
Abstracting Symbolic Execution with String Analysis

Daryl Shannon

dshannon@ece.utexas.edu

Sukant Hajra

tnks@cs.utexas.edu

Alison Lee

alison lee@mail.utexas.edu

Daiqian Zhan

zhan@ece.utexas.edu

Sarfraz Khurshid

khurshid@ece.utexas.edu

The University of Texas at Austin

Austin, TX 78712

Abstract

Forward symbolic execution is a technique for program

analysis that explores the execution paths of a program

by maintaining a symbolic representation of the program

state. Traditionally, applications of this technique have

focused on symbolically representing only primitive data

types, while more recent extensions have expanded to ref-

erence types. We demonstrate the ability to symbolically ex-

ecute a commonly used library class, specifically a string,

at an abstract level. By abstracting away the implementa-

tion details of strings using finite-state automata, symbolic

execution can scale to more complex programs. This tech-

nique can be applied to programs which generate compli-

cated strings, such as SQL database queries.

1. Introduction

Over the last three decades, symbolic execution has been

widely explored in the areas of software testing and verifica-

tion [1,3,6,8,14,16,18–21]. Early implementations of sym-

bolic execution mostly dealt with primitive types, such as

integers and arithmetic operations. Recent development has

generalized symbolic execution to handle references and ar-

ray types. Still, prior to our work symbolic execution has

been performed at the representation level (primitives, ar-

rays, and reference types). We believe a key obstacle to the

scalability of symbolic execution is performing it at such

a level. Indeed if the entire implementation needs to be

checked, such execution is necessary. However, it is redun-

dant if the aim is to only check the client code (trusting the

correctness of the implementation of selected libraries).

For example, consider as a simple illustration, a program

that uses a library implementation of the abstract data type

Set. Suppose the method adds an element e to a set S, and

then checks whether e belongs to S. Executing this program

using representation level manipulations involves executing

methods that implement the add and membership check op-

erations. For performance reasons, sets are typically im-

plemented using complex data structures, such as balanced

binary search trees, which involve complex (balancing) op-

erations. Symbolically executing these operations rapidly

generates large path conditions which quickly lead to infea-

sible analyses.

By abstracting out the implementation details of com-

mon library classes, we can reduce the complexity of a pro-

gram and enhance the scalability of symbolic execution.

Based on our previous work [15], we have developed in

Java a prototype, named Haderach, that symbolically exe-

cutes over the java.lang.String class. We present re-

sults from experiments using a variety of programs that

make extensive use of strings. These tests demonstrate the

effectiveness of our implementation. Our abstraction tech-

nique can be extended beyond strings to other classes and

libraries as well. For instance, we may symbolically exe-

cute over standard container classes such as lists, trees, or

maps.

Background information on symbolic execution is pre-

sented in Section 2. In Section 3, we explain our novel

technique for symbolic execution. Section 4 describes

the specifics of our prototype implementation. Section 5

presents our test results, and Section 6 discusses future work

and conclusions.

This paper introduces the idea of performing String anal-

ysis using symbolic execution and using automota-based

representations for abstracting strings during symbolic exe-

cution. Our prototype is under development and at present

handles a few core methods in String, StringBuffer

and StringBuilder classes from the standard Java li-

braries. We describe our approach using small but illustra-

tive programs that perform commonly used operations on

Strings.

2. Background

Forward symbolic execution is a technique for execut-

ing a program on symbolic values [16]. There are two fun-

damental aspects of symbolic execution: (1) defining sym-

bolic semantics for operations that are originally defined for

concrete values and (2) maintaining a path condition for

the current program path being executed. A path condition

specifies necessary symbolic constraints on input variables

that must be satisfied to execute the corresponding path.

As an example, consider the function in Listing 1 that

returns the absolute value of its input. To symbolically ex-

ecute this program, we consider its behavior when the in-

put variable i contains a symbolic value, say I0. We make

no assumptions about the value of I0 (except for what we

deduce from the int type declaration). So when we en-

counter a conditional statement, we consider both possible

outcomes of the condition. To perform operations on sym-

bols, we treat them simply as variables. For example, the

statement on line L3 would update the value of result to

be −1 ∗ I0. Thus a symbolic executor must also manage

result symbolicly to support such updates.

