
An incremental approach to scope-bounded checking

using a lightweight formal method

Danhua Shao Sarfraz Khurshid Dewayne E. Perry

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712, USA
{dshao, khurshid, perry}@ece.utexas.edu

Abstract. We present a novel approach to optimize scope-bounded checking

programs using a relational constraint solver. Given a program and its

correctness specification, the traditional approach translates a bounded code

segment of the entire program into a declarative formula and uses a constraint

solver to search for any correctness violations. Scalability is a key issue with

such approaches since for non-trivial programs the formulas are complex and

represent a heavy workload that can choke the solvers. Our insight is that

bounded code segments, which can be viewed as a set of (possible) execution

paths, naturally lend to incremental checking through a partitioning of the set,

where each partition represents a sub-set of paths. The partitions can be checked

independently, and thus the problem of scope-bounded checking for the given

program reduces to several sub-problems, where each sub-problem requires the

constraint solver to check a less complex formula, thereby likely reducing the

solver’s overall workload. Experimental results show that our approach

provides significant speed-ups over the traditional approach.

Keywords: Scope-bounded checking, Alloy, first-order logic, SAT, lightweight

formal method, computation graph, white-box testing.

1 Introduction

Scope-bounded checking [2, 5, 6, 10, 12, 19], i.e., systematic checking for a bounded

state-space, using off-the-shelf solvers [8, 23, 26], is becoming an increasingly

popular methodology to software verification. The state-space is typically bounded

using bounds (that are iteratively relaxed) on input size [2], and length of execution

paths [10].

While existing approaches that use off-the-shelf solvers have been used effectively

for finding bugs, scalability remains a challenging problem. These approaches have a

basic limitation: they require translating the bounded code segment of entire program

into one input formula for the solver, which solves the complete formula. Due to the

inherent complexity of typical analyses, many times solvers do not terminate in a

desired amount of time. When a solver times out, e.g., fails to find a counterexample,

typically there is no information about the likely correctness of the program checked

or the coverage of the analysis completed.

stg
Text Box
Note: In progress draft

This paper takes a divide-and-solve approach, where smaller segments of bounded

code are translated and analyzed—even if the encoding or analysis of some segments

time out, other segments can still be analyzed to get useful results. Our insight is that

bounded code segments, which can be viewed as a set of (possible) execution paths,

naturally lend to incremental checking through a partitioning of the set, where each

partition represents a sub-set of paths. The partitions can be checked independently,

and thus the problem of scope-bounded checking for the given program reduces to

several sub-problems, where each sub-problem requires the constraint solver to check

a less complex formula, thereby likely reducing the solver’s overall workload.

We develop our approach in the context of the Alloy tool-set [14]—a lightweight

formal method—and the Java programming language. The Alloy specification

language is a first-order logic based on sets and relations. The Alloy Analyzer [13]

performs scope-bounded analysis for Alloy formulas using off-the-shelf SAT solvers.

Previous work [6, 7, 15, 31] developed translations for bounded execution

fragments of Java code into Alloy’s relational logic. Given a procedure Proc in Java

and its pre-condition Pre and post-condition Post in Alloy, the following formula is

solved [15, 31]:
()Pre translate Proc Post∧ ∧ ¬

Given bounds on loop unrolling (and recursion depth), the translate() function

translates the bounded code fragments of procedure Proc from Java into a first order

logic formula. Using bounds on the number of objects of each class, the conjunction

of translate(Proc) with Pre and Post is translated into a propositional formula. Then,

a SAT solver is used to search solutions for the formula. A solution to this formula

corresponds to a path in Proc that satisfies Pre but violates Post, i.e., a

counterexample to the correctness property.

In our view, the bounded execution fragment of a program that is checked

represents a set of possible execution paths. Before translating the fragment into

relational logic, our approach implicitly partitions the set of paths using a partitioning

strategy (Section 4), which splits the given program into several sub-programs—each

representing a smaller bounded execution fragment—such that

1

() ()

n

i

i

path Proc path Sub
=

=∪

Function path(p) represents the set of paths for a bounded execution segment p.

