for non-empty graphs:

1.G is a tree.

2.G is connected, but removing any edge from E results
in a disconnected graph.

3.G is connected, and |E| = |V | − 1.

4.G is acyclic, and |E| = |V | − 1.

5.G is acyclic, but adding any edge to E results in a
graph that has a cycle.

An Alloy model consists of signature declarations that
introduce basic sets and relations, as well as formulas that
constrain them. For tree, we declare signature V to model
vertices and binary relation E to model edges:
sig V { E: set V } // V: vertices, E: V <-> V edges

The keyword set makes E an arbitrary relation. We rep-
resent an undirected edge between vertices u and w as a
pair of directed edges (u, w) and (w, u). E is a symmetric
relation, which we express using the transpose operator ‘˜’:
fact UndirectedGraph { E = ˜E } // E is symmetric

fact NonEmpty { #V >= 1 } // consider non empty graphs

A fact introduces a constraint on the declared sets and rela-
tions. The fact NonEmpty uses the cardinality operator #
to state there is at least one vertex.

We express Statement 1 using a predicate, i.e., a formula
that may have free variables and can be invoked elsewhere:
pred InCycle(v: V, c: V -> V) {
v in v.c or
some v’: v.c | v’ in v.ˆ(c - (v -> v’) - (v’ -> v))}

pred Acyclic() {all v: V | not InCycle(v, E) }

pred Connected(c: V->V) { all v1, v2 : V | v2 in v1.*c }

pred Statement1() { Connected(E) and Acyclic() }

The operator and is logical conjunction; Alloy also pro-
vides or, not, => (implication), and <=> (iff). The key-
words all and some respectively represent universal and
existential quantification; in represents subset (and mem-
bership); ‘.’ denotes relational product; ‘ˆ’ denotes tran-
sitive closure, and ‘*’ denotes reflexive transitive closure.
The expression v2.ˆE thus denotes the set of all vertices
reachable from v2 following edges in E, and the predicate
Connected states that there is a path between any two dis-
tinct vertices. The predicate InCycle states that a vertex

v is a part of a cycle according to an edge relation c iff
there is a self-loop at v or v has some neighbor v’ such that
even if we remove the edge connecting v and v’, these two
vertices are still connected. The operators ‘->’ and ‘-’ rep-
resent pairing (more generally, Cartesian product) and set
difference, respectively.

Statements 2–5 can be defined likewise:

pred Statement2() {
// connected, removing an edge makes it disconnected

Connected(E) and
all u : V | all v : u.E |
not Connected(E - (u->v) - (v->u)) }

pred Statement3() { // connected and |E| = |V| - 1
Connected(E) and #E = #V + #V - 2}

pred Statement4() { // acyclic and |E| = |V| - 1
Acyclic() and #E = #V + #V - 2 }

pred Cyclic(c: V->V) { some v : V | InCycle(v, c) }

pred Statement5() {
// acyclic, but cyclic if any edge is added

Acyclic()
all u,v : V | (u->v) not in E implies
Cyclic(E + (u->v) + (v->u)) }

We represent the constraint |E| = |V | − 1 using the for-
mula #E = #V + #V - 2, since each undirected edge is
represented using two directed edges. We express the equiv-
alence of Statements 1–5 using a chain of implications:

assert EquivOfTreeDefns {
Statement1() implies Statement2()
Statement2() implies Statement3()
Statement3() implies Statement4()
Statement4() implies Statement5()
Statement5() implies Statement1() }

//final check is subject to facts being true
check EquivOfTreeDefns for 4

An Alloy assertion introduces a formula that should be
checked, in this case whether the equivalence holds. The
command check instructs the analyzer to find a coun-
terexample to the given assertion using the specified scope,
specifically 4.

Besides check, Alloy Analyzer also provides a com-
mand run that directly finds instances, i.e., valuations to
V and E that satisfy a given formula as well as the facts. The
user can also choose to enumerate satisfying assignments
by selecting an enumerating solver [15], mChaff [27] and
relsat [6].

To check EquivOfTreeDefns, the analyzer searches
for a counterexample, an instance which satisfies the nega-
tion of the assertion while satisfying all the facts. If the
analyzer fails to generate a counterexample, the formula is
valid with respect to the given scope.

For EquivOfTreeDefns, the Alloy Analyzer failed to
complete its check for a scope of 7; we timed it out after
14,000 seconds. In contrast, SERA successfully checked
the assertion for a scope of 32. Section 5.2, specifically
Table 4, presents detailed results, including those for other
Alloy designs.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

3 SERA Overview
We first review the Alloy encoding to introduce neces-

sary terminology and then introduce the SERA component.

