
Whispec: White-box Testing of Libraries
Using Declarative Specifications

Danhua Shao Sarfraz Khurshid Dewayne E. Perry

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712, USA

{dshao,khurshid,perry}@ece.utexas.edu

Abstract

We present a novel framework, Whispec, for white-box testing of
methods that manipulate structurally complex data, such as those
that pervade library classes. Given method preconditions as
declarative constraints, our framework systematically generates
test inputs for the methods to maximize their code coverage. The
constraints are written in Alloy, a first-order language based on
relations. To test a method, given its precondition constraint, we
first solve that constraint using the Alloy Analyzer and translate a
solution into a test input. Next, we execute the method on that
input and build the path condition for the resulting execution
path. Then, we run the analyzer on a conjunction of the
precondition and a new path condition that represents a previously
unexplored path. The solution is translated to a new test input,
which triggers the next round of test generation. The iterative
execution of Whispec can systematically enumerate inputs that
maximize code coverage. Experiments using a variety of data
structure implementations from the Java libraries show that our
framework generates significantly smaller test suites (while
maximizing coverage) than those generated by previous
specification-based approaches.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification –

Class invariants; D.2.5 [Software Engineering]: Testing and
debugging – Symbolic execution, Testing tools; D.3.3

[Programming Languages]: Language Contructs and Features –

Constraints; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs –
Assertions, Invariants, Pre- and post-conditions, Specification

techniques.

General Terms Languages, Verification.

Keywords Software Testing, First-order Logic, Symbolic

Execution, Contracts.

1. Introduction
Software testing, the most commonly used technique for
validating the quality of software, is a labor intensive process, and
typically accounts for about half the total cost of software
development and maintenance [2]. Automating testing not only
reduces the cost of producing software but also increases its
reliability.

White-box testing and black-box testing are two commonly used
techniques that have complementary strengths. White-box testing
uses the internal structures (such as control flow or data flow) of
programs. Black-box testing uses an external interface.

Automated approaches to black-box testing make extensive use of
specifications, e.g., to specify test inputs or test oracles
(correctness criteria). In unit testing of object-oriented code,
preconditions, which define constraints on legal method inputs,
and postconditions, which define expected behavior and outputs,
form an integral part of the specifications.

TestEra [27] is a specification-based, black-box testing framework
for Java programs. Given a method’s precondition, TestEra
automatically generates all nonisomorphic test inputs up to a
given bound, executes the method on each test input, and uses the
method’s postcondition as a test oracle to check the correctness of
each output. A key strength of TestEra is its ability to generate
inputs that represent structurally complex data, such as balanced
binary search trees, which are often implemented in library
classes.

Although TestEra provides efficient enumeration of structurally
complex data structures according to given constraints, it does not
generate a minimal test suite with respect to some code coverage
metrics. A precondition only specifies a method’s expected inputs
and not the method’s implementation details. For example,
consider the contains() method of Java class

java.util.LinkedList. Four tests are enough to cover all

the branches. However, TestEra generates 120 nonisomorphic
tests using a bound of up to 3 elements and 3 non-sentinel nodes.

We propose a novel framework, Whispec, which builds on
TestEra and focuses on maximizing code coverage, thereby
enabling a specification-based framework for white-box testing.
As in TestEra, Whispec requires the user to provide the method’s
precondition as a declarative constraint. However, in contrast with
TestEra, Whispec systematically integrates the precondition with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Submitted to LCSD’07.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

the control flow of the method and generates test inputs that
maximize code coverage.

In Whispec, the specifications are declared as relational first-order
logic formulas. As an enabling technology, Whispec uses the
Alloy toolset. Alloy [22] is a first-order declarative language
based on sets and relations. The Alloy Analyzer [23] is an
automatic tool that finds instances of Alloy specifications, i.e.,
finds assignments of values to the sets and relations in the
specification such that the specification formulas evaluate to true.
Whispec translates Alloy instances into concrete test inputs.

Our key insight is the integration of preconditions and path
conditions with relational logic so that they are solved together for
test generation. Given the precondition of the method under test,
we first solve it with the Alloy Analyzer. The solution is
concretized to a test input. Next, we execute the method on that
input, observe its execution path, and build path conditions by
negating the branch predicates in the execution path. We run the
analyzer on a conjunction of the precondition and one of the
generated path conditions. The solutions are translated into further
test inputs, which exercise previously unexplored paths and
trigger the next round of the test generation process. An iterative
execution of this approach can systematically enumerate inputs
that maximize code coverage.

This paper makes the following contributions:

• Specification-based white-box approach. Whispec
combines a method’s precondition (a declarative
formula in first-order logic) with path conditions
derived from the method’s control-flow, and uses a SAT
solver to generate test inputs, which provide a desired
level of code coverage.