Sub1, …, Subn are sub-programs corresponding to path portioning. To check the

procedure Proc against pre-condition Pre and post-condition Post, we translate

bounded execution fragment of each sub-program into a first order logic formula and

check correctness separately.

1

()

(){ } { () }
n

Pre translate Proc Post

Pre translate Sub Post Pre translate Sub Post

∧ ∧ ¬ ⇔

∧ ∧ ¬ ∧ ∧ ∧ ∧ ¬

Thus, the problem of checking Proc is divided into sub-problems of checking

smaller sub-programs, Sub1, …, Subn. Since the control-flow in each sub-program is

less complex than the entire procedure, we expect the sub-problems to represent

easier SAT problems.

This paper makes the following contributions:

• An incremental approach. To check a program against specifications, we propose

to divide the program into smaller sub-programs and check each of them

individually with respect to the specification. Our approach uses path partitioning

to reduce the workload to the backend constraint solver.

• Implementation. We implement our approach using the Forge framework [6] and

KodKod model finder [30].

• Evaluation. Experiments using Java library code show that our approach can

significantly reduce the checking time.

2 Example

This section presents a small example to illustrate our path partitioning and program

splitting algorithm. Suppose we want to check the contains() method of class

IntList in Figure 1 (a):

An object of IntList represents a singly-linked list. The header field points to

the first node in the list. Objects of the inner class Entry represent list nodes. The

value field represents the (primitive) integer data in a node. The next field points to

the next node in the list. Figure 1 (b) shows an instance of IntList.

Consider checking the method contains(). Assume a bound on execution length

of one loop unrolling. Figure 2 (a) shows the program and its computation graph [15]

for this bound.

Our program splitting algorithm uses the computation graph and is vertex-based:

Given a vertex in the computation graph, we split the graph into two sub-graphs—(1)

go-through sub-graph and (2) bypass sub-graph. The go-through sub-graph has all the

paths that go through the vertex and the bypass sub-graph has all the paths that bypass

the vertex. Given the computation graph in Figure 2 (a), splitting based on vertex 11

generates the go-through sub-graph shown in Figure 2 (b) and the bypass sub-graph

shown in Figure 2 (c). Thus the problem of checking the contains method using a

bound of one loop unrolling is solved using two calls to SAT based on the two

computation sub-graphs.

(a) (b)

Figure 1. Class IntList (contains() method and an instance).

 public boolean

 constains(int key)

 {

1 : Entry e = this.header;

2 : if (e != null){

3 : if (e.value == key){

4 : return true;

 }

5 : e = e.next;

6 : if (e != null){

7 : if (e.value == key){

8 : return true;

 }

9 : e = e.next;

 }

10: assume(e == null);

 }

11: return false;

0 :}

(a)

 public boolean

 go-through(int key)

 {

1 : Entry e = this.header;

2 : if (e != null){

3’: assume !(e.value=key);

4 :

5 : e = e.next;

6 : if (e != null){

7’: assume!(e.value=key);

8 :

9 : e = e.next;

 }

10: assume(e == null);

 }

11: return false;

0 :}

 (b)

 public boolean

 bypass(int key)

 {

1 : Entry e = this.header;

2’: assume(e != null);

3 : if (e.value == key){

4 : return true;

 }

5 : e = e.next;

6’: assume (e != null);

7”: assume(e.value == key);

8 : return true;

9 :

10:

11:

0 :}

(c)

Figure 2. Splitting of program contains() based on Vertex 11

Broken lines in sub-graph indicate edges removed constructing this sub-program during splitting. Gray

nodes in a sub-graph denote that a branch statement in original program has been transformed into an

assume statement. In programs below computation graph, the corresponding statements are show in Italic.

Black nodes denote the statements removed during splitting.

3 Background

The goal of our computation graph splitting algorithm is to optimize traditional

bounded exhaustive checking of programs using constraints in relational logic. The

traditional approach [6] [15] [31] translates the entire bounded Java code segment into

one relational logic formula. The conjunction of the code formula and the negation of

correctness specifications are passed to a relational logic constraint solver. Solutions

are translated back to executions that violate the specification.