Symbolic execution of the code in Listing 1 explores the

following two paths:

Path 1: [I0 < 0] L1 → L2 → L3 → L5

Path 2: [I0 ≥ 0] L1 → L2 → L4 → L5

Note that for each path explored, there is a corresponding

path condition (shown in square brackets). While execu-

tion on a concrete input would have followed exactly one of

these two paths, symbolic execution explores both.

To derive meaningful results from the path condition

symbolic execution tools require a constraint solver that can

either (1) solve for the satisfiability of the path condition or

(2) generate a witness for the path condition, a concrete ex-

ample input that satisfies the path condition. Solving for

the satisfiability of a path condition allows the symbolic ex-

ecutor to improve its performance by ignoring impossible

paths. Additionally, a symbolic executor can inject special-

ized constraints at user-specified “hotspots” in a program

and solve for satisfiability to establish program invariance.

If a program is found to potentially violate an invariant, then

a constraint solver supporting witness generation can pro-

duce a counter-example. Also, witness generation, when

applied to all path conditions, can produce a compact set of

test cases with broad code coverage.

3. Our Approach

As stated in the background section, there are two fun-

damental aspects of symbolic execution: defining symbolic

semantics for operations and maintaining a path condition.

Listing 1. An absolute value function

int abs(int i) {

int result; // L1

if (i < 0) // L2

result = -1 * i; // L3

else result = i; // L4

return result; // L5

}

Traditionally, the path condition is stored as a list of con-

straints on the programs inputs. Our technique involves

taking a different approach for representing constraints on

strings. Taking inspiration from the Java String Analyzer

(JSA) [5], we use finite-state automata for symbolic string

values. Each symbolic value’s automaton accepts all strings

which satisfy the path condition. In this way constraints

on a symbolic string value are represented in its automaton.

When a new string constraint is conjoined to the path con-

dition, instead of adding it to the list, we can under certain

circumstances refine the automaton so that it no longer ac-

cepts strings that conflict with the constraint. When the path

condition is satisfied, any string accepted by the automaton

can be chosen as a witness for that path. If a refined automa-

ton does not accept any strings then the path condition is no

longer satisfiable. Due to this, the automaton is both the

data storage for conditions on symbolic string values and

the constraint solver for those conditions.

In order to define symbolic semantics for operations on

string values we will examine three types of string opera-

tions: those that check a predicate for a string (Section 3.1),

those that return a primitive (Section 3.2), and those that

output a string (Section 3.3).

3.1. String Predicates

Operations that check a predicate for a string usually

compare one string with a second string, such as the

equals() or startsWith() methods for Java. These re-

turn a boolean value signifying whether or not the predicate

holds.

As King described symbolic execution in [16], a predi-

cate q is evaluated using the following expressions, where

pc is the path condition:

pc → q (1)

pc → ¬ q (2)

If expression (1) evaluates to true then q is true. If expres-

sion (2) is true then q is false. If neither expression (1) nor

expression (2) is true then we do not know whether or not

q is true and execution must fork into two different paths.

For one path, we decide that q is true and add it to the path

condition. For the other path, we decide that q is false and

add ¬ q to the path condition.

When checking string predicates in certain situations, we

can evaluate these expressions and add constraints to the

path condition by just refining the automata. To illustrate

this process we will consider the automata shown in Fig-

ure 1 to check the predicate x.equals(y). Assume that x

contains the automaton illustrated in Figure 1(a) and y con-

tains the automaton in Figure 1(b). This means that y is

“abc” and x could be “abc”, “pqr”, or “xyz”.

To evaluate the expressions (1) and (2) we will use a

proof by contradiction. We should refine the input automata

so that our predicate is false. If either refined automaton

accepts no strings then there is a contradiction and the pred-

icate must follow from the path condition making expres-

sion (1) true. In our example, comparing the equality of a

known string y and an unknown string x, we should refine x

to be the intersection of y’s complement and x. So, y would

remain Figure 1(b), and x would be refined to the automa-

ton in Figure 1(c). Neither x nor y’s automaton is empty

so expression (1) is false. For expression (2) we should

refine the automata so that our predicate is true. We refine

x to be the intersection of x and y, resulting in both x and

y containing the automaton in Figure 1(b). Again, neither

automaton is empty so expression (2) is also false.

