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Abstract 

We present a novel framework, Whispec, for white-box testing of 
methods that manipulate structurally complex data, such as those 
that pervade library classes. Given method preconditions as 
declarative constraints, our framework systematically generates 
test inputs for the methods to maximize their code coverage. The 
constraints are written in Alloy, a first-order language based on 
relations. To test a method, given its precondition constraint, we 
first solve that constraint using the Alloy Analyzer and translate a 
solution into a test input.  Next, we execute the method on that 
input and build the path condition for the resulting execution 
path. Then, we run the analyzer on a conjunction of the 
precondition and a new path condition that represents a previously 
unexplored path. The solution is translated to a new test input, 
which triggers the next round of test generation. The iterative 
execution of Whispec can systematically enumerate inputs that 
maximize code coverage. Experiments using a variety of data 
structure implementations from the Java libraries show that our 
framework generates significantly smaller test suites (while 
maximizing coverage) than those generated by previous 
specification-based approaches.   

Categories and Subject Descriptors 

D.2.4 [Software Engineering]: Software/Program Verification – 

Class invariants; D.2.5 [Software Engineering]: Testing and 
debugging – Symbolic execution, Testing tools; D.3.3 

[Programming Languages]: Language Contructs and Features – 

Constraints; F.3.1 [Logics and Meanings of Programs]: 
Specifying and Verifying and Reasoning about Programs – 
Assertions, Invariants, Pre- and post-conditions, Specification 

techniques. 

General Terms Languages, Verification. 

Keywords Software Testing, First-order Logic, Symbolic 

Execution, Contracts. 

1. Introduction 
Software testing, the most commonly used technique for 
validating the quality of software, is a labor intensive process, and 
typically accounts for about half the total cost of software 
development and maintenance [2]. Automating testing not only 
reduces the cost of producing software but also increases its 
reliability. 

White-box testing and black-box testing are two commonly used 
techniques that have complementary strengths. White-box testing 
uses the internal structures (such as control flow or data flow) of 
programs. Black-box testing uses an external interface. 

Automated approaches to black-box testing make extensive use of 
specifications, e.g., to specify test inputs or test oracles 
(correctness criteria). In unit testing of object-oriented code, 
preconditions, which define constraints on legal method inputs, 
and postconditions, which define expected behavior and outputs, 
form an integral part of the specifications. 

TestEra [27] is a specification-based, black-box testing framework 
for Java programs. Given a method’s precondition, TestEra 
automatically generates all nonisomorphic test inputs up to a 
given bound, executes the method on each test input, and uses the 
method’s postcondition as a test oracle to check the correctness of 
each output.  A key strength of TestEra is its ability to generate 
inputs that represent structurally complex data, such as balanced 
binary search trees, which are often implemented in library 
classes. 

Although TestEra provides efficient enumeration of structurally 
complex data structures according to given constraints, it does not 
generate a minimal test suite with respect to some code coverage 
metrics. A precondition only specifies a method’s expected inputs 
and not the method’s implementation details. For example, 
consider the contains() method of Java class 

java.util.LinkedList. Four tests are enough to cover all 

the branches. However, TestEra generates 120 nonisomorphic 
tests using a bound of up to 3 elements and 3 non-sentinel nodes. 

We propose a novel framework, Whispec, which builds on 
TestEra and focuses on maximizing code coverage, thereby 
enabling a specification-based framework for white-box testing. 
As in TestEra, Whispec requires the user to provide the method’s 
precondition as a declarative constraint. However, in contrast with 
TestEra, Whispec systematically integrates the precondition with 
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the control flow of the method and generates test inputs that 
maximize code coverage.  

In Whispec, the specifications are declared as relational first-order 
logic formulas. As an enabling technology, Whispec uses the 
Alloy toolset. Alloy [22] is a first-order declarative language 
based on sets and relations. The Alloy Analyzer [23] is an 
automatic tool that finds instances of Alloy specifications, i.e., 
finds assignments of values to the sets and relations in the 
specification such that the specification formulas evaluate to true. 
Whispec translates Alloy instances into concrete test inputs. 