3.1 Relational logic and SAT-based analysis

Traditional approaches use a subset of Alloy [14] as the relational logic for Java code

translation. Alloy is a first-order declarative language based on relations. A relation is

a collection of tuples of atoms. A relation can have any finite arity. A set is viewed as

a unary relation, and a scalar is a singleton set.

In Alloy, expressions are formed by relations combined with a variety of operators.

The standard set operators are union (+), intersection (&), difference (-). Unary

relational operators are transpose (~), transitive closure (^), and reflexive transitive

closure (*), which have their standard interpretation. Binary relational operators are

join (.), product (->), and update (++).

Expression quantifiers turn an expression into a formula. The formula ’no e’ is

true when e denotes a relation containing no tuples. Similarly, ’some e’, and ’one e’

are true when e has some, and exactly one tuple respectively. Formulas can also be

made with relational comparison operators: subset (in), equality (=) and inequality

(!=). So ’e1 in e2’ is true when every tuple in (the relation denoted by the expression)

e1 is also a tuple of e2. Alloy provides the standard logical operators: conjunction

(&&), disjunction (||), implication (⇒), bi-implication (⇔), and negation (!).

A model of an Alloy formula is an assignment of relational variables to sets of

tuples built from a universe of atoms within a given scope. So Alloy Analyzer is a

model finder for Alloy formula.

The Alloy Analyzer uses a scope, i.e., a bound on the universe of discourse, to

perform scope-bounded analysis: the analyzer translates the given Alloy formula into

a propositional satisfiability (SAT) formula (w.r.t. the given scope) and uses off-the-

shelf SAT technology to solve the formula.

3.2 Java to relational logic translation

A relational view of the program heap [15] allows translation of a Java program into

an Alloy formula using three steps: (1) encode data, (2) encode control-flow, and (3)

encode data-flow.

Encoding data builds a representation for classes, types, and variables. Each class

or type is represented as a set, domain, which represents the set of object of this class

or values of this type. Local variables and arguments are encoded as singleton sets. A

field of a class is encoded as a binary, functional relation that maps from the class to

the type of the field. For example, to translate the program in Figure 2 (a), we define

four domains: List, Entry, integer, and boolean. Field header is a partial function from

List to Entry, and field next is a partial function from Entry to Entry. Field value is a

function from Entry to integer.

Data-flow is encoded as relational operations on sets and relations. Within an

expression in a Java statement, field deference is encoded as relational join, and an

update to a field is encoded as relational override. For a branch statement, predicates

on variables or expressions are encoded as corresponding formulas with relational

expressions. Method calls are encoded as formulas that abstract behavior of the callee

methods.

Given a program, encoding control-flow is based on computation graph. Each edge

(vi→vj) in the computation graph is represented as a boolean variable Ei,j. True value

of edge variable means the edge is taken. The control flow from one statement to its

sequential statement another is viewed as relational implication. For example, code

segment {A; B; C;} is translated to ’EA,B⇒ EB,C’. Control flow splits at a

branching statement—the two branch edges are viewed as a relational disjunction.

For each branch edge, a relational formula is generated according to the predicate.

Only data that satisfied the relational formula can take this edge. In Figure 2 (a),

control flow at vertex 3 is translated into ’(E2,3⇒ E3,4 || E3,5) and (E3,4⇒ e.value =

key) and (E3,5⇒ !(e.value = key))’. If the control flow takes then branch E3,4, the

constraint ’(E3,4 ⇒ e.value = key)’ should be satisfied. An assume statement is

translated into the formula for its predicate. For example, at vertex 10 of Figure 2 (a),

the control-flow is encoded as ’(E10,3 ⇒ no e)’. This constraint restricts that this edge

is taken only when e is null.