• Implementation. The Whispec prototype provides
systematic test generation for Java programs. The
prototype uses Breadth First Search to cover different
branches as early as possible.

• Evaluation. In comparison with TestEra, Whispec
generates significantly fewer test cases to achieve the
same branch coverage. Each test generated exercises a
unique path.

2. Example
This section presents a small illustrative example. Suppose we
want to test the contains() method of the class IntList

(which is based on java.util.LinkedList) shown in

Figure 1.

An object of IntList represents a doubly-linked list. The

header field represents a sentinel node in the list. Objects of the

inner class Entry represent list nodes. The field value

represents the (primitive) integer data in a node. The field next

points to the next node while the field prev pointes to the

previous node in the list.

The precondition for the method contains() is given in Alloy

as a comment in the source code. This precondition specifies that
the structure pointed to by the implicit input parameter, this,

should be a valid doubly-linked list.

The constraint ‘all e1, e2: this.header.*next |

e1=e2.next <=> e2 = e1.prev’ defines the transpose

relation between the next and prev fields. In Alloy, the

operator‘.’ denotes the relational join/composition, ‘*’ denotes

reflexive transitive closure, and ‘:’ denotes membership

(mathematically, the subset relation). The expression
this.header.*next thus denotes the set of all nodes

reachable from the header node of list this following 0 or

more traversals along the next field. The quantifier all stands

for universal quantification. ‘<=>’ denotes logical equivalence.

This constraint specifies that, for every entry e1 and e2 in

relation ‘this.header.*next, if e2.next = e1,

e1.prev = e2’, and vice versa.

The constraint ‘all e : this.header.*next | some

e.next && some e.prev’ defines the circularity of a list.

For each entry e in relation ‘this.header.*next,

e.prev’ and ‘e.next’ should also be an entry within the list.

The constraint ‘this.size = #(this.header.*next –

this.header)’ defines the size of a list. The number of

entries in the expression ‘this.header.*next’ minus one

should equal the value of ‘this.size’.

Given the precondition, we generate tests for contains() as

follows. First, Whispec solves the precondition and translates a
solution into a test input. Figure 2 shows an example input, which
exercises the path P0: <25, 26, 27, 30, 26, 32> in contains().

P0 has three branch statements: 26, 27, and 26. Let symbols
IntList_0 and Int_0 represent the initial values of the input

variable this and i. Then the three predicates in path P0 are:

Figure 1. IntList example.

IntList_0.header.next != IntList_0.header

Int_0 == IntList_0.header.next.value

IntList_0.header.next.next != IntList_0.header

For Path P0, the decision on the first predicate is true and the
decision for each of the other two is false. A conjunction of the
predicates or their negations defines a path condition—an input
that satisfies a path condition exercises that path.

To generate inputs that take different paths, Whispec constructs
new path conditions by changing the decisions on the predicates.
The conjunction of a new path condition and the precondition is
passed to a constraint solver, the Alloy Analyzer, and the solution
it generates is concretized into a new input.

In this example, we negate each of the three branch decisions in
path P0 and construct three new path conditions (Table 1). To
illustrate, the conjunction of path_condition_3 and the
precondition generates a new input shown in Figure 3. This input
exercises a new path: <25, 26, 27, 30, 26, 27, 30, 26, 32>.
Continuing the exploration, Whispec generates four inputs that
exercise all four paths in the method contains() (using one

loop-unrolling).

3. Background
In Whispec, all the constraints, the preconditions and path
conditions, are specified in Alloy. Whispec uses the recently
developed Kodkod model finder [29] [30] to solve the constraints.
In this section, we give a brief overview of Alloy and Kodkod.

3.1 Alloy
Alloy is a first-order declarative language based on sets and
relations. The Alloy Analyzer is a tool for automatically analyzing
models written in Alloy. The analyzer translates Alloy models into
boolean formulas and uses off-the-shelf SAT technology to solve
the formulas. The analyzer consists of: a front-end that parses
Alloy models into an intermediate representation (IR), a set of
optimizations on this IR, and a back-end that translates the IR into
boolean formulas.

Each Alloy model consists of data (i.e., several sets and relations),
several facts (i.e., formulas that put constraints on the data) and an
assertion (i.e., a formula to check on the data). These formulas can
be structured using functions (i.e., parameterized formulas that
can be invoked elsewhere), which the analyzer inlines into the
facts and the assertion. Additionally, each analysis specifies a
scope (i.e., a bound on the size of basic sets within which to check
the formulas). The analyzer translates a conjunction of all facts
and the negation of the assertion into a boolean formula such that
the boolean formula has a solution if and only if there are some
sets and relations that satisfy all the facts and the negation of the
assertion (thus providing a counterexample for the assertion).
Alloy is a relational language; every expression in Alloy denotes a
relation (or a set in the case of a relation of arity one). Even
scalars are represented as singleton sets. More details of the Alloy
language are available elsewhere [22].