3.1 Alloy encoding
Alloy Analyzer encodes the problem of checking validity

of an Alloy formula within a given scope into a CNF satisfi-
ability problem; it then calls an off-the-shelf SAT solver to
decide the problem [18]. Briefly, an Alloy relation T is en-
coded into a bit matrix T . If T relates the i-th object of type
A to the j-th object of type B, then T is formed such that the
i and j-th entry of its projection over A and B is set to true,
i.e., TA,B(i, j) = 1. The scope limits the range of indices,
and thus the matrix is finite. Transitive closure expands the
relation over the involved relational product (composition)
and the union operators by introducing new variables. A
quantifier folds its formula over the range with either con-
junction (universal) or disjunction (existential) operations.
The encoding is then mapped to a CNF formula.

3.2 The SERA component
For the reasons given in Section 1.1 we developed

SERA, an algorithm for encoding Alloy formulas into se-
quential circuits. Given an Alloy formula Φ with a scope
n, the SERA algorithm constructs a sequential circuit
SERA(Φ, n). The exact steps in the construction are de-
scribed in Section 4. The construction proceeds recursively
on the abstract syntax directed acyclic graph (DAG) for Φ.
At each node in the DAG for Φ we construct a sequential
circuit with a special structure for the formula rooted at that
node. We refer to each such circuit as a SERA component.

We illustrate the SERA components using C++ classes
and objects. For ease of exposition we omit access modi-
fiers and trivial constructors. The abstract class Component
in Table 2(a) describes the generic interface of all SERA
components. Component inherits from Thread to denote
that all components run concurrently and its member func-
tion nextState is the thread’s entry point.
vector<Component> compVec;
bool circuit() {
int depth = 0;
for(int i=0; i<compVec.size(); i++)

compVec[i].initialState();
while((!compVec[0].predValid()) &&

(depth++ < compVec[0].depth())) {
// run all threads concurrently
for(int j=0; j<compVec.size(); j++)

compVec[j].nextState();
waitForAllThreads();}

return compVec[0].pred();};

The vector compVec contains all the components SERA
generated, and compVec[0] is the top level component
which corresponds to Φ. The while loop models time
where each iteration is a step, and the number of steps it
takes the loop to terminate is the depth of the circuit. The
function circuit makes sure to call all nextState func-
tions synchronously at every step. The for loop spawns

all the threads concurrently and then circuit waits for all
nextState calls to finish. The invariant we need to check
is the pred function of compVec[0]—Φ will be satis-
fiable in scope n iff compVec[0].pred() returns true
on termination of circuit().

We classify the functions in, card, and pred as output
functions. The functions memberValid, cardValid, and
predValid are Boolean validity functions and their return
values signal whether a value returned by the corresponding
output function is valid or not.

1. Function in takes index arguments and returns
whether the set or relation described by the component
contains the variable or tuple denoted by the indices.

2. Function card returns the cardinality of the set or the
relation described by the component.

3. Function pred returns the Boolean value of a predicate
if the component corresponds to a Boolean expression.

Depending on the Alloy sub-formula the component corre-
sponds to, some of these functions may never be invoked,
and thus may be left unimplemented.

The component contains references to other components.
A function in a component uses the references to execute
other components if their output functions are not valid yet
and query them once valid. The other data elements of a
component constitute its state. We refer to the values of
the non-reference data elements of a component at a spe-
cific step as the state of the component. The intialState
function initializes the component to its initial state, and the
nextState function updates the state. The evaluate and
terminate functions are control functions. They start the
execution of the component if it was not in a valid or run-
ning state, and force it to stop execution if a top hierarchy
does not need the result anymore.

We next define several terms related to the semantics of
sequential circuits. We use these terms to prove SERA’s
correctness. Inputs are arguments passed to a component’s
functions and non-deterministic assignments generated by
calls to the function choose in initialState functions.
The semantics of a sequential circuit are defined with re-
spect to input sequences, where an input sequence is a se-
quence of input assignments. Given an input sequence and
an initial state, the resulting trace is a sequence of Boolean
assignments to all functions returning a Boolean value in the
circuit. A transition happens when an assignment changes
at a specific step. A predicate in the circuit is justifiable if
there is an input sequence which when applied to an initial
state will result in that predicate taking the value true.