In our splitting algorithm, sub-graphs are constructed by removing branch-edges at

selected branch statements. According to the translation scheme, a branch statement is

equivalent to two assume statements with complementary predicates. So removing

one branch can be implemented as transforming the branch statement into an assume

statement. In Figure 2 (a), removing the then branch of vertex 3, branch statement

’if(e.value == key)’ will be transformed to ’assume !(e.value == key)’. Its

relational logic translation is ’(E2,3⇒ E3,4) and (E3,5⇒ !(e.value = key))’. The

semantics of else branch is preserved after the transformation to an assume

statement.

With encoding of data-flow and control-flow, the conjunction of all generated

formulas is the formula for the code segment under analysis. A model to this code

formula corresponds to a valid path of the code fragment.

4 Algorithm

The goal of our splitting algorithm is to divide the complexity of checking the

program while preserving its semantics (w.r.t. to the given scope). This paper presents

a vertex-based splitting algorithm. Splitting a program into two sub-programs

partitions paths in the program based on a chosen vertex: one sub-program has all

paths that go through the vertex and the other sub-program has all paths that bypass

that vertex. Our vertex-based path splitting guarantees the consistency between the

original program and sub-programs. For a heuristic measure of the complexity of

checking, we propose to use the number of branches. Our strategy is selecting a

vertex so that the number of branches in each of sub-programs is minimized.

Our approach checks a given program p as follows.

1. Translate p into p’ where p’ represents the computation graph [15] of p, i.e.,

the loops in p are unrolled and method calls in-lined to generate p;

2. Represent p’ as a graph CG = (V, E) where V is a set of vertices such that

each statement in p’ has a corresponding vertex in V, and E is a set of edges

such that each control-flow edge in p’ has a corresponding edge in E;

3. Apply the splitting heuristic to determine a likely optimal splitting vertex v;

4. Split CG into two sub-graphs CG1 and CG2;

5. Recursively split CG1 and CG2 if needed;

6. Check the set of sub-programs corresponding to the final set of sub-graphs.

Recall a computation graph has one Entry vertex and one Exit vertex for the

program. Entry has no predecessor and Exit has no successor. A vertex v representing

a branch-statement has two successors: vertex v.then and vertex v.else. Vertices that

do not represent branch-statements have only one successor, v.next. The computation

graph of a program is a DAG (Directed Acyclic Graph). An execution path in the

computation graph is a sequence of vertices from Entry to Exit through edges in E.

Definition. Given a CG = (V, E) and a set of edges S ⊂ E,

then-branch-predecessor(S) =

{ u | u∈V, u is a branch-statement, at least one edge in S is

reachable from u.then, but no edge in S is reachable from u.else}

else-branch-predecessor(S) =

{ u | u∈V, u is a branch, at least one edge in S is reachable from

u.else, but no edge in S is reachable from u.then}

Sub-CG(S) = (V’, E’)

V’ = V, and

E’= E – {e | e∈E, e = u→u.else if u is in then-branch-

predecessor(S), or e = u→u.then if u is in else-branch-

predecessor(S)} .

Theorem 1. Given a computation graph CG=(V, E) and a set of edges S ⊂ E, an

execution path p visits at least one edge in S if and only if p is a path in Sub-CG(S) =

(V’, E’).

Proof. Sub-CG(S) is a sub-graph of CG with fewer edges. An execution path in CG

is still in Sub-CG(S) if and only if this path does not contain any edge in E - E’.

⇒ Assume that there is a path p in CG that visits an edge in S but is not in the sub-

graph. Suppose p visits an edge vi→vj that has been removed. According to the

definition of the sub-graph, none of the edge in E is reachable from vi→vj, i.e., a

contradiction.

⇐ Assume p is a path in CG that does not visit any edge in S. Let P = {q | q is a

path of CG, q visits S}. Since S is not empty, P is not empty. For each path q in P,

match p and q according to their vertex sequence. Let vi be the last vertex in p that

matches a vertex in P. vi must be a branch vertex. Let edge vi→vj and edge vi→vj’ be

the two branches from vi. Suppose edge vi→vj is in p. vi→vj cannot reach any edge in

S. Since vi is the last vertex-match with paths in P, vi→vj’ can reach an edge in S. So

vi→vj should be removed according to definition of then-branch-predecessor (S) or

else-branch-predecessor (S). So any path that does not visit an edge in S will be

removed from sub-graph. ■

Since the computation graph of the program is a DAG after loop unrolling, we can

linearly order the vertices using a topological sort.