Since both expressions are false we will need to fork

into two paths. For the first path we should add the pred-

icate to the path condition. This can be done by refining

the automata so that the predicate is true, just as we did

when evaluating expression (2). This results in both x and

y being “abc”. For the other path, where we add the nega-

tion of the predicate to the path condition, we refine the

automata so that the predicate is false, like expression (1).

Here y is still “abc”, but x is either “xyz” or “pqr”. The

algorithms for these refinements are specific to the pred-

icate being checked. They should be minimal so that all

strings which were accepted by the unrefined automaton

and do not conflict with the new constraint are accepted by

the refined automaton. The union of the strings accepted

by the refined automata from each path should be the same

strings accepted by the unrefined automaton before branch-

ing. Looking at Figure 1, we can see that Figure 1(a) is the

union of Figure 1(b) and Figure 1(c).

Sometimes we cannot add a constraint on a symbolic

string value to the path condition by just refining the string’s

automaton. For instance, consider again x.equals(y)

where x is symbolically represented by Figure 1(a), but this

time where y is symbolically represented by Figure 1(d). In

this case y has two options, “abc” and “xyz”. For the path

in which we add x.equals(y) to the path condition, we

can only limit x to “abc” or “xyz”, the same possibilities

as y. More specifically, x and y should both be refined down

to their intersection, also Figure 1(d). This alone, is not suf-

ficient to ensure x and y are equal in this path, as seen in the

following code segment:

if (x.equals(y))

if (x.equals("abc"))

if (y.equals("xyz"))

// this point is unreachable

Once again consider that Figure 1(a) represents x and Fig-

ure 1(d) represents y as we enter the code. If we examine

the path where all the if statements are true, x will be re-

fined to Figure 1(d) after the first line. At the second, x will

be further refined to “abc”, shown in Figure 1(b). The third

line will refine y to “xyz”. Clearly “abc” is not equal to

“xyz”, so we have a contradiction. When x is refined on

line 2, we should also refine y, because its value depends

on x. This symbolic value dependency must be accounted

for somewhere.

In the simple case of x.equals(y) we could just make

x and y use the same automaton in memory, so refinements

to one will be reflected in the other. However, many predi-

cates, like the startsWith()method, require a more com-

plex solution. This can be done in several ways. One option

is to further fork the execution so that the automata repre-

sent a portion of the possible strings. This results in mul-

tiple forks of execution with different path conditions rep-

resenting all the possibilities of a single path of execution.

Clearly, automata that accept a large number of strings may

not be tractable with this “divide and conquer” method. An-

other possibility is concretizing one of the automata to one

that only accepts a single string and accepting the loss in

test coverage. Finally a list of the dependencies between

different symbolic values can be maintained. When the au-

tomaton of a string is refined, all symbolic values in that

string’s list of dependents will be notified so that they can

also be refined if necessary. These lists require some over-

head, both in storing the dependencies and propagating re-

finements to multiple automata, but they ensure the most

accurate representation of all possible string values at any

point in the code. We will discuss how to maintain these

lists in Section 4.3.

String predicates are not limited to comparing two

strings. Some may have no other inputs besides the string,

while others may compare a string with a primitive. The lat-

ter can cause symbolic value dependencies between a string

and a primitive just like comparing two strings can cause a

dependency.

3.2. Operations Returning Primitives

In addition to predicates there are other operations which

take strings as inputs. The symbolic semantics of these op-

erations should consider all the possible strings that the in-

put automata can accept. If an operation returns a symbolic

b c

y z

r

a

x

p

q b ca

(a) (b)

z

p

x

q

y

r y z

x

a
b c

(c) (d)

Figure 1. Example symbolic string values (represented as automata) to illustrate symbolic execution
over x.equals(y).

value then there is a symbolic value dependency between

the input string and the output.

Two operations in Java that both take strings as input

and return integer values are indexOf() and length().

When the symbolic integer value returned by one of these

operations is compared with another integer value, we could

reduce the number of possibilities for that symbolic value.