Our key insight is the integration of preconditions and path 
conditions with relational logic so that they are solved together for 
test generation. Given the precondition of the method under test, 
we first solve it with the Alloy Analyzer. The solution is 
concretized to a test input. Next, we execute the method on that 
input, observe its execution path, and build path conditions by 
negating the branch predicates in the execution path. We run the 
analyzer on a conjunction of the precondition and one of the 
generated path conditions. The solutions are translated into further 
test inputs, which exercise previously unexplored paths and 
trigger the next round of the test generation process. An iterative 
execution of this approach can systematically enumerate inputs 
that maximize code coverage. 

This paper makes the following contributions: 

• Specification-based white-box approach. Whispec 
combines a method’s precondition (a declarative 
formula in first-order logic) with path conditions 
derived from the method’s control-flow, and uses a SAT 
solver to generate test inputs, which provide a desired 
level of code coverage. 

• Implementation. The Whispec prototype provides 
systematic test generation for Java programs. The 
prototype uses Breadth First Search to cover different 
branches as early as possible. 

• Evaluation. In comparison with TestEra, Whispec 
generates significantly fewer test cases to achieve the 
same branch coverage. Each test generated exercises a 
unique path. 

2. Example 
This section presents a small illustrative example. Suppose we 
want to test the contains() method of the class IntList 

(which is based on java.util.LinkedList) shown in 

Figure 1.  

An object of IntList represents a doubly-linked list. The 

header field represents a sentinel node in the list. Objects of the 

inner class Entry represent list nodes. The field value 

represents the (primitive) integer data in a node. The field next 

points to the next node while the field prev pointes to the 

previous node in the list.  

The precondition for the method contains() is given in Alloy 

as a comment in the source code. This precondition specifies that 
the structure pointed to by the implicit input parameter, this, 

should be a valid doubly-linked list.  

The constraint ‘all  e1, e2: this.header.*next | 

e1=e2.next <=> e2 = e1.prev’ defines the transpose 

relation between the next and prev fields. In Alloy, the 

operator‘.’ denotes the relational join/composition, ‘*’ denotes 

reflexive transitive closure, and ‘:’ denotes membership 

(mathematically, the subset relation). The expression 
this.header.*next thus denotes the set of all nodes 

reachable from the header node of list this following 0 or 

more traversals along the next field. The quantifier all stands 

for universal quantification. ‘<=>’ denotes logical equivalence. 

This constraint specifies that, for every entry e1 and e2 in 

relation ‘this.header.*next, if e2.next = e1, 

e1.prev = e2’, and vice versa.  

The constraint ‘all e : this.header.*next | some 

e.next && some e.prev’ defines the circularity of a list. 

For each entry e in relation ‘this.header.*next, 

e.prev’ and ‘e.next’ should also be an entry within the list.  

The constraint ‘this.size = #(this.header.*next – 

this.header)’ defines the size of a list. The number of 

entries in the expression ‘this.header.*next’ minus one 

should equal the value of ‘this.size’. 

Given the precondition, we generate tests for contains() as 

follows. First, Whispec solves the precondition and translates a 
solution into a test input. Figure 2 shows an example input, which 
exercises the path P0:  <25, 26, 27, 30, 26, 32> in contains(). 

P0 has three branch statements: 26, 27, and 26. Let symbols 
IntList_0 and Int_0 represent the initial values of the input 

variable this and i. Then the three predicates in path P0 are: 

 

Figure 1. IntList example. 



IntList_0.header.next != IntList_0.header  

Int_0 == IntList_0.header.next.value  

IntList_0.header.next.next != IntList_0.header 

For Path P0, the decision on the first predicate is true and the 
decision for each of the other two is false.  A conjunction of the 
predicates or their negations defines a path condition—an input 
that satisfies a path condition exercises that path. 

To generate inputs that take different paths, Whispec constructs 
new path conditions by changing the decisions on the predicates. 
The conjunction of a new path condition and the precondition is 
passed to a constraint solver, the Alloy Analyzer, and the solution 
it generates is concretized into a new input.  