3.2 SAT
Given a propositional formula over a set of boolean variables, the
boolean Satisfiability Problem (SAT) asks whether there exists a
variable assignment that makes the formula evaluate to true. SAT
is a classical NP-Complete problem; therefore, it is unlikely that
there is a polynomial algorithm for solving the SAT problem.
However, due to its practical importance in areas such as theorem
proving, formal verification, and AI planning, much research
effort has been put into developing efficient algorithms for
solving SAT problems. Although in the worst case these
algorithms require exponential time, in practice current state-of-
the-art SAT solvers can often determine the satisfiability of
boolean formulas with tens of thousands of variables in a
reasonable amount of time [37].
Modern SAT solvers determine the satisfiability of a formula by
systematically searching the entire boolean space of the formula.
They typically require the input formula to be in the Conjunctive
Normal Form (CNF), i.e., a conjunction of clauses, where each
clause is a disjunction of literals. A literal is either a positive or
negative occurrence of a boolean variable. Some recent SAT
solvers can operate without the CNF requirement [15], but the
Alloy Analyzer translates all formulas into CNF.

3.3 Kodkod model finder
Kodkod is the latest version of Alloy’s translation to SAT.
Kodkod provides several new optimizations in the translation, as
well as an API to construct Alloy models and to specify the scope,
which consists of an upper bound and a lower bound for each
relation. The upper bound specifies the tuples that a relation may
contain and the lower bound specifies the tuples that the relation
must contain. Whispec uses the Kodkod API to run the Alloy
Analyzer.

Figure 2. A test generated from the precondition. Figure 3. A test generated from precondition +

path_condition_3.

Table 1. The execution path and the three path

conditions for new paths.

Path predicate_0 predicate_1 predicate_2

Path P0 True False False

path_condition_1 False

path_condition_2 True True

path_condition_3 True False True

3.4 Symbolic Execution
In Whispec, path conditions are generated by symbolic execution.
Symbolic execution is a technique for executing a program on
symbolic values [25]. There are two fundamental aspects of
symbolic execution: (1) defining semantics to operations that are
originally defined for concrete values and (2) maintaining a path
condition for the current program path being executed—a path
condition specifies necessary constraints on input variables that
must be satisfied to execute the corresponding path.

As an example, consider a program (Figure 4) that returns the
absolute value of its input.

To symbolically execute this program, we consider its behavior on
a primitive integer input, say I. We make no assumptions about
the value of I (except what can be deduced from the type
declaration). So, when we encounter a conditional statement, we
consider both possible outcomes of the condition. To perform
operations on symbols, we treat them algebraically, e.g., the
statement on line 4 updates the value of result to be -1 * I. Of

course, a tool for symbolic execution needs to modify the type of
result to note updates involving symbols and to provide support
for manipulating expressions, such as -1 * I.

Symbolic execution of the above program explores the following
two paths:

Path 1, [I < 0]: <2, 3, 4, 6>

Path 2, [I >= 0]: <2, 3, 5, 6>

Note that for each path that is explored, there is a corresponding
path condition (shown in square brackets). While execution on a
concrete input would have followed exactly one of these two
paths, symbolic execution explores both. In general, symbolic
execution can systematically explore all program paths up to a
bounded path length. Tools that implement such exhaustive
exploration often use iterated Depth First Search [16][18][28],
where the search depth is iteratively increased, until a sufficiency

criterion for exploration has been met. However, in Whispec, we
use Breadth First Search in order to cover different branches as
early as possible.

4. Whispec Framework
Whispec is a novel framework for automatic test generation for
Java programs. We built Whispec on top of a mini Java Virtual
Machine, sJVM, to generate path conditions and the Alloy
Analyzer to solve the constraints from path conditions and
preconditions.

4.1 Framework Outline
Figure 5 illustrates the main components of Whispec and Figure 6
gives an overview of the test generation algorithm. The inputs to
the algorithm are the method under test and its

precondition. Before running Whispec to generate tests, we

instrument the method so that symbolic execution can be

performed during the concrete execution.

With the instrumented method and its precondition, Whispec
generates tests in the following steps (Figure 6). First, we
initialize the pcs, a list of path conditions, with only a special

boolean formula, true (line 3), so that, in the first round

execution of the while loop, the constraint solved by
Alloy.solve() is only the precondition. Then we fetch a path

condition from the pcs (line 5). With the Alloy Analyzer, we

solve the conjunction of the precondition and the fetched path
condition (line 6-7). A solution, sol, is concretized into a Java

object, input (line 8). By running the method with the

input, we get the new path conditions and add them into pcs

(line 9). Next we fetch a path condition from pcs and start the

next cycle of the test generation process.