This could in turn reduce the possible strings that our sym-

bolic string value could be. Consider this example:

int l = s.length();

if (l < 4)

// s must not be longer than three

// characters

else

// s must be four or more

// characters long

l is the length of s, so anything we learn about l should be

reflected in s’s automaton. For the path when the if branch

is taken we know that l is less than four, so the automaton

for s should be refined so it only accepts strings with no

more than three characters. When executing the path where

the else branch is taken, s should be refined to only accept

strings longer than three characters.

3.3. Operations Returning Strings

There are many operations which can modify or cre-

ate strings. These include trim() and valueOf() in

Java. These operations can have many inputs including both

primitives and strings. Clearly there is a symbolic value

dependency between the output string and the inputs. The

following example illustrates the necessity of maintaining

these relationships.

s2 = s1.substring(2);

if (s2.startsWith("abc"))

if (s1.startsWith("xyz"))

// this point should be

// unreachable

The first line of this code should create an automaton which

accepts all of the strings accepted by s1’s automaton with

the first two characters removed. Assuming that s1 ac-

cepts all strings, then the new automaton assigned to s2

will also accept all strings. When following the path where

the startsWith() method in the first if statement re-

turns true, we will refine the automaton for s2 to accept

all strings which start with “abc”. Additionally we need to

refine s1’s automaton to accept all strings where the third

through fifth characters are “abc”. When we do that, the

second startsWith() call can only return false because

the third character of s1 is known to be ‘a’. If we did not

maintain the dependency between s1 and s2’s automata,

we would have executed an impossible path.

4. Implementation

We developed Haderach as a prototype which allows

symbolic execution over strings. Haderach is written in Java

and extends from the code base of Juzi [13], a relatively

simple symbolic executor designed for data structure repair,

and from Moller’s automaton API [17]. It takes Java pro-

grams as input for symbolic execution. Next, we will pro-

vide an overview of Juzi (Section 4.1), and discuss the sym-

bolic string class (Section 4.2) and dependencies between

symbolic values (Section 4.3).

4.1. Juzi

Juzi uses the Java Programming Assistant (Javassist) [4]

and Byte Code Engineering Library (BCEL) [7] to per-

form bytecode instrumentation, which enables symbolic ex-

ecution. Primitive types are replaced by custom-designed

classes to represent expressions for both symbolic and con-

crete values. Operations on primitive values are trans-

formed into appropriate method invocations of these sym-

bolic classes. Operations that return boolean values are

replaced with ones that internally use a non-deterministic

boolean choice when they cannot be deterministically eval-

uated on-the-fly.

To support non-deterministic choice, Juzi implements a

simple backtracking algorithm. The class Explorer pro-

vides the method choose() which takes an integer in-

put i and returns a non-deterministic choice between zero

and i. Such non-deterministic choice operators are an

essential feature of software model checkers [9, 11, 20].

The Juzi backtracking algorithm performs stateless depth-

first search (i.e., stores no states but remembers the values

it uses when making non-deterministic assignments with

choose()). Non-deterministic code is thus re-executed

from the beginning, and during each execution one of the

non-deterministic assignments is made differently from that

in the previous execution.

Juzi checks satisfiability of path conditions using the

CVC Lite [2] automated theorem prover. CVC Lite pro-

vides a C++ API for checking validity of formulas over

several interpreted theories including linear arithmetic on

integers and reals, arrays and uninterpreted functions.

4.2. SymbolicString Class

To add symbolic string values to Juzi’s symbolic ex-

ecutor we defined a new Java class: SymbolicString.

During instrumentation, in addition to replacing primitive

types, the java.lang.String class is replaced with our

SymbolicString class.

We use the dk.brics.automaton package to imple-

ment the automaton described in the Section 3. Each

SymbolicString object contains an instance of this pack-

age’s Automaton class. The dk.brics.automaton pack-

age was developed by the authors of [5] to handle the au-

tomata in their JSA application. It is a finite-state automaton

implementation using the Unicode alphabet for state transi-

tions and supports regular expression operations [17].

For our purposes of solving constraints, the Automaton

class provides some useful functions. Adding constraints

to the automaton is enabled by intersection. The old

automaton is intersected with a filter to create a refined

automaton. This refinement filter is an automaton which

accepts all strings allowed by the new constraint. The

isEmpty() method allows us to test for satisfiability of

our symbolic string values enabling us to solve path con-

ditions, which CVC Lite does for symbolic numeric val-

ues. Additionally, getShortestExample() supplies us

with a witness for our path condition, which CVC Lite does

not currently support for numeric values. Consequently, we

can generate witnesses for paths only containing string con-

straints.