Given a computation graph CG, let order represent topological-sort(CG) such that

order[Exit] =0; order[Entry] = n-1; and n is number of vertices in CG.

Definition. Let u be a vertex in CG. Define the set go-through-edge(u) = {e | e∈E,

e.to = u }.

Theorem 2. Given a vertex u in CG, a path visits u if and only if the path visits an

edge in go-through-edge(u).

Proof. Since CG is a directed graph, all paths visiting vertex u will go through an

edge whose end point is u. ■

Definition. Given a vertex u in CG, bypass-edge(u) = {e | e∈E, order[e.from] >

order[u] and order[e.to] < order[u]}.

Theorem 3. Given a vertex u, a path p bypasses u if and only if p visits an edge in

bypass-edge(u).

Proof. ⇒ Let path p: v0→v1→v2→ …→vm be a path in CG, v0 = Entry and vm =

Exit. According to the topological sort, order[v0] > order[v1] > order[v2] > … >

order[vm]. For vertex u, if u ≠ Entry and u ≠ Exit, then order[u] < order[Entry] and

order[u] >order[Exit]. Since u is not in p, there must be two vertices vi and vj in p

such that order[vi] > order[u] and order[vj] <order[u]. By definition, edge vi→vj is in

bypass-edge(u).

⇐ Let path p: v0→v1→v2→ …→vm be a path in CG, v0 = Entry and vm = Exit.

Since p visits a path in bypass-edge(u) there exist an edge vi→vj such that order[vi] >

order[u] and order[vj] <order[u]. According to the topological sort, order[vk] >

order[vi] > order[u] if k < i, and order[vk] < order[vj] < order[u] if k>j. So path p can

not visit u. ■

Theorem 4. Given a vertex u in CG, a path visits u if and only if the path is in

Sub-CG (go-through-edge(u)).

Proof. Follows from Theorem 2 and Theorem 1. Since paths that visit u are the

paths that visit go-through-edge(u) and paths that visit go-through-edge(u) are the

paths in Sub-CG(go-through-edge(u)), therefore paths that visit u are the paths in

Sub-CG(go-through-edge(u). ■

Theorem 5. Given a vertex u in CG, a path bypasses u if and only if the path is in

Sub-CG(bypass-edge(u)).

Proof. Follows from Theorem 3 and Theorem 1. Since paths that visit u are the

paths that visit bypass-edge(u) and paths that visit bypass-edge(u) are the paths in

Sub-CG(bypass-edge(u)), therefore paths that visit u are the paths in Sub-CG(bypass-

edge(u)). ■

Algorithm.

Figure 3 shows our splitting algorithm. The method branches() returns the branch

vertices of a given computation graph. If one edge of a branch vertex has been

removed in a sub-graph, this branch vertex will not be counted as a branch in that sub-

graph.

To illustrate, consider the example form Section 2. The split-complexity of v11 can

be calculated in the following steps:

1) For go-through sub-graph,

go-through-edge(v11) = { v2→v11, v6→v11, v10→v11};

branches(Sub-CG(go-through-edge(v11)))= {v2, v6};

2) For bypass sub-graph,

bypass-edge(v11) = { v3→v4, v7→v8)};

branches(Sub-CG(bypass-edge(v11)))= {v3};

3) For split-complexity,

Split-complexity(v11) = max {|{ v2,v6}|, |{v3}|} = 2.

According to the definition of Sub-CG, some branch edges will be removed to

construct a sub-graph. Given a branch, edge removing is implemented by

transforming the branch statement into an assume statement. The semantic

consistency of this transformation is discussed in the background section.