4 Construction of SERA(Φ, n)

We use SERA components to encode the Alloy model
as a sequential circuit. Tables 2 and 3 show C++ classes

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Table 2. Pseudo C++ description for abstract component, sig, and union components.

class Component:public Thread{
public:

bool predicate();
bool in(iter u);
bool in(iter u,iter v);
int card();

bool memberValid();
bool cardValid();
bool predValid();

void evaluate();
void terminate();

void initialState();
void nextState();
int depth();};

template<int scope>
class Sig:public Component{

class iter{/*omitted details*/};
int size;
bool in(iter v){

return v < size;};
int card() {

return size;};

bool memberValid() {
return true;};

bool cardValid(){
return true;};

void initialState() {
//non-deterministic choice
size = choose()%scope;};

void nextState() {
size = size;};

int depth(){return 1;};};

template<class S1, class S2>
class Union : public Component{

class iter{/*omitted details*/};
S1 & V1; S2 & V2;

bool in(iter u){
return V1.in(u) || V2.in(u);};

int card(){
bitVector in;
for(iter v;v.valid();v++){
in[v] = V1.in(v) ||

V2.in(v);};
return countOnes(in); };

bool memberValid(){
return V1.memberValid() &&
V2.memberValid();};

bool cardValid(){
return memberValid();};

int depth(){return
max(V1.depth(), V2.depth());};};

(a) Sequential component interface (b) Sig-set component (c) Set union operator component

Table 1. Time steps and Boolean state vari-
ables for the sequential SERA components.

Alloy Construct Validity depth Number of
Membership Cardinality variables

Signature 1 1 lg(n)

Relation 1 1 nk

Relational Product n n lg(n)
Transitive Closure lg(n) lg(n) n2

Predicate
Universal Quantifier 1 to n lg(n)
Existential Quantifier 1 to n lg(n)

describing some of the components corresponding to Alloy
constructs. Section 4.2 describes the constructs and their
translation in detail. The component’s computation is com-
plete when its predValid function returns true. Table 1
shows the number of state variables as well as an upper
bound on the number of steps needed for the computation
of an individual component to complete as a function of the
scope n. The final depth of the SERA circuit depends on the
scope n, and the formula itself and thus it can be computed
at compile time via calling the depth function of the top
level component.

4.1 Sequential circuit example

The diagram in Figure 1 shows an abstract syntax graph
for the Statement3 predicate. We start at the and node and
compute the components for the two sub-formulas rooted
at this node. If a component was previously instantiated,
we connect to it appropriately. The code below describes
the resulting SERA sequential circuit for the Statement3

predicate.

*

.

#

2

=

−

+

#
v2 : V

v1

v2

∀

∀

∈

E

v1 : V

V

and

Figure 1. Statement3 predicate diagram

typedef Sig<2> S1; Belongs B(v2, P);
typedef S1::iter S1Var; ForAll<S1> A1(v1, V, B);

ForAll<S1> A2(v2, V, A1);
S1 V;
Relation<S1,S1> E; IntPlus P1(V, V);
TClosure<S1,S1> Et(E); IntMinus M1(P1, 2);
S1Var v2, v1; IntEqual E1(M1, E);
Product P(v1, Et); And A3(A2, E1);

We pass 2 as a template parameter for S1 to set
its scope at compile time. The constructor of each
component initializes its references appropriately and
adds itself to the global vector of components. Classes
Sig, Relation, TClosure, Product, Belongs,

ForAll, IntPlus, IntMinus, IntEqual, and And

inherit all from Component and each implements the Alloy
construct its name suggests.

The 6-step trace in Figure 2 shows an execution of the
sequential circuit corresponding to Statement3. Step 1
shows the graph instance, and the V and E encodings. V is
initialized to indicate the existence of both members, and E

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Table 3. Pseudo C++ description for relation, universal quantifier, and transitive closure components.

template<class Sig1, class Sig2>
class Relation:public Component{

class iter{/*omitted details*/};
Sig1 & V1;
Sig2 & V2;
bitMatrix R[Sig1::scope]
[Sig2::scope];

bool in(iter v, iter u){
return R[v][u];};

int card(){
return countOnes(R);};

bool memberValid(){
return true;};

bool cardValid(){
return true;};

void initialState(){
Sig1::iter u;
Sig2::iter v;
for(;u<V1.card();u++)
for(v.start();v<V2.card();v++)

//non-deterministic choice
R[u][v]=choose()%2;

void nextState(){
R = R;};

int depth(){return 1;};};

template<class Sig>
class ForAll:public Component{

Sig & V;
Sig::iter & v;
Component & F;
bool value, valid;

bool predicate() {
return value;};

bool predValid{
return valid;};

void initialState(){
value = true;
valid = false;
v = 0;};

void nextState(){
if(!valid && v.isValid()){
if(F.predValid()){

value &= F.predicate();
if(v.isLast()){

valid == true; }
if(!value){

valid = true;
F.terminate();}

v++;
F.evaluate();

