
Juzi: A Tool for Repairing Complex Data Structures

Bassem Elkarablieh
The University of Texas at Austin
elkarabl@ece.utexas.edu

Sarfraz Khurshid
The University of Texas at Austin
khurshid@ece.utexas.edu

ABSTRACT
This paper describes Juzi, a tool for automatic repair of complex
data structures. Juzi takes a Java class representing the data struc-
ture as well as a predicate method that specifies the structural in-
tegrity constraints as inputs. Juzi instruments its inputs and gener-
ates a new Java class which behaves similarly to the original class,
yet automatically repairs itself when the structural integrity con-
straints are violated.

Juzi implements a novel repair algorithm. Given a structure that
violates its integrity constraints, Juzi performs a systematic search
based on symbolic execution to repair the structure, i.e., mutate
it such that the resulting structure satisfies the given constraints.
Experiments on structures ranging from library classes to stand-
alone applications, show that Juzi repairs complex structures while
enabling programs to recover from erroneous executions caused by
data structure corruptions.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution; D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability

Keywords
Data structure repair, Assertions, Systematic search, Symbolic ex-
ecution, Error recovery

1. INTRODUCTION
Programs assume the consistency of their internal data struc-

tures. Software bugs can corrupt these structures, violate the con-
sistency assumption, and result in un-predictable program behav-
ior. Assertions have long been used to check for program proper-
ties. Data structure integrity constraints can also be represented as
assertions; for example, using a Java predicate method that takes

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

the structure as input, traverses it, checks for the structural integrity
constraints, and returns whether it satisfies the constraints or not.

The standard approach when an error is detected at runtime, say
due to an assertion violation, is to terminate the program, debug it
if possible, and re-execute it. An alternative to program termina-
tion is repair. Instead of terminating the program, use the violated
assertion as a basis to repair its state and let it continue.

We have developed the Juzi tool for automatic repair of complex
data structures [2, 3, 5]. Given a Java predicate method that de-
scribes the structural integrity constraints and a structure that vio-
lates the given constraints, Juzi performs repair actions that mutate
the given structure so that it satisfies the constraints. Juzi repairs
corruption in both the reference as well as the data fields of the
structure. To repair data fields, Juzi uses forward symbolic execu-
tion. To solve the path conditions that arise during symbolic exe-
cution, Juzi implements a solver for difference constraints [4], and
uses a general integer constraint solver for complex ones. To repair
reference fields, Juzi employs an efficient search algorithm that is
based on the Korat [1, 9] test generation framework.

To enable the user to understand the mutations performed dur-
ing repair, Juzi provides an abstraction of the repairs performed.
The abstraction specifies the set of fields that are mutated. Such
information can help the user debug their program (if the corrupt
structure was a result of a bug in the program). The level of de-
tails of such abstraction is configured by the user. A key feature of
Juzi is enabling the user to control the repair algorithm. Section 3.3
describes the user configurations.

We evaluated Juzi on repairing a variety of structurally com-
plex subjects, including library classes from the Java Collection
Framework as well as stand-alone applications. Experimental re-
sults show that Juzi efficiently and effectively repairs corrupt struc-
tures with a small number of errors and with a few thousands of
objects. In addition to repairing a corrupt structure, Juzi enables
the program manipulating the structure to continue its execution.

2. EXAMPLE: BINARY TREE
We present an example of repairing a binary tree to illustrate

Juzi and the repair algorithm. We illustrate how Juzi can on-the-fly
repair faults in the structure as well as the primitive fields of the
tree. Consider the following declaration of the BinaryTree class.

c l a s s B i n a r y T r e e {
Node r o o t ;
i n t s i z e ;

s t a t i c c l a s s Node {
Node l e f t ;
Node r i g h t ;
Node p a r e n t ;

}
}

855

boolean repOk () {
/ / An empty t r e e must have z e r o i n s i z e
i f (r o o t == n u l l) re turn s i z e == 0 ;

/ / The p a r e n t o f t h e r o o t node must be n u l l
i f (r o o t . p a r e n t != n u l l) re turn f a l s e ;

Set <Node> v i s i t e d = new HashSet <Node > () ;
v i s i t e d . add (r o o t) ;
L i n k e d L i s t <Node> w o r k L i s t = new L i n k e d L i s t <Node > () ;
w o r k L i s t . add (r o o t) ;

whi le (! w o r k L i s t . i sEmpty ()) {
Node c u r r e n t = w o r k L i s t . r e m o v e F i r s t () ;
i f (c u r r e n t . l e f t != n u l l) {

/ / The t r e e must have no c y c l e s a long l e f t
i f (! v i s i t e d . add (c u r r e n t . l e f t)) re turn f a l s e ;