5 Experiments

To evaluate our approach, we compare performance of our sub-program-based

incremental analysis and the traditional entire program analysis. We select the Forge

tool-set [] as the baseline, since it is the most recent implementation of the traditional

approach from the Alloy group at MIT. We piggyback on Forge to implement our

incremental approach.

Experimental evaluation is based on checking four procedures in Java library

classes: contains() of LinkedList (a singly-linked acyclic list), contains() of

BinarySearchTree, add() of BinarySearchTree, and topologicalsort() of

Graph (directed acyclic graph).

In relational logic based bounded verification, the bound specifies the numbers of

loop unrolling, scope, and bit-width—the number of bits used to represent an integer

value. Since our optimization does not address integer representation, we set the bit-

width to 4 in all the four experiments. Scope defines the maximum number of nodes

in a list, tree, or graph. Unrolling specifies the number of unrollings for a loop body.

For contains() of LinkedList and contains() of BinarySearchTree, we check

them with fixed scope and varied unrolling. For add() of BinarySearchTree, and

Figure 3. Program splitting algorithm.

topologicalsort() of Graph, we check them with fixed unrolling and varied

scope.

For each bound, we run our incremental analysis and the traditional entire program

analysis to check a procedure against its pre-condition and post-condition, which

represent the usual correctness properties including structural invariants. For each

sub-program, we record the checking time, number of branches, variables and clauses

of CNF formula. The total time is the sum of the checking time of all sub-programs.

For the traditional analysis, we similarly record the checking time, number of

branches, variables and clauses of CNF formula. The speedup is the ratio of the

checking time of the traditional analysis to the total checking time of our incremental

analysis.

We ran experiments on a Dual-Core 1.8GHz AMD Opteron processor with 2 GB

RAM. We selected MiniSAT as the SAT solver. We run each experiment three times

and use the average as the final result. The results are showed in the tables that

follow.

unrolling sub0 sub1 sub2 sub3 total entire speedup

time (sec.) 2 1 82 1 86 343 3.99X

branch 1 2 2 2 10

variable 4655 4149 4731 3969 4740

5

clauses 10081 8353 10167 7563 14271

time(sec.) 8 1 173 7 189 653 3.46X

branch 2 2 2 3 12

variable 4911 4149 4985 4226 4996

6

clauses 10945 8353 11031 8436 15213

time(sec.) 66 1 428 3 498 4541 9.12X

branch 2 3 3 3 14

variable 5165 4406 5242 4226 5252

7

clauses 11809 9218 11904 8436 16155

time(sec.) 179 1 359 44 583 21414 36.73X

branch 3 3 3 4 16

variable 5422 4406 5496 4484 5508

8

clauses 12674 9218 12768 9310 17097

Table 1. LinkedList.contains() (bit-width = 4, scope = 8)

unrolling sub0 sub1 sub2 sub3 total entire speedup

time(sec.) 564 552 390 388 1894 6468 3.42X

branch 4 4 3 4 12

variable 7776 7369 6961 6724 7808

4

clauses 20734 19185 17635 16726 21193

time(sec.) 1 2427 1745 301 4474 15015 3.36X

branch 7 7 5 4 15

5

variable 8151 8151 7376 6724 8224

clauses 22170 22178 19300 16726 22859

time(sec.) 698 1879 546 936 4059 18982 4.68X

branch 7 5 5 6 18

variable 8599 8192 7539 6976 8640

6

clauses 23941 22400 19822 17861 24525

time(sec.) 1 2535 2834 686 6056 28435 4.71X

branch 11 11 6 7 21

variable 8975 8975 7784 7140 9056

7

clauses 25386 25394 20850 18392 26191

time(sec.) 794 1085 1289 623 3791 18703 4.94X

branch 13 13 7 7 24

variable 9384 9384 7948 7140 9472

8

clauses 26945 26953 21381 18392 27857

Table 2. BinarySearchTree.contains() (bit-width = 4, scope = 7)