} } };
int depth(){

return Sig::scope*F.depth();
};};

template<class S1, class S2>
class TClosure:public Relation{

Relation<S1,S2> & T;
bitMatrix E;
bool valid;
int count;

bool in(S1::iter u,S2::iter v){
return E[u][v];};

int card(){
return countOnes(E);};

bool memberValid()
{return valid;};

Boolean cardValid()
{return valid;};

void initialState(){
E = T.R;
count = 0;
valid = false;};

void nextState(){
if((!valid) && T.cardValid() &&

T.V1.cardValid() &&
T.V2.cardValid()){

E = E*E + E;//iterative squaring
if(count++ ==

max(lg(T.V1.card()),
lg(T.V2.card()))
valid = true; } };

int depth(){
int n=max(S1::scope, S2::scope);
return lg(n)+T.depth();};};

(a) Arbitrary binary relation component (b) Universal quantifier component (c) Transitive closure component

is initialized to indicate the edge in the graph. The mem-
bership and cardinality state of V and E is valid immediately
since it corresponds to the initial state. Thus, #E=#V+#V-2
is true and valid immediately. In Step 2 the quantifiers ∀v1

and ∀v2 are executed as well as the transitive closure on
E. Since the quantifiers depend on *E, their validity has to
wait for the Et component to signal membership validity.
Fortunately for this example, this happens in one step since
as we will describe Section 4.2.2, transitive closure takes
lg(n) steps to complete where n is the scope. In Step 3,
the validity of Et is propagated to the relational product P
corresponding to v1. ∗ E and P is immediately tested for
membership of v2. Since all data is valid, the ∀v1 com-
ponent updates its predicate state and increments its iterator
v1. The same happens in Step 4, and now ∀v1 completed ex-
ecution and thus can signal the validity of its predicate. The
∀v2 quantifier updates its predicate state, increments its iter-
ator v2 and initializes the ∀v1 component to start execution
again. Step 5 is similar to Step 3, and Step 6 witnesses the
completion of execution of the ∀v2 component. The propo-
sitional and component has now two valid true inputs so it
evaluates to true and thus our predicate can be set to true.

4.2 SERA encoding algorithm
SERA recursively traverses the abstract syntax DAG for

an Alloy formula Φ with a scope n from its command to its

signatures and implicit relations. For each Alloy construct,
SERA instantiates its corresponding Component object. It
composes each component into the desired sequential cir-
cuit SERA(Φ, n); the pred function of the top level com-
ponent corresponds to the invariant.

4.2.1 Leaf nodes: signatures and relations

The leaf nodes of the abstract syntax tree of an Alloy for-
mula are signatures and implicit relations and constitute the
base case for the SERA(Φ, n) recursive construction. The
template class Sig in Table 2(b) takes a template parameter
as its scope and thus the scope is part of the structure of the
class. It uses the return value of a nondeterministic func-
tion, choose, modulo its scope, to initialize its size. With-
out loss of generality, the size of the set is enough to repre-
sent it since its members are indexed arbitrarily and any set
can be re-indexed appropriately. The functions card and
in are valid immediately and in returns true if the index is
smaller than the size. The template class Relation in Ta-
ble 3(a) implements the binary implicit Alloy relations. It
takes two set types, Sig1 and Sig2 as template parameters
and references the two sets, V1 and V2, it relates. It uses the
scope parameters of Sig1 and Sig2 to declare the bitMa-
trix R where it stores its membership state. The bit-matrix R
is initialized nondeterministically modulo the cardinality of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

1 1

1 1 1 1

1

10

0

1 1

Step 2

1

1 1

1

Step 3

0

0

Step 4

1

0

Step 5

1

1 10

Step 6

1

1111

1

Step 1

v2

∗E
v2

v2 ∈ v1. ∗ E

v1. ∗ E

v1

v1. ∗ E

v2 ∈ v1. ∗ E

v1

v1. ∗ E

v2 ∈ v1. ∗ E

v1

v1. ∗ E

v2 ∈ v1. ∗ E

v1

∀v1 = 1 valid ∀v1 = 1 valid

and restarts ∀v1

∀v2 increments, ∀v2 = 1 valid
predicate satisfiable∀v1 increments ∀v1 increments

∀v2, ∀v1 start
∗E valid

(|E| = 2|V | − 2)
= 1 valid

E

V

|V | = |E| = 2

v2 v2

Figure 2. SERA execution of a consistent instance of the Statement3 predicate with a scope of 2

V1 and V2. The countOnes function returns the number of
set bits in R to compute the cardinality of the relation.