In this example, we negate each of the three branch decisions in 
path P0 and construct three new path conditions (Table 1). To 
illustrate, the conjunction of path_condition_3 and the 
precondition generates a new input shown in Figure 3. This input 
exercises a new path: <25, 26, 27, 30, 26, 27, 30, 26, 32>.  
Continuing the exploration, Whispec generates four inputs that 
exercise all four paths in the method contains() (using one 

loop-unrolling).  

3. Background 
In Whispec, all the constraints, the preconditions and path 
conditions, are specified in Alloy. Whispec uses the recently 
developed Kodkod model finder [29] [30] to solve the constraints. 
In this section, we give a brief overview of Alloy and Kodkod.  

3.1 Alloy 
Alloy is a first-order declarative language based on sets and 
relations. The Alloy Analyzer is a tool for automatically analyzing 
models written in Alloy. The analyzer translates Alloy models into 
boolean formulas and uses off-the-shelf SAT technology to solve 
the formulas. The analyzer consists of: a front-end that parses 
Alloy models into an intermediate representation (IR), a set of 
optimizations on this IR, and a back-end that translates the IR into 
boolean formulas. 

Each Alloy model consists of data (i.e., several sets and relations), 
several facts (i.e., formulas that put constraints on the data) and an 
assertion (i.e., a formula to check on the data). These formulas can 
be structured using functions (i.e., parameterized formulas that 
can be invoked elsewhere), which the analyzer inlines into the 
facts and the assertion. Additionally, each analysis specifies a 
scope (i.e., a bound on the size of basic sets within which to check 
the formulas). The analyzer translates a conjunction of all facts 
and the negation of the assertion into a boolean formula such that 
the boolean formula has a solution if and only if there are some 
sets and relations that satisfy all the facts and the negation of the 
assertion (thus providing a counterexample for the assertion). 
Alloy is a relational language; every expression in Alloy denotes a 
relation (or a set in the case of a relation of arity one). Even 
scalars are represented as singleton sets. More details of the Alloy 
language are available elsewhere [22]. 

3.2 SAT 
Given a propositional formula over a set of boolean variables, the 
boolean Satisfiability Problem (SAT) asks whether there exists a 
variable assignment that makes the formula evaluate to true. SAT 
is a classical NP-Complete problem; therefore, it is unlikely that 
there is a polynomial algorithm for solving the SAT problem. 
However, due to its practical importance in areas such as theorem 
proving, formal verification, and AI planning, much research 
effort has been put into developing efficient algorithms for 
solving SAT problems. Although in the worst case these 
algorithms require exponential time, in practice current state-of-
the-art SAT solvers can often determine the satisfiability of 
boolean formulas with tens of thousands of variables in a 
reasonable amount of time [37]. 
Modern SAT solvers determine the satisfiability of a formula by 
systematically searching the entire boolean space of the formula. 
They typically require the input formula to be in the Conjunctive 
Normal Form (CNF), i.e., a conjunction of clauses, where each 
clause is a disjunction of literals. A literal is either a positive or 
negative occurrence of a boolean variable. Some recent SAT 
solvers can operate without the CNF requirement [15], but the 
Alloy Analyzer translates all formulas into CNF. 

3.3 Kodkod model finder 
Kodkod is the latest version of Alloy’s translation to SAT. 
Kodkod provides several new optimizations in the translation, as 
well as an API to construct Alloy models and to specify the scope, 
which consists of an upper bound and a lower bound for each 
relation. The upper bound specifies the tuples that a relation may 
contain and the lower bound specifies the tuples that the relation 
must contain. Whispec uses the Kodkod API to run the Alloy 
Analyzer. 

 

Figure 2. A test generated from the precondition. Figure 3. A test generated from precondition + 

path_condition_3. 

Table 1. The execution path and the three path 

conditions for new paths. 

Path predicate_0 predicate_1 predicate_2 

Path P0 True False False 

path_condition_1 False   

path_condition_2 True True  

path_condition_3 True False True 



3.4 Symbolic Execution 
In Whispec, path conditions are generated by symbolic execution. 
Symbolic execution is a technique for executing a program on 
symbolic values [25]. There are two fundamental aspects of 
symbolic execution: (1) defining semantics to operations that are 
originally defined for concrete values and (2) maintaining a path 
condition for the current program path being executed—a path 
condition specifies necessary constraints on input variables that 
must be satisfied to execute the corresponding path. 