scope sub0 sub1 sub2 sub3 total entire speedup

time(sec.) 2 3 1 3 9 43 4.78X

branch 5 6 6 7 11

variable 4878 5092 4692 5083 9686

4

clauses 16132 17393 15079 17397 36929

time(sec.) 13 15 3 9 40 249 6.23X

branch 5 6 6 7 11

variable 6705 7038 6446 6653 12837

5

clauses 22457 24308 20990 22973 49623

time(sec.) 140 316 30 19 505 4339 8.59X

branch 5 6 6 7 11

variable 8689 9161 8349 8340 16335

6

clauses 29414 31943 27487 28965 63809

time(sec.) 1675 6409 863 76 9023 109730 12.16X

branch 5 6 6 7 11

variable 11030 11661 10601 10247 20380

7

clauses 37703 40998 35270 35738 80187

Table 3. BinarySearchTree.add() (unrolling = 3, bit-width = 4)

scope sub0 sub1 sub2 sub3 total entire speedup

time(sec.) 183 152 118 1 454 1436 3.16X

branch 1 1 1 1 7

variable 269908 197682 125456 53230 269962

7

clauses 1073479 785037 496595 208153 1084273

time(sec.) 210 199 114 1 524 1422 2.71X

branch 1 1 1 1 7

variable 299104 219070 139036 59002 299158

8

clauses 1197974 875832 553690 231548 1210304

time(sec.) 214 278 157 1 650 2113 3.25X

branch 1 1 1 1 7

variable 357978 262236 166494 70752 358032

9

clauses 1457783 1065867 673951 282035 1471649

time(sec.) 357 255 187 2 801 2844 3.55X

branch 1 1 1 1 7

variable 402696 295010 187324 79638 402750

10

clauses 1659106 1212870 766634 320398 1674508

time(sec.) 611 341 263 2 1217 3694 3.04X

branch 1 1 1 1 7

variable 439783 322189 204595 87001 439837

11

clauses 1829579 1337181 844783 352385 1846517

time(sec.) 558 519 247 2 1326 4372 3.31X

branch 1 1 1 1 7

variable 476935 349417 221899 94381 476989

12

clauses 2003834 1464198 924562 384926 2022308

Table 4. Graph.TopologicalSort () (unrolling = 7, bit-width = 4)

Table 1 and Table 2 show the performance comparison for different loop

unrollings. Table 3 and Table 4 show the comparison for different scopes. Results

from the four experiments showed that our splitting algorithm gave at least a 2.71X

performance improvement over the traditional approach, whereas the maximum

speed-up was 36.73X.

The results also show that our splitting algorithm scales better. As unrolling

increasing from 5 to 8, speedup of checking contains() of LinkedList increases

from 3.99X to 36.73X. As scope increasing from 4 to 7, speedup of checking add() of

BinarySearchTree increases from 4.78X to 12.6X.

 The relative lower speedup in contains() of BinarySearchTree and

topologicalsort() of Graph show a limitation of our approach. Compared with

traditional approach which checks correctness against specifications only once, our

divide-and-solve approach requires multiple correctness checking, one checking for

one sub-program. In case the complexity of specification formula is much heavier

than code formula, the benefit from dividing the code formula will be reduced largely

by the overhead from multiple checking specification formulas. However, even with

specification of complex data structure invariants, our approach still shows 5X

speedup in contains() of BinarySearchTree with 8 unrollings and 7 nodes.

The results show that our splitting heuristic is effective at evenly splitting the

branches. Moreover, the smaller number of variables and clauses for the incremental

approach shows the workload to SAT has been effectively divided by splitting entire

program into sub-programs using our approach.

6 Related work

Our work is based on previous research [15] that models a heap-manipulating

procedure using Alloy and finds counterexamples using SAT. Jackson et al. [15]

proposed an approach to model complex data structures with relations and encode

control flow, data flow, and frame conditions into relational formulas. Vaziri et al.

[31] optimized the translation to boolean formulas by using a special encoding of

functional relations. Dennis et al. [6] provided explicit facilities to specify imperative

code with first-order relational logic and used an optimized relational model finder

[30] as the backend constraint solver. Our algorithm can reduce the workload to the

backend constraint solver by splitting the computation graph that underlies all these

prior approaches and dividing the procedure into smaller sub-programs.