/ / L e f t ’ s p a r e n t must be c u r r e n t
i f (c u r r e n t . l e f t . p a r e n t != c u r r e n t) re turn f a l s e ;
w o r k L i s t . add (c u r r e n t . l e f t) ;

}

i f (c u r r e n t . r i g h t != n u l l) {
/ / The t r e e must have no c y c l e s a long r i g h t
i f (! v i s i t e d . add (c u r r e n t . r i g h t)) re turn f a l s e ;

/ / R i g h t ’ s p a r e n t must be c u r r e n t
i f (c u r r e n t . r i g h t . p a r e n t != c u r r e n t) re turn f a l s e ;
w o r k L i s t . add (c u r r e n t . r i g h t) ;

}
}
/ / S i z e must be e q u a l t o t h e number o f v i s i t e d nodes
re turn v i s i t e d . s i z e () == s i z e ;

}

Figure 1: Class invariant of the BinaryTree class.

The internal Node class models the nodes in the tree. Each binary
tree has a root node and stores the number of nodes reachable from
the root in the size field. Each Node instance holds three Node

pointers: a left pointer which references the root of the left sub-
tree, a right pointer which references the root of the right subtree,
and a parent pointer which references the node’s parent.

The structural integrity constraints are: (1) acyclicity along the
left and right pointers, (2) transpose relation between the parent
and each child pointer (left and right), and (3) the number of
nodes reachable from the root node along the left and right

fields is stored in the size field.
Such constraints can be represented as a Java predicate method

which we term repOk [8] and which traverses the structure and
checks for each of the constraints. To illustrate, the repOk method
for the BinaryTree class is displayed in Figure 1.

An assertion can invoke repOk to check the structural constraints.
For example, the following Java assert statement checks them at
the beginning of the traverse method in BinaryTree:

S t r i n g t r a v e r s e () {
a s s e r t repOk () ;
. . .

}

Instead of terminating the program upon a violation of the assert
statement, Juzi uses the violated assertion to repair the structure of
the tree and continue the program execution.

To illustrate repair, consider the structure shown in Figure 2 (a).
The tree has 3 corruptions: (1) the left pointer of node N1 creates
a cycle in the tree, (2) the parent pointer of node N3 does not point
to node N2, and (3) the value of size is not equal to the number of
nodes reachable from the root of the tree.

Given the corrupt structure in Figure 2 (a), and the repOk pred-
icate, Juzi first invokes repOk on the structure and monitors the

N3

N2N1

N4

N0

size = 0

N3

N2N1

N4

N0

size = 0

N3

N2N1

N4

N0

size = 0

(a) (b) (c)

N3

N2N1

N4

N0

size = 0

N3

N2N1

N4

N0

size = 0

N3

N2N1

N4

N0

size = 5

(d) (e) (f)

Figure 2: Repairing a binary tree. Solid lines represent left
fields; dashed lines represent right fields; and dotted lines rep-
resent parent fields. (a) An erroneous tree with the left field
of node N1 creating a cycle, the parent field of node N3 does
not point to N2, and the size field contains the value 0 rather
than 5. (b–f) The steps performed by Juzi to repair the corrupt
binary tree.

field accesses during the execution of repOk. When repOk returns
false due to a constraint violation, Juzi systematically mutates the
last field accessed by repOk by setting it to : (1) null, (2) nodes
that have already been visited during repOk’s execution, and (3)
one node that has not yet been visited.

To illustrate, Figures 2 (b–f) show the sequence of mutations that
Juzi performs on the corrupt structure. Following the first execu-
tion of repOk, Juzi first detects the cycle at node N1. The last
field accessed is the left field of node N1. Thus, Juzi mutates
the field’s value and sets it to null—the first candidate choice—
which breaks the cycle (Figure 2(b)) and enables repOk’s execu-
tion to proceed further. Juzi re-executes repOk on the data struc-
ture and encounters the fault in the parent field of node N3. Juzi
first mutates the field to null (Figure 2(c)) which does not repair
the field. It then mutates the field to tree nodes already encountered
during repOk’s execution. It first tries N0 (Figure 2(d)) and then
N2 (Figure 2(e)) which in this case repairs the parent field. Note
that Juzi does not try node N1, since this choice is the original value
of the parent field, and it is already tried in the first execution of
repOk.

Finally, Juzi detects the corruption in the size field of the tree.
To repair faults in the primitive fields of the structure, Juzi uses on-
demand symbolic execution [2,6,7] where a corrupt field is treated
symbolically, and a path condition is computed for that field during
the execution of repOk. Once the path condition is computed, the
algorithm uses an integer constraint solver to solve the path con-
dition, and determine the correct value to repair the field. In this
example, Juzi sets the value of the size field to the number of
nodes visited during the execution of repOk and in turn generates
the repaired structure in Figure 2 (f).