Figure 5. The Whispec Framework

Figure 4. An absolute value calculation program.

Figure 6. Whispec test generation algorithm.

4.2 Path Condition Generation
In the framework of Whispec, path conditions are a critical
component. They are generated from the symbolic execution of
the current test input and are used to generate new test cases. For
a given path, the path condition is the conjunction of branch
predicates that are required to hold for all the branches along the
path.

4.2.1 Instrumentation
In Whispec, path conditions are generated through symbolic
execution [25]. Whispec implements symbolic execution through
code instrumentation. Before running Whispec, we instrument a
method as follows. For each bytecode instruction in the original
program, we add a bytecode sequence that performs the same
operation on symbolic values.

Table 2 illustrates the spirit of Whispec’s instrumentation. For
most of the Java bytecode instructions in the original program,
Whispec just instruments code to repeat the same operation on
sJVM (Symbolic Java Virtual Machine). For example, in the
original code, instruction aload_0 loads the local variable 0

onto the operand stack of JVM. In the instrumented code, we add
an instruction, sJVM.exec_aload(0), to load the symbolic

value of local variable 0 onto the operand stack of sJVM.

The instrumentation on branch instructions requires additional
code. In the last row of Table 2, we add extra code to save the
predicate decision from concrete execution into a boolean variable
bc.

4.2.2 Symbolic Execution on sJVM
sJVM, the execution engine of the instrumented code, is a mini
Java Virtual Machine. To accurately emulate the concrete
execution, sJVM has a very similar structure to a real JVM.

To effectively represent concrete data values with symbols, we
add a value field to symbols that representing primitive type
values. For a class type value, the symbolic value has a
fields_table which has the same fields as the class it represents.

To emulate the heap in a real JVM, sJVM uses an array,
symbolic_heap, to hold all the symbolic values. In sJVM, all
symbolic values are referred by their index in the symbolic_heap.
Corresponding to the frame stack in real JVM, frames in sJVM
has a local_variable_table to keep symbolic values for local
variables and an operand_stack to support evaluations on

symbolic values. All the frames are kept in a frame_stack. When a
method is invoked, a new stack frame is created and is put on the
frame stack. When the callee method returns, the top frame is
destroyed.

With the heap and the frame stack, sJVM supports a subset of the
instruction set of the real JVM. sJVM can execute most of the
load and store instructions, integer arithmetic instructions, object
creation and manipulation instructions, operand stack
management instructions, control transfer instructions, method
invocation and return instructions.

4.2.3 Generation of New Path Conditions
With the support from instrumentation and symbolic execution on
sJVM, a path condition will be generated whenever a path is
exercised.

Given a path condition, Whispec invokes
generatePathConditions() (Figure 7) to construct new

path conditions for neighboring paths. For example, given a path
condition pc = {bp1, bp2, bp3,…, bpn} where bpi is a

branch predicate along the path, Whispec could generate a set of
new path conditions:

{negate(bp1)},

{bp1, negate(bp2)},

{bp1, bp2, negate(bp3)},

 …,

{bp1, bp2, bp3, …, negate(bpn)}.

In fact, Whispec does not negate all branch predicates, from bp1

to bpn. During our iterative test generation process, a predicate is

likely to be visited multiple times. Switching back and forth on
the same predicate will generate duplicate path conditions. To
avoid it, we setup a parameter, level, to

generatePathConditions(). In the path condition pc, only

predicate bplevel+1, bplevel+2, …, bpn are negated to

construct new path conditions.

Since all path conditions are kept in a FIFO queue, Whispec uses
the BFS (Breadth First Search) strategy to explore the
neighboring paths of the current execution path. BFS is efficient
in path condition generation. During one round of test generation,
Whispec usually generates multiple path conditions. For loop
intensive programs, BFS tries to explore new branches as early as
possible, rather than going through the same loop condition many
times. In Whispec, most of the path conditions are generated from
partial paths, not full paths that go from entry to exit. If the path is

Table 2. Bytecode instrumentation.

Figure 7. Path condition generation algorithm.

invalid, no effort will be spend on further exploration. This
optimizes symbolic execution. To avoid visiting the same path
twice, Whispec marks generated path conditions. With a given
bound on the size of path condition, Whispec always terminates.

4.3 Abstraction and Concretization
In Whispec, the program under testing is in Java while the
constraints are specified in Alloy. To translate between Java
expressions and Alloy constraint specifications, we use a
relational view of the heap [21]. During abstraction, the path
conditions, specified with Java expressions, are translated into
Alloy formulas. During concretization, the solution to the
constraints will be translated back into concrete Java objects as
test inputs.