As an example, consider a program (Figure 4) that returns the 
absolute value of its input.  

To symbolically execute this program, we consider its behavior on 
a primitive integer input, say I. We make no assumptions about 
the value of I (except what can be deduced from the type 
declaration). So, when we encounter a conditional statement, we 
consider both possible outcomes of the condition. To perform 
operations on symbols, we treat them algebraically, e.g., the 
statement on line 4 updates the value of result to be -1 * I. Of 

course, a tool for symbolic execution needs to modify the type of 
result to note updates involving symbols and to provide support 
for manipulating expressions, such as -1 * I. 

Symbolic execution of the above program explores the following 
two paths: 

Path 1, [I < 0]:  <2, 3, 4, 6> 

Path 2, [I >= 0]: <2, 3, 5, 6> 

Note that for each path that is explored, there is a corresponding 
path condition (shown in square brackets). While execution on a 
concrete input would have followed exactly one of these two 
paths, symbolic execution explores both. In general, symbolic 
execution can systematically explore all program paths up to a 
bounded path length. Tools that implement such exhaustive 
exploration often use iterated Depth First Search [16][18][28], 
where the search depth is iteratively increased, until a sufficiency 

criterion for exploration has been met. However, in Whispec, we 
use Breadth First Search in order to cover different branches as 
early as possible. 

4. Whispec Framework 
Whispec is a novel framework for automatic test generation for 
Java programs. We built Whispec on top of a mini Java Virtual 
Machine, sJVM, to generate path conditions and the Alloy 
Analyzer to solve the constraints from path conditions and 
preconditions.  

4.1 Framework Outline 
Figure 5 illustrates the main components of Whispec and Figure 6 
gives an overview of the test generation algorithm. The inputs to 
the algorithm are the method under test and its 

precondition.  Before running Whispec to generate tests, we 

instrument the method so that symbolic execution can be 

performed during the concrete execution.  

With the instrumented method and its precondition, Whispec 
generates tests in the following steps (Figure 6). First, we 
initialize the pcs, a list of path conditions, with only a special 

boolean formula, true (line 3), so that, in the first round 

execution of the while loop, the constraint solved by 
Alloy.solve() is only the precondition. Then we fetch a path 

condition from the pcs (line 5). With the Alloy Analyzer, we 

solve the conjunction of the precondition and the fetched path 
condition (line 6-7). A solution, sol, is concretized into a Java 

object, input (line 8). By running the method with the 

input, we get the new path conditions and add them into pcs 

(line 9). Next we fetch a path condition from pcs and start the 

next cycle of the test generation process. 

 

Figure 5. The Whispec Framework 

 

Figure 4. An absolute value calculation program. 

 

Figure 6. Whispec test generation algorithm. 



4.2 Path Condition Generation  
In the framework of Whispec, path conditions are a critical 
component. They are generated from the symbolic execution of 
the current test input and are used to generate new test cases. For 
a given path, the path condition is the conjunction of branch 
predicates that are required to hold for all the branches along the 
path. 

4.2.1 Instrumentation  
In Whispec, path conditions are generated through symbolic 
execution [25]. Whispec implements symbolic execution through 
code instrumentation. Before running Whispec, we instrument a 
method as follows. For each bytecode instruction in the original 
program, we add a bytecode sequence that performs the same 
operation on symbolic values. 

Table 2 illustrates the spirit of Whispec’s instrumentation. For 
most of the Java bytecode instructions in the original program, 
Whispec just instruments code to repeat the same operation on 
sJVM (Symbolic Java Virtual Machine). For example, in the 
original code, instruction aload_0 loads the local variable 0 

onto the operand stack of JVM. In the instrumented code, we add 
an instruction, sJVM.exec_aload(0), to load the symbolic 

value of local variable 0  onto the operand stack of sJVM.  