This section illustrated the repair algorithm using an example
of repairing a corrupt binary tree. Further details are found else-
where [2, 3, 5].

856

void traverseLeft() {

 assert repOk();

}

 Node p = root;

 while (p != null)

 p = p.left;

Terminate
program

assertion
checktrue

N0

N1 N2

false

void traverseLeft() {

 assert repOk();

}

 Node p = root;

 while (p != null)

 p = p.left;

N0

N1 N2

assertion
check

Repair
program

false

N0

N1 N2

true

(a) (b)

Figure 3: (a) Behavior of the original data structure class upon invoking the traverseLeft method; the execution terminates due
to an assertion violation caused by the cycle following the left field of the tree. (b) Behavior of the Juzi generated class. Upon the
assertion violation, the repair algorithm is triggered, and the method execution proceeds after the corrupt structure is repaired.

3. TOOL OVERVIEW
This section describes the main components of Juzi. The heart

of Juzi is a code instrumentation module that instruments the given
data structure class and predicate method, and generates a new class
that enables automatic data structure repair when a corruption oc-
curs at runtime. The generated class represents a repairable data
structure where its properties are checked and any corruptions are
repaired when its repOk predicate method is asserted.

To illustrate, consider the code example in Figure 3. Figure 3(a)
describes the result of invoking the traverseLeft method on the
given structure using an instance of the original class. Due to
the cycle in the structure, the original code terminates because of
an assertion violation. Figure 3(b) describes the result of invok-
ing the traverseLeft method using an instance of the instru-
mented class. Note how instead of terminating the method execu-
tion, the result of asserting repOk is a repaired tree which enables
the traverseLeft’s execution to proceed and safely terminate.

Note that any client code using the original class need not be
changed when using the Juzi generated class since Juzi preserves
the public interface and the method functionality of the original
class. Thus, in case of no corruption the instrumented class behaves
as the original class, and the repair algorithm is only triggered when
a corruption is detected.

Two key components comprise the instrumentation module of
Juzi: instrumentation to support reference field repair, i.e., the search
algorithm, and instrumentation to support data repair, i.e., symbolic
execution. These components can be configured using an input file
provided by the user which enables further user control to the repair
algorithm as well as the output of Juzi. We next give an overview
of the instrumentation modules, and describe the various ways the
user can configure Juzi.

3.1 Search Algorithm
Juzi implements a systematic search algorithm based on the Ko-

rat [1, 9] test generation tool. The heart of the search is a back-
tracking approach that is based on non-deterministic choice. Re-
call that Juzi monitors the field accesses during repOk’s execution
and backtracks mutating the last accessed field to its next candidate
choice (Section 2).

To monitor the field accesses and the choices made for each
field, Juzi implements the Explorer [2] class that provides an

abstract representation for state space exploration as well as non-
deterministic choice. Each field in the structure is associated with
a counter that is maintained by the Explorer class which counts
from 0 up to the number of possible candidates to repair a field.
Upon backtracking, the counter for the last field is incremented to
simulate the last field mutation.

To support non-deterministic choices, the Explorer class pro-
vides a choose method that takes an integer which represents the
number of non-deterministic choices and returns an integer which
represents one of these choices. For example, the assignment

x = E x p l o r e r . choose (3) ;

non-deterministically assigns the values 0, 1, 2, 3 to x.
Juzi uses the Explorer class to perform non-deterministic ref-

erence field assignments. To enable non-deterministic field assign-
ments, Juzi instruments the Java bytecode of both the structure
classes and the predicate method.

For each reference field, Juzi adds custom get and set accessor
methods. Each field access in the repOk predicate is replaced by a
call to the added get method. On the first execution of repOk, at
each field access, the getmethod adds a counter in the Explorer
that specifies the number of possible candidates for a field. This
number is equivalent to 2 (null and one non-visited field) + the
number of nodes encountered up to that field access. In further
executions of repOk, the get method increments the counter cor-
responding to the last accessed field and assigns the field to the next
choice. All the other fields remain the same. When all the choices
of the last accessed field are tried, the field’s counter is reset to 0,
and the counter of the previous to last field is incremented. The
search terminates when the structure is repaired, or when all the
candidate choices for all the fields are explored.