Table 3 illustrates the abstraction with the IntList class

defined in Section 2. The translation scheme is type-based. A Java
class is mapped to a unary relation, in other words, a set. The
fields of a class are translated to binary, functional relations that

map objects of this class to the object of the target type. With the
mapping from classes and their fields to relations, we can directly
translate the logic expressions in predicates into Alloy logical
expression.

The solutions to the preconditions and path conditions are
specified as a binding of relations to the tuples of a universe of
atoms. We also use the IntList class defined in Section 2 to

illustrate how we concretize the solutions into Java inputs (Table
4). According to the mapping between Java and Alloy in the
abstraction phase, we can translate the tuples of atoms back to
objects and their fields. This is just the reverse of abstraction. For
each relation representing a class, we construct a concrete object
of that class for each atom in the tuple set bounded to the relation.
For each relation representing the field of a class, we set the
values to the corresponding objects’ fields. With the
concretization of solutions, we construct new test cases to explore
unvisited paths.

Table 5. Performance of Whispec in test generation for decision coverage

Data
Structure

Method Scope1 Length2 Test
cases

Explored
branches

Decision
coverage3

(%)

#Primary
variables

 (average5)

#Clauses
 (average5)

Time4
(ms)

Unsatisfied
path

condition

contains 3 4 4 3 100 17 83 484 0

indexOf 3 6 6 5 100 10 43 496 0

remove 3 6 6 5 100 10 43 500 0

Linked

List

lastIndexOf 3 6 6 5 100 10 43 500 0

firstEntry 3 4 3 2 100 15 198 250 0

lastEntry 3 4 3 2 100 15 198 266 0

successor 6 4 6 5 100 38 856 578 0
TreeMap

put 7 20 53 24 93.8 286 13670 102891 65

firstEntry 3 4 3 2 100 13 60 496 0

lastEntry 3 4 3 2 100 13 60 453 0
Binary

Search

Tree
successor 6 4 6 5 100 27 158 625 0

Scope1: the limit on the number of entries in a data structure.

Length2: the limit on the number of predicates in a path condition

Decision coverage3: the coverage for both the true and false decisions for all the branches, including the functions directly or indirectly called by the
function under test.

Time4: total time for test generation and test execution.

Average5: the average of # variables or # clauses over all test cases.

Table 4. Concretization

Alloy solution Java data structure

Unary relation:

entry =

[[a1],[a2],[a3]]

Instance:

Entry

e1 = new Entry(),

e2 = new Entry(),

e3 = new Entry();

Binary relation:

next =

[[a1, a2], [a2, a3]]

Field value:

e1.next = e2;

e2.next = e3;

Table 3. Abstraction

Java expression Alloy expression

Class:

IntList, Entry

Unary relation:

list, entry

Variable:

so1, so2

Singleton unary relation:

r_so1, r_so2

Field:

next, prev

Binary relation:

next, prev

Logic expression:

so1 > so2

Logic expression:

r_so1.value > r_so2.value

5. Experiments
To evaluate the effectiveness of Whispec, we run tests on some
methods of Java classes: LinkedList, TreeMap, and

BinarySearchTree. LinkedList implements doubly-

linked circular lists in the Java Collections Framework. Each list
has a size field and a header node, which is a sentinel node.

TreeMap implements the Map interface using red-black trees.

This implementation uses binary trees with parent pointers.

Each node (implemented with inner class Entry) has a key and

value. BinarySearchTree is an implementation of binary

search tree. Each node has an integer value. A tree satisfies

binary search constraints: left subtree of a node contains only
values less than the node's value, and the right subtree of a node
contains only values greater than or equal to the node's value.

Given a limit on the number of entries in a data structure and the
number of predicates in a path condition, we run Whispec to
generate tests to cover all the branch decisions. We use Kodkod
API to specify the constraints and select miniSAT [12] as the SAT
solver. We performed the experiments on an Intel Pentium D
processor with 1GB RAM.

Table 5 shows the experimental results. In the setting of the
experiment, the scope is the limit on the entries in a data structure.
The length is the limit on the predicates in a path condition. The
time taken includes both the test generation and test execution
because these two parts are mixed together in Whispec. To
maximize coverage, we try to cover all the branches with both true
and false decisions. For the methods invoked inside the methods
under test, we also explore the branches inside the callee methods.

For most of the methods, Whispec can generate test cases
covering all the branch decisions within 2 minutes. The exception

is the put() method of TreeMap where 3 of the 48 branch

decisions are not covered. After manually checking the
uncovered branch decisions, we found that all the 3 branch
decisions are unsatisfiable and the paths that go through them are
infeasible.

To evaluate the efficiency of Whispec, we also compared the
number of tests generated by Whispec with the number that
TestEra (or Korat) generates. TestEra needs to construct all the
non-isomorphic data structures for every input parameter (include
the implicit parameter this), and combine them using a cross-

product to produce test cases. The results in Figure 8 show that,
with the same branch decision coverage, Whispec generates
significantly fewer test cases than TestEra. For example, to cover
the 45 valid branch decisions in the put() function of

TreeMap, Whispec generates 53 test cases while TestEra

generates 4011 test cases.