Eventually we will reproduce in SymbolicString all

the public methods of the String class to support symbolic

execution. For now, as a proof of concept, we have imple-

mented a set of key methods illustrated in our test cases,

including startsWith(), substring(), and trim().

Our work is not restricted to just the java.lang.String

class. We can easily address a number of classes

implementing the java.lang.CharSequence

interface. To demonstrate this flexibility, we

have developed other classes that thinly wrap our

SymbolicString class. SymbolicStringBuffer and

SymbolicStringBuilder abstract StringBuffer

and StringBuilder, respectively. We also cre-

ated SymbolicPreparedStatement which abstracts

java.sql.PreparedStatment. This allows SQL

queries to be built and checked for proper grammar.

4.3. Symbolic Value Dependencies

As discussed in Section 3, symbolic value dependen-

cies can dramatically complicate symbolic execution over

strings. Concretization of fixed-strings or primitives can

alleviate this complexity, but we feel maintaining lists of

dependencies allow for a more accurate representation of

the possible string values. For our implementation, each

SymbolicString object contains such a list of dependen-

cies. In addition to keeping a reference to the dependent

string, the list tracks the type of relationship. For exam-

ple after following a path where s1.startswith(s2) re-

solves to true, s1’s dependency list would contain an en-

try specifying that it starts with dependent s2. s2’s depen-

dency list would contain an entry specifying that dependent

s1 starts with it.

When a SymbolicString is created from other

SymbolicString objects, those objects are added to the

new SymbolicString’s list of dependencies and the new

SymbolicString is added to their lists. Additionally,

if two SymbolicString objects are compared by calling

a predicate method, these SymbolicString objects are

added to each other’s dependency lists.

These lists of dependencies are used to ensure that estab-

lished relationships between SymbolicString objects re-

main true. Whenever the automaton of a SymbolicString

is refined, each of that SymbolicString’s dependents is

instructed to refine its automaton as well. This causes a

chain reaction of refinements propagating through the de-

pendency hierarchy.

Dependencies between primitives and

SymbolicString objects are handled in a similar fash-

ion. The list of dependencies in each SymbolicString

can have dependents which are primitives. Refining the

SymbolicString’s automaton may cause constraints

on these primitives to be added to the path condition.

Also, each primitive has a list of dependencies. When

a constraint is added to the path condition, each of the

primitive’s dependents will be refined.

5. Experiments

We present experimental results using three case-studies

with Haderach. In the first, we symbolically execute an in-

teresting example derived from [5]. This allows us to com-

pare the benefits of our implementation relative to JSA’s.

Additionally, we run some benchmark programs from [5],

showing our ability to perform syntax analysis. Finally, we

run Haderach on a well-established Java library, Hibernate,

demonstrating Haderach’s applicability to a real-world ap-

plication.

5.1. Tricky

The Java String Analyzer (JSA), a tool developed by

Christensen et al. [5], tests for properties of strings by em-

ploying a variant of static analysis. JSA generates a finite-

state automaton for a regular grammar representing the pos-

sible values of string expressions at user-specified hotspots

in a Java program. We can examine the string analysis po-

tential of Haderach by comparing its results to JSA’a for a

test program.

Tricky is the running example in [5]’s explanation

of JSA. This program generates strings of the form

“((((((((8*7)*6)*5)+4)+3)+2)+1)+0)”. Because of

the complexity of its dynamic string construction, it suitably

challenges string analysis.

Symbolic executors rely on theorem provers to solve

constraints on a path condition. Because these theorem

provers have difficulty solving constraints with integer di-

vision, we work with a variation of Tricky that maintains a

very similar semantic but has no division operations. List-

ing 2 presents this slightly modified version of Tricky.

When running Haderach on the Tricky program, we be-

gin symbolic execution with foo(). This method takes an

integer n as an unknown input, and uses n as the condi-

tion for both a loop and a recursive function call. Because n

has an infinite number of possibilities, Tricky has an infinite

number of execution paths through the loop and recursion.