The instrumentation on branch instructions requires additional 
code. In the last row of Table 2, we add extra code to save the 
predicate decision from concrete execution into a boolean variable 
bc. 

4.2.2  Symbolic Execution on sJVM 
sJVM, the execution engine of the instrumented code, is a mini 
Java Virtual Machine. To accurately emulate the concrete 
execution, sJVM has a very similar structure to a real JVM. 

To effectively represent concrete data values with symbols, we 
add a value field to symbols that representing primitive type 
values. For a class type value, the symbolic value has a 
fields_table which has the same fields as the class it represents.  

To emulate the heap in a real JVM, sJVM uses an array, 
symbolic_heap, to hold all the symbolic values. In sJVM, all 
symbolic values are referred by their index in the symbolic_heap. 
Corresponding to the frame stack in real JVM, frames in sJVM 
has a local_variable_table to keep symbolic values for local 
variables and an operand_stack to support evaluations on 

symbolic values. All the frames are kept in a frame_stack. When a 
method is invoked, a new stack frame is created and is put on the 
frame stack. When the callee method returns, the top frame is 
destroyed. 

With the heap and the frame stack, sJVM supports a subset of the 
instruction set of the real JVM. sJVM can execute most of the 
load and store instructions, integer arithmetic instructions, object 
creation and manipulation instructions, operand stack 
management instructions, control transfer instructions, method 
invocation and return instructions.  

4.2.3 Generation of New Path Conditions  
With the support from instrumentation and symbolic execution on 
sJVM, a path condition will be generated whenever a path is 
exercised.  

Given a path condition, Whispec invokes 
generatePathConditions() (Figure 7) to construct new 

path conditions for neighboring paths. For example, given a path 
condition pc = {bp1, bp2, bp3,…, bpn} where bpi is a 

branch predicate along the path, Whispec could generate a set of 
new path conditions:  

{negate(bp1)},  

{bp1, negate(bp2)},  

{bp1, bp2, negate(bp3)},  

 …,  

{bp1, bp2, bp3, …, negate(bpn)}.  

In fact, Whispec does not negate all branch predicates, from bp1 

to bpn. During our iterative test generation process, a predicate is 

likely to be visited multiple times. Switching back and forth on 
the same predicate will generate duplicate path conditions. To 
avoid it, we setup a parameter, level, to 

generatePathConditions(). In the path condition pc, only 

predicate bplevel+1, bplevel+2, …, bpn are negated to 

construct new path conditions.  

Since all path conditions are kept in a FIFO queue, Whispec uses 
the BFS (Breadth First Search) strategy to explore the 
neighboring paths of the current execution path. BFS is efficient 
in path condition generation. During one round of test generation, 
Whispec usually generates multiple path conditions. For loop 
intensive programs, BFS tries to explore new branches as early as 
possible, rather than going through the same loop condition many 
times. In Whispec, most of the path conditions are generated from 
partial paths, not full paths that go from entry to exit. If the path is 

Table 2. Bytecode instrumentation. 

 

 

Figure 7. Path condition generation algorithm. 



invalid, no effort will be spend on further exploration. This 
optimizes symbolic execution. To avoid visiting the same path 
twice, Whispec marks generated path conditions. With a given 
bound on the size of path condition, Whispec always terminates. 

4.3 Abstraction and Concretization 
In Whispec, the program under testing is in Java while the 
constraints are specified in Alloy. To translate between Java 
expressions and Alloy constraint specifications, we use a 
relational view of the heap [21]. During abstraction, the path 
conditions, specified with Java expressions, are translated into 
Alloy formulas. During concretization, the solution to the 
constraints will be translated back into concrete Java objects as 
test inputs. 

Table 3 illustrates the abstraction with the IntList class 

defined in Section 2. The translation scheme is type-based. A Java 
class is mapped to a unary relation, in other words, a set. The 
fields of a class are translated to binary, functional relations that 

map objects of this class to the object of the target type. With the 
mapping from classes and their fields to relations, we can directly 
translate the logic expressions in predicates into Alloy logical 
expression.  