6. Limitations
This section addresses some limitations of Whispec.

Primitive types, such as integer, are very commonly used in

preconditions and implementations. However, Alloy Analyzer, the
constraints solver of Whispec, does not efficiently support
primitive type arithmetic operations, such as integer addition. A
promising approach is proposed in [11] to handle larger integers
with relational logic. The use of this technique could extend the
application of Whispec.

We envision enabling the Whispec framework to use (in
conjunction with SAT solvers) specialized decision procedures for
handling operations on a variety of primitive types. One way to do
so is to partition the constraints that describe an input according
to whether they constrain a primitive type or a reference type, and

4
6 6 6

3 3

6

53

3 3

6

120 120 120 120

10 10

201

4011

11 11

3133

1

10

100

1000

10000

L
i
n
k
e
d
L
i
s
t
.
c
o
n
t
a
i
n
t
s
(
)

L
i
n
k
e
d
L
i
s
t
.
I
n
d
e
x
O
f
(
)

L
i
n
k
e
d
L
i
s
t
.
R
e
m
o
v
e
(
)

L
i
n
k
e
d
L
i
s
t
.
L
a
s
t
I
n
d
e
x
O
f
(
)

T
r
e
e
M
a
p
F
i
r
s
t
E
n
t
r
y
(
)

T
r
e
e
M
a
p
.
L
a
s
t
E
n
t
r
y
(
)

T
r
e
e
M
a
p
.
s
u
c
c
e
s
s
o
r
(
)

T
r
e
e
M
a
p
.
p
u
t
(
)

B
i
n
a
r
y
S
e
a
r
c
h
T
r
e
e
.
F
i
r
s
t
E
n
t
r
y
(
)

B
i
n
a
r
y
S
e
a
r
c
h
T
r
e
e
.
L
a
s
t
E
n
t
r
y
(
)

B
i
n
a
r
y
S
e
a
r
c
h
T
r
e
e
.
s
u
c
c
e
s
s
o
r
(
)

W hispec TestEra

Figure 8. Comparison between Whispec and TestEra in test generation with the same decision coverage

use a SAT solver to solve the structural constraints and use
appropriate decision procedures for solving constraints on
primitive data.

Our current implementation does not support checking the
exceptional behavior of programs or generating inputs with multi-
dimensional-array-based components.

Inheritance is fundamental in object-oriented programming. So
far, we have not addressed how to utilize class hierarchies in test
generation.

Multi-threaded programming is common in software
development. Dynamically checking the correctness of multi-
threaded programs for deadlocks and race conditions requires the
ability to control thread scheduling. We envision using a model
checker in conjunction with a SAT solver to check such programs.

7. Related Works
As a hybrid approach, Whispec has similarities with both black-
box testing and white-box testing approaches.

In black-box testing, the closest approaches are TestEra [27] and
Korat [4]. In TestEra, structural constraints are specified with
Alloy and solved with SAT solvers. TestEra prunes isomorphic
solutions to effectively reduce redundant test cases. Korat uses
constraints specified in Java. Korat performs a systematic search
of the space of possible structures and uses the given constraints
as a basis for efficiently pruning its search and generating valid
structures. QuickCheck, a product of QuviQ AB, is also a
specification-based test generation tool. QuickCheck is
developed from Claessen and Hughes’ earlier QuickCheck tool
for Haskell [7] and a re-design for Erlang [1]. QuviQ QuickCheck
uses high-order functional languages, such as Haskell or Erlang,
to specify the properties, such as pre-/post-conditions, a program
should satisfy. According to the property specification,
QuickCheck randomly generate test inputs. Different from
Whispec, none of them considers the constraints from path
conditions and therefore they are not efficient at generating tests
that focus on maximizing coverage.

In white-box testing, symbolic execution and branch negation are
in common use for test generation [25]. DART [18] combines
concrete and symbolic execution to collect the branch conditions
along the execution path. DART negates the last branch condition
to construct a new path condition that can drive the function to
execute on another path. However, DART focuses only on path
conditions involving integers. To overcome the path explosion in
large programs, SMART [17] introduced inter-procedural static
analysis techniques to reduce the paths to be explored by DART.
CUTE [28] extends DART to handle constraints on references.
CUTE can in principle be used with preconditions on structural
inputs. In [26], random searching is integrated with CUTE to
increase the ability to get deep paths. Although Whispec also uses
symbolic execution and negates branch conditions, it differs from
approaches based on DART and CUTE in constraint solving and
new path exploration. Whispec uses first-order logic formulas to
specify the constraints whereas DART and CUTE require
imperative assertions as specifications. Whispec conjoins the
precondition and path condition and solves them together whereas
CUTE handles them separately, which forces it to explore a much
larger number of paths since it must explore paths within the
precondition as well as those within the method body; DART
does not handle preconditions. In addition, Whispec uses BFS,

rather than the DFS (Depth First Search) that is used in DART
and CUTE, to cover different branches as early as possible. This
approach is particularly effective in generating tests for branch
coverage. For loop intensive programs, DART and CUTE will go
inside loop and repeat the same branch condition until reaching
the bound. Whispec prefers the path going out of the loop first
and can reach new branches earlier.