Haderach, like many symbolic executors, cannot handle in-

Listing 2. The Tricky class

public class Tricky {

String bar(int n, int k, String op) {

if (k == 0)

return "";

return op + n + "]"

+ bar(n - 1, k - 1, op) + " ";

}

String foo(int n) {

StringBuffer b = new StringBuffer();

if (n * 2 < 2)

b.append("(");

for (int i = 0; i < n * 2; i++)

b.append("(");

String s = bar(n * 2 - 1, n - 1, "*")

.trim();

String t = bar(n * 2 - n, n * 2

- (n - 1), "+").trim();

return b.toString() + (n * 2)

+ (s + t).replace(’]’, ’)’);

}

}

finite paths, so we must limit the range of possible values

for n.

Figure 2 shows the automaton that Haderach generates

for Tricky when n is limited to the values from 1 to 3. For

the sake of readability, in this figure <int> represents a sub-

automaton which accepts all integer values. With a range

for n of 1 to 3, the symbolic execution took 22.5 seconds

and explored 27 paths. With a range from 1 to 6, it took

143.5 seconds and explored 69 paths. We ran these tests on

a 800 MHz Pentium III with 256MB RAM.

JSA’s analysis produces the automaton in Figure 3. We

can see a few interesting limitations in this result. First is

that JSA does not distinguish between the ‘*’ and ‘+’ char-

acters, even though all strings generated by the program

will have no ‘*’s after the first ‘+’. With polyvariant anal-

ysis [5] claims to be able to fix this problem and refine the

result to Figure 4. Another problem lies with the parenthe-

ses. The program’s output will always have matched pairs

of parentheses, but JSA is unable to retain that information

in its analysis. This simple issue of maintaining pairs can

be crucial in many applications, including the SQL database

queries we will discuss later in this section. A more com-

plicated symptom of the same problem is visible in the re-

lationship between the number of ‘*’ and ‘+’ characters.

There should always be two more ‘+’s than ‘*’s. By assem-

bling the automata as it steps through the code, Haderach is

able to maintain this relationship information, as shown in

Figure 2.

)

+

<int>)

((

)

+

<int>

<int>)

<int>

)

*

+

<int>

<int>

+

)

(

<int>

*
<int> *

(((

<int>

Figure 2. The automaton of Tricky generated by Haderach.

) *-+

<int>

<int>

(

Figure 3. The automaton of Tricky generated

by JSA.

+

*

<int>

<int>

)

+

)

<int>

(

Figure 4. The improved automaton of Tricky
generated by JSA.

We can also see in these automata that neither JSA nor

Haderach restrict integers in the string to only the values

Tricky can possibly generate. Instead both allow for any in-

teger value whenever an integer can appear. For JSA this is

a limitation of its method of static analysis, but for Hader-

ach this is a limitation of CVC Lite. By switching to a con-

straint solver that can provide witnesses to the path condi-

tion, Haderach should be able to restrict numbers included

in strings to the appropriate values.

Haderach and JSA’s strengths and weaknesses comple-

ment each other. This balance shows us that neither is in-

herently superior to the other. Instead they are each useful

for different situations.

5.2. Syntax Analysis

In addition to Tricky, the JSA paper [5] contained exper-

imental results from analyzing a series of benchmark pro-

grams obtained from the Web. We ran Haderach on a sub-

set of these programs which build and execute SQL queries

during runtime. During symbolic execution, when an SQL

query is executed, the SymbolicString representing that

query is saved in a list. After symbolic execution is com-

pleted, these SymbolicString objects can be compared to

an automaton representing the SQL grammar. If the strings

accepted by their automata are not a subset of the strings ac-

cepted by the SQL grammar then a syntax error could occur

in the benchmark program.

Table 1 shows the results of these experiments. We re-

port the number of lines of Java code, the total number of

times that hotspots are encountered during symbolic exe-

cution, the number of paths explored, the time in millisec-

Example Lines Hotspots Paths Time Errors

Decades 26 8 1 2244 0

SelectFromPer 51 1 1 67 0

LoadDriver 78 1 1 686 0

DB2Appl 105 4 2 82 0

AxionExample 162 14 1 927 0

Sample 178 8 1 1094 0

Table 1. Syntax Analysis

onds to symbolically execute the program and record the

SymbolicString objects at hotspots, and the number of

errors encountered. Hotspots are the points in the program

when SQL queries are executed. Times were calculated on

a 2.33 GHz Core 2 Duo with 2GB RAM running Linux.