The solutions to the preconditions and path conditions are 
specified as a binding of relations to the tuples of a universe of 
atoms. We also use the IntList class defined in Section 2 to 

illustrate how we concretize the solutions into Java inputs (Table 
4). According to the mapping between Java and Alloy in the 
abstraction phase, we can translate the tuples of atoms back to 
objects and their fields. This is just the reverse of abstraction. For 
each relation representing a class, we construct a concrete object 
of that class for each atom in the tuple set bounded to the relation. 
For each relation representing the field of a class, we set the 
values to the corresponding objects’ fields. With the 
concretization of solutions, we construct new test cases to explore 
unvisited paths.  

Table 5. Performance of Whispec in test generation for decision coverage 

Data 
Structure 

Method Scope1 Length2 Test 
cases 

Explored 
branches 

Decision 
coverage3 

(%) 

#Primary 
variables 

 (average5) 

#Clauses 
 (average5) 

Time4 
(ms) 

Unsatisfied 
path 

condition 

contains 3 4 4 3 100 17 83 484 0 

indexOf 3 6 6 5 100 10 43 496 0 

remove 3 6 6 5 100 10 43 500 0 

Linked 

List 

lastIndexOf 3 6 6 5 100 10 43 500 0 

firstEntry 3 4 3 2 100 15 198 250 0 

lastEntry 3 4 3 2 100 15 198 266 0 

successor 6 4 6 5 100 38 856 578 0 
TreeMap 

put 7 20 53 24 93.8 286 13670 102891 65 

firstEntry 3 4 3 2 100 13 60 496 0 

lastEntry 3 4 3 2 100 13 60 453 0 
Binary 

Search 

Tree 
successor 6 4 6 5 100 27 158 625 0 

Scope1: the limit on the number of entries in a data structure. 

Length2: the limit on the number of predicates in a path condition 

Decision coverage3: the coverage for both the true and false decisions for all the branches, including the functions directly or indirectly called by the 
function under test. 

Time4: total time for test generation and test execution. 

Average5: the average of # variables or # clauses over all test cases. 

 

Table 4. Concretization  

Alloy solution Java data structure 

Unary relation:  

entry =  

[[a1],[a2],[a3]] 

Instance:  

Entry  

e1 = new Entry(), 

e2 = new Entry(),   

e3 = new Entry(); 

Binary relation:  

next =  

[[a1, a2], [a2, a3]]  

Field value:  

e1.next = e2; 

e2.next = e3; 

 

Table 3. Abstraction  

Java expression Alloy expression 

Class:  

IntList, Entry 

Unary relation:  

list, entry  

Variable: 

so1, so2 

Singleton unary relation: 

r_so1, r_so2 

Field: 

next, prev 

Binary relation: 

next, prev 

Logic expression:  

so1 > so2  

Logic expression:  

r_so1.value > r_so2.value 

 



5. Experiments 
To evaluate the effectiveness of Whispec, we run tests on some 
methods of Java classes: LinkedList, TreeMap, and 

BinarySearchTree. LinkedList implements doubly-

linked circular lists in the Java Collections Framework. Each list 
has a size field and a header node, which is a sentinel node. 

TreeMap implements the Map interface using red-black trees. 

This implementation uses binary trees with parent pointers. 

Each node (implemented with inner class Entry) has a key and 

value.  BinarySearchTree is an implementation of binary 

search tree. Each node has an integer value. A tree satisfies 

binary search constraints: left subtree of a node contains only 
values less than the node's value, and the right subtree of a node 
contains only values greater than or equal to the node's value. 

Given a limit on the number of entries in a data structure and the 
number of predicates in a path condition, we run Whispec to 
generate tests to cover all the branch decisions. We use Kodkod 
API to specify the constraints and select miniSAT [12] as the SAT 
solver. We performed the experiments on an Intel Pentium D 
processor with 1GB RAM.  

Table 5 shows the experimental results. In the setting of the 
experiment, the scope is the limit on the entries in a data structure. 
The length is the limit on the predicates in a path condition. The 
time taken includes both the test generation and test execution 
because these two parts are mixed together in Whispec. To 
maximize coverage, we try to cover all the branches with both true 
and false decisions. For the methods invoked inside the methods 
under test, we also explore the branches inside the callee methods.  