Agitator [3], a commercial tool that can automate test generation,
performs static and dynamic analysis on Java code and generates
tests according to the identified behaviors. In Agitator, the
constraints are provided by Daikon[13]’s dynamic invariant
detection algorithm and path conditions are solved by data type
specific constraint solvers, such as string and integer solvers. In
contrast with Whispec, Agitator does not focus on data structure
constraints.

EGT [6] and EXE [5] also use the negation of branch predicates
and symbolic execution to generate test cases. They increase the
precision of the symbolic pointer analysis to handle pointer
arithmetic and bit-level memory locations. However, neither
handles preconditions or class invariants.

A combination of model checking and symbolic execution is
proposed to do white-box testing in [24] [31]. To solve the
constraints from path conditions and preconditions, they do
symbolic execution on both code in the function under test and
code for path conditions. While this approach provides a tight
integration of preconditions and path conditions, it requires
preconditions to be given in Java and its efficiency depends
heavily on how the user writes the preconditions.

Csallner’s DSD [9] uses the invariant inference tool Daikon [13]
to get class invariants, and ESC/Java [14] to do static checking,
CnC [8] to solve constraints, and JCrasher [10] to generate and
run tests with. Although both static analysis and dynamic
execution are used, they work separately in the whole process.
The symbolic execution is not integrated with concrete execution,
and the effectiveness in pruning false positives also depends on
the invariant inference tool.

Symstra [34] generates unit tests for complex data structures
through symbolic state exploration and symbolic execution. Its
performance is much better than its predecessor Rostra [33],
which is a concrete execution approach. However, Symstra
requires a complete implementation and does not consider
preconditions.

There are various other approaches for generating test cases based
on program paths. In [20], tests are generated by iteratively
switching branch conditions to cover different branches. In [32],
the shape of an input data structure is constructed by solving alias
between object references. In [35][36], they do symbolic
execution and analyze structure pointers and array index
expressions to generate test cases going through designated paths.
In [20], test cases are generated by constructing the control flow
graph, searching paths to specified points and solving the
constraints for the selected path. However, none of them propose
the integration of preconditions with test generation.

8. Conclusions
We presented a novel framework, Whispec, for white-box testing
of methods that manipulate structurally complex data, such as
those that pervade library classes. Given method preconditions as

declarative constraints, our framework systematically generates
test inputs for the methods to maximize their code coverage. The
constraints are written in Alloy, a first-order language based on
relations. To test a method, given its precondition constraint, we
first solve that constraint using the Alloy Analyzer and translate a
solution into a test input. Next, we execute the method on that
input and build the path condition for the resulting execution
path. Then, we run the analyzer on a conjunction of the
precondition and a new path condition that represents a previously
unexplored path. The solution is translated to a new test input,
which triggers the next round of test generation. The iterative
execution of Whispec can systematically enumerate inputs that
maximize code coverage. Experiments using a variety of data
structure implementations from the Java libraries showed that our
framework generates significantly smaller test suites (while
maximizing coverage) than those generated by previous
specification-based approaches.

9. Acknowledgments
We would like to thank Emina Torlak for the help on the Kodkod
model finder. This work was supported in part by NSF CISE
Grant IIS-0438967.

10. References
[1] T. Arts and J. Hughes. Erlang/quickcheck. In Ninth

International Erlang/OTP User Conference, Nov. 2003.

[2] B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 1990.

[3] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to
Agitator: lessons and challenges in building a commercial
tool for developer testing. In Proc. ACM/SIGSOFT Int.
Symp. Software Testing and Analysis, pages 169–180.
Portland, Maine, USA, 2006.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In Proc. 2002
ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), Rome, Italy, July 2002.

[5] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.
EXE: Automatically Generating Inputs of Death. In Proc. of
the 13th ACM Conference on Computer and
Communications Security (CCS), Alexandria, Virginia,
October-November 2006.

[6] C. Cadar and D. Engler. Execution generated test cases:
How to make systems code crash itself. In Proc. of the 12th
International SPIN Workshop on Model Checking of
Software, San Francisco, CA, August 2005

[7] K. Claessen and J. Hughes. Quickcheck: a lightweight tool
forrandom testing of haskell programs. In ICFP, pages 268–
279, 2000.