In a trade off between the depth of the circuit and the
number of variables, we allow n multiple accesses to the
membership functions. This requires an additional lg(n)
bookkeeping variables and keeps the sequential depth of all
components linear in n.

4.2.2 Internal nodes

The internal nodes of an Alloy formula’s abstract syntax
DAG correspond to a variety of logical and relational oper-
ations, including propositional connectives, quantifiers, re-
lational product, transitive closure, set operations, and arith-
metical operators and predicates. We now show in turn how
to build the SERA component for each internal node, as-
suming we have SERA components for all its sub-nodes.

Propositional operators. SERA encodes each proposi-
tional operator (and, or, not, implies, iff) with a
combinational circuit component. The component holds
references to its operand components and uses their pred
and predValid functions. We show next a logically com-
plete Nand component and the rest of the operators can be
described in terms of the Nand component.
class Nand:public Component{
Component & F1, & F2;
bool predicate(){

return !(F1.predicate() && F2.predicate());};
bool predValid(){

return (F1.predValid() && !F1.predicate())||
(F2.predValid() && !F2.predicate())||
(F1.predValid() && F2.predValid());};

int depth(){
return max(F1.depth(), F2.depth());};};

Quantifiers. Because the scope is finite, we can easily
perform quantifier elimination. The universal quantification
of θ by x is replaced by the conjunction of θ restricted to
each value x can take; for existential quantification, con-
junction is replaced by disjunction. The ForAll compo-
nent shown in Table 3(b) implements a universal quantifier.

It takes a set type, Sig, a set, V, as its quantification do-
main, a reference to an iterator, v, as the quantified vari-
able, and a reference to the formula component, F. It com-
putes conjunction (disjunction) sequentially, and employs
an early termination mechanism where the first false (true)
value terminates the computation. This mechanism gives us
a substantial advantage since we can abort the quantifica-
tion without having to compute for the whole domain. The
quantification component uses the v iterator to evaluate F,
and accumulates its Boolean valid and value members.

Relational product. The relational product of two com-
ponents A and B is implemented by a component that fills
in the index of the right operand B by the concatenation of
tuples from the left operand A and the actual index argu-
ment to the relational product component. All the matches
are saved in a bitMatrix, and then produced sequentially,
one after the other, while updating the cardinality count and
the validity bits. Since we allow n parallel membership
checks, we can guarantee the validity of the membership
and cardinality data in at most n steps.

Transpose. We define a unique variable order to respect
the order in which signatures were declared in Φ and we
exploit that order to trivialize our type-determination func-
tions. The transpose operator may produce a result which
conflicts with the unique variable order. SERA attempts to
rewrite the formula in question to normalize transposition.
In cases of conflict, such as the UndirectedGraph con-
straint E =˜E, or in cases of suboptimality introduced in
the variable ordering, SERA resorts to adding a redundant
variable appropriately. SERA also adds a constraint that in-
dicates the equivalence of the redundant data so that logic
optimization techniques can easily exploit the hint.

Transitive closure. Transitive closure in Alloy repeats
one or more compositions infinitely many times. SERA’s
implementation of transitive closure, the TClosure tem-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

plate class shown in Table 3(c), takes two set types
as template parameters and a reference to the compo-
nent corresponding to the original binary relation. The
nextState function encodes the transitive closure using
iterative squaring [10]. This allows us to use only n lg(n)
variables and allows the computation to complete within
lg(n) steps.

Set operations. As shown in Table 2(c) the in and card

functions and their validity can be encoded as a combination
of the in and memberValid functions of the operand com-
ponents. The Union class takes two set types and constructs
its own appropriate iterator that maps indices correctly in
case the types were different. It also takes references to the
components representing its operands. The card function
inlines membership checks in both its operands and counts
the matches in an intermediary bit vector. The rest of the set
operators can be easily described in a similar fashion.

Arithmetic predicates. Another source for Boolean val-
ues in Alloy is integer arithmetic comparisons, which may
involve cardinality values. The Alloy Analyzer uses the
scope to allocate a finite number of integers to model the
integer space and simplify the arithmetic predicates. We en-
code arithmetic operators with combinational circuit com-
ponents in addition to validity propagation of the operand
components. Note that all integer valuations, less the cardi-
nality values, are considered valid by default.

Theorem 1. Let Φ be an Alloy formula and let n be a given
scope. The sequential circuit C = SERA(Φ, n) always ter-
minates and on termination, the invariant evaluates to true
iff Φ is satisfiable in scope n.