3.2 Symbolic Execution
To enable symbolic execution, Juzi replaces type declarations

of primitive integers with the library class SymbolicInt. The
SymbolicInt class defines the semantics of the operations on sym-
bolic integers. All the operations over primitive integers are re-
placed with invocations of library methods that are members of
the SymbolicInt class. A key requirement of symbolic execu-
tion is the ability to cover different program paths. To allow sym-
bolic execution to explore different program paths, Juzi performs
a non-deterministic boolean choice whenever there’s a branch that

857

cannot be deterministically resolved on-the-fly, e.g., a conditional
branch that involves a symbolic variable. To keep track of the path
conditions generated using symbolic execution, Juzi implements a
PathCondition class that is updated with every non-deterministic
choice. At the end of each program path, Juzi checks the satisfia-
bility of the path condition using an integer constraint solver. If
the path condition is satisfiable, Juzi solves the path condition and
assigns values to the symbolic variables.

3.3 User Control
We next describe the different ways the user can configure the

repair algorithm.

3.3.1 Controlling the Fields to Repair
Juzi provides a configuration file for the user to specify what

classes to instrument and what fields to repair. This feature allows
the user to add more constraints on the repair algorithm, which
might be needed in some cases. For example, when the structure
needs to have a certain number of nodes, the user can specify not
to repair the size field and keep it concrete rather than symbolic.
In this case, Juzi cannot modify the size field to satisfy other con-
straints, and if the size property is not satisfied, Juzi reports the
structure as non-repairable.

3.3.2 Controlling Data Repair
Data repair is a challenging problem for repair. To illustrate,

consider repairing a binary search tree whose elements are not in
the correct search order. One way to repair this structure is to re-
place the elements with new elements that appear in the correct
search order. However, this choice is unlikely to be a good one,
since it might end up corrupting all the information in the tree. Juzi
gives the user some control on how to repair the data. (1) The
user can specify ranges of data values for primitive fields and use
these ranges to constrain the repair algorithm. (2) The user can
select which type of constraint solver to use for solving the path
conditions. Constraints on the order of data can be solved using a
difference constraint solver which reorders the data elements with-
out mutating the values. Other complex constraints require more
complex solvers to repair the data values.

3.3.3 Controlling the Search Algorithm
The search algorithm monitors the fields as they are accessed by

repOk. Repair actions performed by Juzi depend on how repOk

is formulated. Thus, two different repOk implementations that ac-
cess fields in different orders may cause Juzi to produce different
structures. This allows the user to control how the structure may be
repaired. By ordering constraints appropriately the user can ensure
that the algorithm will not perturb the values of certain fields (that
the user deems unlikely to get corrupted) unless necessary.

4. EVALUATION
We evaluated Juzi by applying it on seven subjects, including

two from standard Java libraries, as well as two stand-alone appli-
cations. For brevity, we select the binary tree described in Section 2
as a representative structure and we study the time required to repair
a tree with 2000 nodes and with up to 20 faults. Further evaluation
details are found in [2, 3].

Figure 4 shows the variation in repair time for a binary tree with
2000 nodes as the number of faults in the structure increases. The
algorithm requires less than 20 seconds to repair 20 faults in the
structure. The results show the feasibility of repairing modestly
large structures with few number of corruptions.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2 4 6 8 10 12 14 16 18 20

re
pa

ir
tim

e
(s

ec
)

number of fields corrupted

Binary Tree

Figure 4: Time to repair a binary tree with 2000 nodes as the
number of corrupt fields increases.

Acknowledgments
This work was funded in part by grants #CCF-0702680 and #IIS-
0438967 awarded by the National Science Foundation.

5. REFERENCES
[1] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko

Marinov. Korat: Automated testing based on Java predicates.
In Proc. International Symposium on Software Testing and
Analysis (ISSTA), July 2002.

[2] Bassem Elkarablieh, Iván García, Yuk Lai Suen, and Sarfraz
Khurshid. Assertion-based repair of structurally complex data.
In Proc. 22th Conference on Automated Software Engineering
(ASE), November 2007.

[3] Bassem Elkarablieh, Sarfraz Khurshid, Duy Vu, and Kathryn
McKinley. Starc: Static analysis for efficient repair of
complex data. In Proc. Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2007.

[4] Bassem Elkarablieh, Yahya Zayour, and Sarfraz Khurshid.
Efficiently generating structurally complex inputs with
thousands of objects. In Proc. European Conference on
Object-Oriented Programming (ECOOP), July 2007.

[5] Sarfraz Khurshid, Iván García, and Yuk Lai Suen. Repairing
structurally complex data. In Proc. 12th SPIN Workshop on
Software Model Checking, 2005.

[6] Sarfraz Khurshid, Corina Pasareanu, and Willem Visser.
Generalized symbolic execution for model checking and
testing. In Proc. 9th Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), Warsaw,
Poland, April 2003.

[7] James C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7), 1976.

[8] Barbara Liskov and John Guttag. Program Development in
Java: Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[9] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and
Sarfraz Khurshid. Korat: A tool for generating structurally
complex test inputs. In ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering, pages
771–774, Washington, DC, USA, 2007.

858