[8] C. Csallner and Y. Smaragdakis. Check 'n' Crash:
Combining static checking and testing. In Proc. of the 27th
International Conference on Software Engineering (ICSE),
St. Louis, MO, May 2005.

[9] C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid
analysis tool for bug finding. In Proc. of 2006 International
Symposium on Software Testing and Analysis (ISSTA),
Portland, Maine, July 2006.

[10] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software: Practice and
Experience, 34:1025–1050, 2004.

[11] J. Dolby, M. Vaziri, and F. Tip. Finding Bugs Efficiently
with a SAT Solver. In Proc. of the 6th joint meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2007), Dubrovnik, Croatia,
September 2007.

[12] N. Ee′n, and N. So¨rensson. An extensible SAT-solver.
Theory and Applications of Satisfiability Testing (SAT
2003), Vol 2919:5 of LNCS, Springer, 2004.

[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software
Engineering, 27(2):99–123, Feb. 2001.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.
B. Saxe, and R. Stata. Extended static checking for Java. In
Proc. of ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation
(PLDI), June 2002.

[15] M. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik.
Combining strengths of circuit-based and CNF-based
algorithms for a high-performance SAT solver. In Proc.
39thConference on Design Automation (DAC), Jun. 2002.

[16] P. Godefroid. Model checking for programming languages
using VeriSoft. In Proc. 24th Annual ACM Symposium on
the Principles of Programming Languages (POPL), pages
174–186, Paris, France, January 1997.

[17] P. Godefroid. Compositional dynamic test generation. In
Proc. of the 34th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages
(POPL), Nice, France, January 2007.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. of the 2005 ACM
SIGPLAN conference on Programming language design
and implementation (PLDI), Chicago, IL, June 2005.

[19] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. of
the 1998 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Clearwater Beach,
Florida, March 1998.

[20] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test
data for branch coverage. In Proc. of the 15th International
Conference on Automated Software Engineering (ASE),
Grenoble, France, September 2000.

[21] D. Jackson. Object Models as Heap Invirants. In Essays on

Programming Methodology, edited by Annabelle McIver
and Carroll Morgan. Springer Verlag, 2000.

[22] D. Jackson. Software Abstractions: logic, language, and
analysis. MIT Press, Cambridge, MA, 2006.

[23] D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The
Alloy constraint analyzer. In Proc. 22nd International
Conference on Software Engineering (ICSE), Limerick,
Ireland, June 2000.

[24] S. Khurshid, C. Pasareanu and W. Visser. Generalized
Symbolic Execution for Model Checking and Testing. The
9th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), Warsaw,
Poland. Apr 2003.

[25] J. C. King. Symbolic execution and program testing.
Communications of the ACM, Volume 19, Issue 7, July
1976.

[26] R. Majumdar and K. Sen. Hybrid Concolic Testing. In
Proc. of the 29th International Conference on Software
Engineering (ICSE), Minneapolis, MN, USA, May 2007.

[27] D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programs. In Proc. of the 16th
IEEE International Conference on Automated Software
Engineering (ASE), San Diego, CA, November 2001.

[28] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In Proc. of the 10th European software
engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE), Lisbon, Portugal
September, 2005.

[29] E. Torlak and G. Dennis. Kodkod for Alloy Users. First
ACM Alloy Workshop, Portland, Oregon, November 2006.

[30] E. Torlak and D. Jackson. Kodkod: A Relational Model
Finder. The 13th International Conference on Tools and
Algorithms for Construction and Analysis of Systems
(TACAS). Braga, Portugal, March 2007.

[31] W. Visser, C. S. Pasareanu, S. Khurshid. Test Input
Generation with Java PathFinder. In Proc. 2004 ACM
SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), Boston, MA. July 2004.

[32] S. Visvanathan and N. Gupta. Generating test data for
functions with pointer inputs. In Proc. of the 17th IEEE
International Conference on Automated Software
Engineering (ASE), September 2002.

[33] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests. In Proc.
19th IEEE International Conference on Automated
Software Engineering (ASE), September 2004.

[34] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. In Proc. of the Tools and Algorithms
for the Construction and Analysis of Systems (TACAS),
2005.

[35] Z. Xu and J. Zhang. A Test Data Generation Tool for Unit
Testing of C Programs. In Proc. of the 6th International
Conference on Quality Software (QSIC), 2006.

[36] J. Zhang. Symbolic execution of program paths involving
pointers and structure variables. In Proc. of the 4th
International Conference on Quality Software (QSIC), 2004

[37] L. Zhang and S. Malik. The quest for efficient boolean
satisfiability solvers. In Proc. 8th Conference on Automated
Deduction (CADE), July 2002.