Sketch of proof. Theorem 1 follows from a straight-
forward induction on the length of Φ. We use the validity
entries Column 1 of Table 1 and the depth function in all
components to establish a tight upper bound on the depth of
C. The bound depends on the length of the formula and the
scope and can be computed by calling the function depth

of the top level component. Note that given a scope, the call
compVec[0].depth() can be computed at compile time
and thus is a constant.

The base cases, where Φ is either a Sig or an implicit
relation, are trivial and always satisfiable since they are ini-
tialized with non-deterministic values. The proofs for the
correctness of the remaining constructs are similar to one
another. We will illustrate the key ideas for existential for-
mulas; the rest follows similarly.

If Φ = ∃v ∈ Γ.F (v), and Φ is satisfiable within the
scope n, then there is a model σ ⊆ range(Γ) and there is an
element α ∈ σ such that F (v = α) is satisfiable. Let CΦ

be the SERA component corresponding to the ∃v statement

and let CΓ and CF be the SERA components correspond-
ing to Γ and F respectively. By the induction hypothesis,
there exists a trace ZΓ that sets CΓ to a state matching σ in
kΓ steps, and there exists a trace Zα that sets the predicate
and validity output functions of CF to true in kF steps af-
ter presenting CF with α. The component CΦ enumerates
all the possible elements in range(Γ), queries CΓ for their
membership and concurrently presents them to CF for eval-
uation in case the membership test was valid. After at most
i ≤ |range(Γ)| steps from the point it starts, it is guaranteed
to find α. Since it accumulates a disjunction of the results
of CF , the first valid true return value of the predicate out-
put function of CF terminates the computation. Following
the above steps we can construct a concatenated trace ZΦ

of length kΓ + i × kF that sets the Boolean predicate func-
tion of CΦ to true as well as its predicate validity function.
Since range(Γ) is bound to be either a set, or a relation with
arity a, then |range(Γ)| ≤ na and ZΦ is finite. In case Φ
is not satisfiable, then CΦ is guaranteed to try all models
of range(Γ) and complete execution in a finite number of
steps (2na

). By the induction hypothesis, all elements in
models that match CΓ will not satisfy CF . At the end of
the iteration the output predicate of CΦ will be set to false
and its corresponding validity output will be asserted and
the while loop will terminate. Consequently there exists
no trace that satisfies the predicate output function of CΦ.

4.3 Optimizations

Without loss of generality we support the same scope
value for all signatures. This allows us to keep our type-
determination as simple as checking whether an index lies
within a range. We also simplify the counters embedded in
the iterators in some components by restricting the scope to
be a power of two. With this restriction we allow the coun-
ters to start at any state and terminate when they reach that
state again. The corresponding component can then call the
counter cycle state its idle state. The type-determination of
a certain index is now simplified to an appropriate Boolean
shift operation. In most cases some SERA components are
guaranteed to complete execution before other components
even begin. We use this fact to allow memory sharing be-
tween non-overlapping components. Note also that we sep-
arate variables based on the functions they are used for. This
allows huge cone of influence [22] reductions if for exam-
ple the cardinality of a component is not checked. Further-
more, this introduces redundancy which can be exploited by
redundancy removal transforms.

5 Evaluation of SERA

We introduce our SERA implementation and we present
the results of SERA in comparison to the Alloy Analyzer.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Table 4. Results of SERA and Alloy Analyzer. Tree example: SERA validated a scope of 32, Alloy
Analyzer failed on 7. File system: SERA found counter examples for scope 32, Alloy Analyzer did
not pass 8. LISP lists: SERA validated a scope of 32, Alloy Analyzer timed out for a scope of 10.

Tree integrity File System LISP lists
Alloy Analyzer: results for scopes 5 to 10

Scope 5 6 7 8 5 6 7 8 10 8 9 10
Satisfiable NO YES YES NO
Variables 212,032 641,983 1,682,479 ∞ 4,703 7,204 10,377 13,448 17,035 2,990 18,921 23,704
Clauses 641,644 2,014,005 5,428,222 14,448 22,640 33,232 43,875 98,381 68,858 103,440 129,628
SAT solver time(sec) 156 658 ∞ 5 6 21 28 36 55 2,062 ∞

SERA: sequential circuit for scopes 4 to 32
Scope 4 8 16 32 4 8 16 32 32 8 16 32
Boolean inputs 12 32 80 192 22 41 68 143 178 46 88 178
Boolean state variables 36 94 780 3,272 112 728 4,264 27,720 22,305 1,020 5,226 25,790
Nand Connectives 354 1,087 10,786 21,841 1,054 4,548 19,545 421,681 285,046 13,859 110,734 328,065