Comparing the generated automata with the SQL gram-

mar detected no errors. This is consistent with the results

achieved by JSA.

5.3. Hibernate

One practical area to apply Haderach is in examining the

dynamically generated SQL statements created by database

applications. These programs usually create an SQL query

based on a variety of parameters including user input. The

queries are then sent to a separate database server for ex-

ecution. Using Haderach to find the possible strings that

a program can send to the database, we can check if these

statements conform to the SQL grammar. Additionally, we

could check them against the database specification or for

SQL injections (potentially malicious code inserted in user-

controlled portions of the command).

We ran our implementation on code from Hibernate,

an open-source database interfacing software [12]. It is

commonly used in Java applications to allow developers

to freely utilize a database back-end without learning the

SQL syntax. The Java class QuerySelect shown in Ap-

pendix A was extracted from a string rendering helper pack-

age org.hibernate.sql in Hibernate. It returns an SQL

select statement based on the values of certain pre-defined

class members, such as table names or parts of the where

clause.

Symbolic execution of toQueryString() explored

256 paths and took 224.3 seconds on a 800 MHz Pentium III

with 256MB RAM. We can perform various checks on the

resulting automaton. The most obvious test is to compare it

with a test automaton representing the complete SQL gram-

mar [5]. If the possible results are not a subset of the SQL

language then there is an error in the program. Additional

checks can be made that are more specific to the context

of the application. For example, if the database structure is

known, then the test automaton could be checked to only

allow references to table names which are actually in the

database. SQL injection could also be detected with a spe-

cialized grammar.

6. Discussion and Conclusions

We present a novel technique that breaks through tra-

ditional barriers of symbolic execution by abstracting over

higher level data types. Using this methodology, we expand

symbolic executions with support for data structures such as

strings. Haderach, our implementation based on finite-state

automata, provides a new approach to string analysis.

Our work supports symbolic execution over most meth-

ods from the java.lang.string class and selected meth-

ods from the stringBuilder and stringBuffer classes.

In addition, innovative dependency hierarchy tracking and

update procedures address issues with the complex relations

between symbolic objects. We demonstrate the effective-

ness and the scalability of our implementation through ex-

periments. Our test subjects include benchmark examples

obtained from academia and well-known application used

in the industry. The practical applications of our work are

not limited to the verification of SQL grammar, but any dy-

namically generated language, such as HTML output from

Java Servlets.

In our future work, we plan to take steps towards inte-

grating an algebraic solver to address limitations with the

current theorem prover. This enhancement will complete

our support for symbolic execution of string methods in-

volving primitive arguments. In addition, we plan to port

Haderach into the Java PathFinder model checker [10] to

set the ground-work for extending symbolic execution to an

even wider range of useful data structures.

Acknowledgments

This work was funded in part by NSF ITR-SoD award

#0438967.

References

[1] T. Andrews, S. Qadeer, S. Rajamani, J. Rehof, and Y. Xie.

Zing: A model checker for concurrent software. In 16th

International Conference on Computer Aided Verification

(CAV), Boston, MA, July 2004.

[2] C. Barrett and S. Berezin. CVC Lite: A new implementa-

tion of the cooperating validity checker. In Proceedings of

the 16th International Conference On Computer Aided Ver-

ification, Boston, MA, July 2004.

[3] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static ana-

lyzer for finding dynamic programming errors. Software—

Practice and Experience, 30(7), 2000.

[4] S. Chiba. Javassist—a reflection-based programming wizard

for Java. In Proceedings of the ACM OOPSLA’98 Workshop

on Reflective Programming in C++ and Java, Oct. 1998.

[5] A. Christensen, A. Møller, and M. Schwartzbach. Precise

analysis of string expressions. In Proc. 10th International

Static Analysis Symposium (SAS’03), June 2004.

[6] C. Csallner and Y. Smaragdakis. Check ’n’ crash: Combin-

ing static checking and testing. In Proc. 27th International

Conference on Software Engineering (ICSE), St. Louis, MO,

May 2005.