For most of the methods, Whispec can generate test cases 
covering all the branch decisions within 2 minutes. The exception 

is the put() method of TreeMap where 3 of the 48 branch 

decisions  are not covered. After manually checking the 
uncovered branch decisions, we found that all the 3 branch 
decisions are unsatisfiable and the paths that go through them are 
infeasible.  

To evaluate the efficiency of Whispec, we also compared the 
number of tests generated by Whispec with the number that 
TestEra (or Korat) generates. TestEra needs to construct all the 
non-isomorphic data structures for every input parameter (include 
the implicit parameter this), and combine them using a cross-

product to produce test cases. The results in Figure 8 show that, 
with the same branch decision coverage, Whispec generates 
significantly fewer test cases than TestEra.  For example, to cover 
the 45 valid branch decisions in the put() function of 

TreeMap, Whispec generates 53 test cases while TestEra 

generates 4011 test cases.  

6. Limitations 
This section addresses some limitations of Whispec. 

Primitive types, such as integer, are very commonly used in 

preconditions and implementations. However, Alloy Analyzer, the 
constraints solver of Whispec, does not efficiently support 
primitive type arithmetic operations, such as integer addition. A 
promising approach is proposed in [11] to handle larger integers 
with relational logic. The use of this technique could extend the 
application of Whispec.   

We envision enabling the Whispec framework to use (in 
conjunction with SAT solvers) specialized decision procedures for 
handling operations on a variety of primitive types. One way to do 
so is to partition the constraints that describe an input according 
to whether they constrain a primitive type or a reference type, and 
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Figure 8. Comparison between Whispec and TestEra in test generation with the same decision coverage 



use a SAT solver to solve the structural constraints and use 
appropriate decision procedures for solving constraints on 
primitive data.  

Our current implementation does not support checking the 
exceptional behavior of programs or generating inputs with multi-
dimensional-array-based components.  

Inheritance is fundamental in object-oriented programming. So 
far, we have not addressed how to utilize class hierarchies in test 
generation. 

Multi-threaded programming is common in software 
development.  Dynamically checking the correctness of multi-
threaded programs for deadlocks and race conditions requires the 
ability to control thread scheduling. We envision using a model 
checker in conjunction with a SAT solver to check such programs. 

7. Related Works 
As a hybrid approach, Whispec has similarities with both black-
box testing and white-box testing approaches. 

In black-box testing, the closest approaches are TestEra [27] and 
Korat [4]. In TestEra, structural constraints are specified with 
Alloy and solved with SAT solvers. TestEra prunes isomorphic 
solutions to effectively reduce redundant test cases. Korat uses 
constraints specified in Java. Korat performs a systematic search 
of the space of possible structures and uses the given constraints 
as a basis for efficiently pruning its search and generating valid 
structures. QuickCheck, a product of QuviQ AB, is also a 
specification-based test generation tool.  QuickCheck is 
developed from Claessen and Hughes’ earlier QuickCheck tool 
for Haskell [7] and a re-design for Erlang [1]. QuviQ QuickCheck 
uses high-order functional languages, such as Haskell or Erlang, 
to specify the properties, such as pre-/post-conditions, a program 
should satisfy. According to the property specification, 
QuickCheck randomly generate test inputs. Different from 
Whispec, none of them considers the constraints from path 
conditions and therefore they are not efficient at generating tests 
that focus on maximizing coverage.     

In white-box testing, symbolic execution and branch negation are 
in common use for test generation [25]. DART [18] combines 
concrete and symbolic execution to collect the branch conditions 
along the execution path. DART negates the last branch condition 
to construct a new path condition that can drive the function to 
execute on another path.  However, DART focuses only on path 
conditions involving integers. To overcome the path explosion in 
large programs, SMART [17] introduced inter-procedural static 
analysis techniques to reduce the paths to be explored by DART. 
CUTE [28] extends DART to handle constraints on references.  
CUTE can in principle be used with preconditions on structural 
inputs. In [26], random searching is integrated with CUTE to 
increase the ability to get deep paths. Although Whispec also uses 
symbolic execution and negates branch conditions, it differs from 
approaches based on DART and CUTE in constraint solving and 
new path exploration. Whispec uses first-order logic formulas to 
specify the constraints whereas DART and CUTE require 
imperative assertions as specifications. Whispec conjoins the 
precondition and path condition and solves them together whereas 
CUTE handles them separately, which forces it to explore a much 
larger number of paths since it must explore paths within the 
precondition as well as those within the method body; DART 
does not handle preconditions. In addition, Whispec uses BFS, 