SixthSense: resources to automatically solve the sequential circuit
Solver time (sec) 13 18 220 4,309 26 39 417 1,712 171 229 341 575
Solver MEM (MB) 12 24 91 134 10 16 45 101 34 21 44 88

5.1 Implementation
Our implementation of SERA mirrors the description in

Section 4. As illustrated in Figure 1, we parse the Alloy
model into a DAG of signatures, relations, and operators
with the root as the command to be executed and the leaves
as the signatures and implicit relations. Note that we gener-
ate a DAG since our analysis tries to reuse syntax-equivalent
nodes. The C++ subset we used to describe SERA along
with the implied concurrency semantics and the bounds on
integers guaranteed by scope finitization can be directly
synthesized to sequential circuits described in VHDL sim-
ilar to [12, 14]. We end up with a hierarchical VHDL de-
sign with an asserted signal designated as the invariant. We
pass the VHDL to SixthSense which, in case of satisfiabil-
ity, provides a trace that satisfies the invariant. Step 1 of
Figure 2 illustrates the mapping of the trace to an Alloy in-
stance. We map the initial values of the membership state
of component V as two vertices and the initial values of the
bitMatrix membership state of component E as the exis-
tence or absence of arcs with label E between the vertices.

5.2 Results
To evaluate SERA we chose three examples when we

began this research. The tree integrity entries in Table 4
show results for checking the EquivOfTreeDefns asser-
tion. The other two examples are representatives from the
standard Alloy distribution that have been the subject of
research by multiple Alloy related papers for the past six
years. The file system example describes relations between
directories, files, and a root directory in a Unix-like file sys-
tem and asserts alias consistency and acyclicity. The LISP
list example describes empty and non-empty nested lists of
objects, defines equivalency between lists, and asserts sym-
metry and reflexiveness properties of the equivalence defi-
nition; it also asserts that all empty lists are equivalent.

For the unsatisfiable formula from the tree example, the

Alloy Analyzer could not perform checks with a scope
larger than 6; SixthSense applied to SERA-generated se-
quential circuits was able to automatically check these for-
mulas for scopes upto 32. The ∞ in the Alloy entries de-
notes a timeout with a time limit of 14, 000 seconds. For
unsatisfiable formulas from the list example, the Alloy An-
alyzer failed beyond a scope of 9, whereas SERA could
check these formulas for scopes upto 32. For satisfiable
formulas from the list and file suites, we specified lower
bounds on the minimum size of the list and file examples
as Alloy facts, and were able to find counterexamples in
scopes 3× larger than the Alloy Analyzer.

The entries in the first set of rows of Table 4 show the
number of Boolean variables and clauses that were used in
the Alloy encoding and the time it took the SAT solver to
decide the CNF formula for a given scope. The satisfiable
row indicates whether the predicate tested is satisfiable or
not. We ran all experiments on a 1.7 GHz Pentium 4 ma-
chine with 1 GB memory. For our examples, the Berkmin
solver consistently outperformed all the other solvers that
come with the standard Alloy distribution, so we tabulate
the results for Alloy using Berkmin. The Alloy Analyzer
was able to validate the tree equivalence for scopes up to 6.
For a scope of 7, the SAT solvers spaced out (∞), and for a
scope of 8 the Alloy Analyzer ran out of memory and could
not generate the CNF formula.

The second set of rows in Table 4 shows the size of the
sequential circuits produced by SERA. In the third set of
rows we show the running time taken to solve the problem
and the total memory used to both reduce and decide the
problem.

In general, we noticed that the number of needed mem-
ory elements grew quadratically with the scope and this
agrees with the highest complexity of SERA. Using se-
quential encoding, we were able to scale Alloy analysis to
a scope of 32 with relatively acceptable computational re-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

sources and time limitations.
All cases required applying iterative reduction transfor-

mations. In the case of the tree equivalence example, local-
ization abstractions were instrumental in reducing the prob-
lem, also equivalence detection did a good job of merging
the common parts of the different equivalent tree defini-
tions. In the file system case, the counter-examples hap-
pened to be relatively sequentially deep since they depended
on comparisons between transitive closures, high cardi-
nality comparisons, and conflicting transpose statements.
Semi-formal search was able to detect counter-examples
once the design was reduced using equivalence merging.

6 Conclusion and Future Work
We developed the use of sequential circuits for check-

ing the validity of Alloy formulas. By doing so we used far
fewer variables and enabled sophisticated automatic reduc-
tion techniques to be applied. We were able to show that a
scope of 32 is feasible using reasonable resources.