[7] M. Dahm. Byte code engineering library.

http://bcel.sourceforge.net/.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,

J. B. Saxe, and R. Stata. Extended static checking for Java.

In Proc. ACM SIGPLAN 2002 Conference on Programming

language design and implementation, 2002.

[9] P. Godefroid. Model checking for programming languages

using VeriSoft. In Proc. 24th Annual ACM Symposium on

the Principles of Programming Languages (POPL), Paris,

France, Jan. 1997.

[10] K. Havelund and T. Pressburger. Model checking Java pro-

grams using Java PathFinder. International Journal on Soft-

ware Tools for Technology Transfer, 1999.

[11] G. Holzmann. The model checker SPIN. IEEE Transactions

on Software Engineering, 23(5), May 1997.

[12] JBoss. Hibernate core. http://www.hibernate.org/.

[13] S. Khurshid, I. Garcı́a, and Y. L. Suen. Repairing struc-

turally complex data. In 12th SPIN Workshop on Model

Checking of Software, San Francisco, CA, Aug. 2005.

[14] S. Khurshid, C. Pasareanu, and W. Visser. Generalized sym-

bolic execution for model checking and testing. In Proc. 9th

Conference on Tools and Algorithms for Construction and

Analysis of Systems (TACAS), Warsaw, Poland, April 2003.

[15] S. Khurshid and Y. L. Suen. Generalizing symbolic exe-

cution to library classes. In 6th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and En-

gineering, Lisbon, Portugal, Sept. 2005.

[16] J. C. King. Symbolic execution and program testing. Com-

munications of the ACM, 19(7), 1976.

[17] A. Møller. Brics automaton library.

http://www.brics.dk/automaton.

[18] C. S. Pasareanu and W. Visser. Verification of java programs

using symbolic execution and invariant generation. In Proc.

11th International SPIN Workshop on Model Checking of

Software, Barcelona, Spain, Apr. 2004.

[19] M. Veanes, C. Campbell, W. Schulte, P. Kohli, N. Tillmann,

and W. Grieskamp. On-the-fly testing of reactive systems.

(Submitted for publication.).

[20] W. Visser, K. Havelund, G. Brat, and S. Park. Model check-

ing programs. In Proc. 15th Conference on Automated Soft-

ware Engineering (ASE), Grenoble, France, 2000.

[21] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:

A framework for generating object-oriented unit tests us-

ing symbolic execution. In Proc. 11th Conference on Tools

and Algorithms for Construction and Analysis of Systems

(TACAS), Edinburgh, UK, Apr. 2005.

A. Hibernate QuerySelect

public class QuerySelect {

private StringBuffer select = new StringBuffer();

private StringBuffer where = new StringBuffer();

private StringBuffer groupBy = new StringBuffer();

private StringBuffer orderBy = new StringBuffer();

private StringBuffer having = new StringBuffer();

private String joins_toFromFragmentString;

private String joins_toWhereFragmentString;

private String comment;

private boolean distinct = false;

...

public String toQueryString() {

StringBuffer buf = new StringBuffer(50);

if (comment != null)

buf.append("/* ").append(comment).append(" */ ");

buf.append("select ");

if (distinct)

buf.append("distinct ");

String from = "";

if (from.startsWith(",")) {

from = from.substring(1);

} else if (from.startsWith(" inner join")) {

from = from.substring(11);

}

buf.append(select.toString()).append(" from").append(from);

String outerJoinsAfterWhere = "";

String whereConditions = where.toString().trim();

boolean hasOuterJoinsAfterWhere = outerJoinsAfterWhere.length() > 0;

boolean hasWhereConditions = whereConditions.length() > 0;

if (hasOuterJoinsAfterWhere || hasWhereConditions) {

buf.append(" where ");

if (hasOuterJoinsAfterWhere) {

buf.append(outerJoinsAfterWhere.substring(4));

}

if (hasWhereConditions) {

if (hasOuterJoinsAfterWhere) {

buf.append(" and (");

}

buf.append(whereConditions);

if (hasOuterJoinsAfterWhere) {

buf.append(")");

}

}

}

if (groupBy.length() > 0)

buf.append(" group by ").append(groupBy.toString());

if (having.length() > 0)

buf.append(" having ").append(having.toString());

if (orderBy.length() > 0)

buf.append(" order by ").append(orderBy.toString());

return buf.toString();

}

...

}