rather than the DFS (Depth First Search) that is used in DART 
and CUTE, to cover different branches as early as possible. This 
approach is particularly effective in generating tests for branch 
coverage. For loop intensive programs, DART and CUTE will go 
inside loop and repeat the same branch condition until reaching 
the bound. Whispec prefers the path going out of the loop first 
and can reach new branches earlier.  

Agitator [3], a commercial tool that can automate test generation, 
performs static and dynamic analysis on Java code and generates 
tests according to the identified behaviors. In Agitator, the 
constraints are provided by Daikon[13]’s dynamic invariant 
detection algorithm and path conditions are solved by data type 
specific constraint solvers, such as string and integer solvers. In 
contrast with Whispec, Agitator does not focus on data structure 
constraints. 

EGT [6] and EXE [5] also use the negation of branch predicates 
and symbolic execution to generate test cases. They increase the 
precision of the symbolic pointer analysis to handle pointer 
arithmetic and bit-level memory locations. However, neither 
handles preconditions or class invariants.  

A combination of model checking and symbolic execution is 
proposed to do white-box testing in [24] [31]. To solve the 
constraints from path conditions and preconditions, they do 
symbolic execution on both code in the function under test and 
code for path conditions. While this approach provides a tight 
integration of preconditions and path conditions, it requires 
preconditions to be given in Java and its efficiency depends 
heavily on how the user writes the preconditions.  

Csallner’s DSD [9] uses the invariant inference tool Daikon [13] 
to get class invariants, and ESC/Java [14] to do static checking, 
CnC [8] to solve constraints, and JCrasher [10] to generate and 
run tests with. Although both static analysis and dynamic 
execution are used, they work separately in the whole process. 
The symbolic execution is not integrated with concrete execution, 
and the effectiveness in pruning false positives also depends on 
the invariant inference tool.   

Symstra [34] generates unit tests for complex data structures 
through symbolic state exploration and symbolic execution. Its 
performance is much better than its predecessor Rostra [33], 
which is a concrete execution approach. However, Symstra 
requires a complete implementation and does not consider 
preconditions. 

There are various other approaches for generating test cases based 
on program paths. In [20], tests are generated by iteratively 
switching branch conditions to cover different branches. In [32], 
the shape of an input data structure is constructed by solving alias 
between object references. In [35][36], they do symbolic 
execution and analyze structure pointers and array index 
expressions to generate test cases going through designated paths. 
In [20], test cases are generated by constructing the control flow 
graph, searching paths to specified points and solving the 
constraints for the selected path. However, none of them propose 
the integration of preconditions with test generation. 

8. Conclusions 
We presented a novel framework, Whispec, for white-box testing 
of methods that manipulate structurally complex data, such as 
those that pervade library classes. Given method preconditions as 



declarative constraints, our framework systematically generates 
test inputs for the methods to maximize their code coverage. The 
constraints are written in Alloy, a first-order language based on 
relations. To test a method, given its precondition constraint, we 
first solve that constraint using the Alloy Analyzer and translate a 
solution into a test input.  Next, we execute the method on that 
input and build the path condition for the resulting execution 
path. Then, we run the analyzer on a conjunction of the 
precondition and a new path condition that represents a previously 
unexplored path. The solution is translated to a new test input, 
which triggers the next round of test generation. The iterative 
execution of Whispec can systematically enumerate inputs that 
maximize code coverage. Experiments using a variety of data 
structure implementations from the Java libraries showed that our 
framework generates significantly smaller test suites (while 
maximizing coverage) than those generated by previous 
specification-based approaches. 
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