In the future we plan to optimize SERA to allow reuse
of variables. We also plan to explore how to determine
an upper bound on the scope for a given Alloy formula
as this may allow to conclude complete checks. More-
over, we would like to explore how our approach of sequen-
tial encoding may be extended to other logic specifications
such as MACE/OTTER [25], S1S [3], and Presburger Arith-
metic [29].

Acknowledgments. We would like to thank Darko Mari-
nov for his detailed comments on a previous draft. We
also would like to thank Jason Baumgartner, Viresh Paruthi,
Geert Janssen, Jessie Xu, Mark Williams, Hari Mony,
Robert Kanzelman, and Ali El-Zein for contributions to the
verification framework used in the experiments.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and
implementation of an intentional naming system. In Proceedings of the 17th
ACM Symposium on Operating Systems Principles, Kiawah Island, Dec. 1999.

[2] P. Ashenden. The Designers Guide to VHDL. Morgan Kaufmann, 2002.

[3] A. Aziz, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. Sequential
Synthesis Using S1S. IEEE Trans. Comput.-Aided Design Integrated Circuits,
Oct. 2000.

[4] A. Aziz, T. Shiple, V. Singhal, R. Brayton, and A. Sangiovanni-Vincentelli. For-
mula Dependent Equivalence for Compositional CTL Model Checking. Jour-
nal of Formal Methods in System Design, 21(2):193–224, 2002.

[5] J. Baumgartner, A. Kuehlmann, and J. Abraham. Property checking via struc-
tural analysis. In Computer-Aided Verification, July 2002.

[6] R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve
real world SAT instances. In Proceedings of the National Conference on Artifi-
cial Intelligence, 1997.

[7] P. Bjesse and K. Claessen. SAT-based verification without state space traversal.
In Formal Methods in Computer-Aided Design, November 2000.

[8] D. Box. Essential COM. Addison Wesley, 1998.

[9] R. K. Brayton and C. McMullen. The Decomposition and Factorization of
Boolean Expressions. In International Symposium on Circuits and Systems,
May 1982.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2), 1992.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[12] G. De Micheli. Hardware synthesis from C/C++ models. In Design Automation
and Test in Europe, Mar. 1999.

[13] G. Dennis. TSAFE: Building a trusted computing base for air traffic control
software. Master’s thesis, Massachusetts Institute of Technology, 2003.

[14] S. A. Edwards. The challenges of hardware synthesis from C-like languages.
In Design Automation and Test in Europe, 2005.

[15] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver. In Design
Automation and Test in Europe, 2002.

[16] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor, and
J. Long. Smart simulation using collaborative formal and simulation engines.
In Int’l Conference on Computer-Aided Design, Nov. 2000.

[17] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[18] D. Jackson. Automating first-order relational logic. In ACM-SIGSOFT Sympo-
sium on Foundations of Software Engineering. ACM Press, 2000.

[19] D. Jackson. Alloy 3.0 Reference Manual, May 2004.
http://alloy.mit.edu/reference-manual.pdf.

[20] D. Jackson and M. Jackson. Separating Concerns in Requirements Analysis:
An Example. Springer-Verlag. (To appear).

[21] A. Kuehlmann and J. Baumgartner. Transformation-based verification using
generalized retiming. In Computer-Aided Verification, July 2001.

[22] R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes.
Princeton University Press, 1993.

[23] J. P. Marques-Silva and K. A. Sakallah. GRASP: a search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[24] H. Mony et al. Scalable automated verification via expert-system guided trans-
formations. In Formal Methods in Computer-Aided Design, Nov. 04.

[25] W. McCue. A davis-putnam program and its application to finite first-order
model search: Quasigroup existence problems. Technical report, Argonne Na-
tional Laboratory, May 1994.

[26] I.-H. Moon, G. D. Hachtel, and F. Somenzi. Border-block triangular form and
conjunction schedule in image computation. In Formal Methods in Computer-
Aided Design, Nov. 2000.

[27] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In ACM Design Automation Conference,
June 2001.

[28] A. Saldanha, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Multi-Level Logic Simplification using Don’t Cares and Filters. In Conference
on Design Automation, pages 277–282, 1989.

[29] T. Shiple, J. Kukula, and R. Ranjan. A comparison of presburg engines for efsm
reachability. In Computer-Aided Verification, June 1998.

[30] I. A. Shlyakhter. Declarative Symbolic Pure-Logic Model Checking. PhD the-
sis, MIT, February 2005.

[31] F. Zaraket, J. Baumgartner, and A. Aziz. Scalable compositional minimization
via static analysis. In International Conference on Computer Aided Design,
Nov. 2005.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