DynAlloy [9] is a promising approach that builds on Alloy to directly support

sequencing of operations. We believe our incremental approach can optimize

DynAlloy’s solving too.

Bounded exhaustive checking, e.g., using TestEra [18] or Korat [2] can check

programs that manipulate complex data structures. Testing, however, has a basic

limitation that running a program against one input only checks the behavior for that

input. In contrast, translating a code segment to a formula that is solved allows

checking all (bounded) paths in that segment against all (bounded) inputs.

The recent advances in constraint solving technology have led to a rebirth of

symbolic execution [20]. Guiding symbolic execution using concrete executions is

rapidly gaining popularity as a means of scaling it up in several recent frameworks,

most notably DART [11], CUTE [28], and EXE [3]. While DART and EXE focus on

properties of primitives and arrays to check for security holes (e.g., buffer overflows),

CUTE has explored the use of white-box testing using preconditions, similar to Korat

[2]. Symbolic/concrete execution can be viewed as an extreme case of our approach

where each sub-program represents exactly one path in the original program. As the

number of paths increases, the number of calls to the constraint solver increases in

symbolic execution. Our approach is motivated by our quest to find a sweet spot

between checking all paths at once (traditional approach) and each path one-by-one

(symbolic/concrete execution).

Model checkers have traditionally focused on properties of control [1, 24]. Recent

advances in software model checking [10, 32] have allowed checking properties of

data. However, software model checkers typically require explicit checking of each

execution path of the program under test.

Slicing techniques [29] have been used to reduce workload of bounded

verification. Dolby et al. [7] and Saturn [33] perform slicing at the logic

representation level. Millett et al. [25] slice Promela programs for SPIN model

checker [1]. Visser et al. [32] and Corbett et al. [4] prune the parts that are not related

to temporal constraints and slice at the source code level. Since slicing is based on

constraints, the effectiveness depends on the properties to be checked. Statements do

not manipulate any relations in properties will not be translated into formula for

checking. If constraints are so complex that all the relations show up, no statements

will be pruned. Our program-splitting algorithm can still reduce workload to backend

constraint solvers because our path partitioning algorithm is independent of

constraints to be checked.

Sound static analyses, such as traditional shape analysis [27, 21] and recent

variants [22], provide correctness guarantees for all inputs and all execution paths

irrespective of a bound. However, they typically require additional user input in the

form of additional predicates or loop invariants, which are not required for scope-

bounded checking, which provides an under-approximation of the program under test.

7 Conclusions

Scalability is a key issue in scope-bounded checking. Traditional approaches translate

the bounded code segment of the entire program into one input formula for the

underlying solver, which solves the complete formula in one execution. For non-

trivial programs, the formulas are complex and represent a heavy workload that can

choke the solvers.

We propose a divide-and-solve approach, where smaller segments of bounded code

are translated and analyzed. Given a vertex in the control-flow graph, we split the

computation graph of the program into two sub-graphs: go-through sub-graph and

bypass sub-graph. The go-through sub-graph has all the paths that go through the

vertex and the bypass sub-graph has all the paths that bypass the vertex. Our vertex-

based path partitioning can guarantee the semantic consistency between the original

program and the sub-programs. We propose to use the number of branch statements

as a heuristic to compute an analysis complexity metric of a program. To effectively

divide the analysis complexity of a program, the heuristic selects a vertex so that the

number of branch statements in each of sub-programs is minimized.

We evaluated our divide-and-solve approach by comparison with the traditional

approach by checking four Java methods against pre-conditions and post-conditions

defined in Alloy. The experimental results show that our approach provides

significant speed-ups over the traditional approach.

The results also show other potential benefits of our program splitting algorithm.

Because all sub-graphs are independent, they can be checked in parallel. Since our

program splitting algorithm can effectively divide the workload, parallel checking the

sub-programs would likely introduce significant speedups.

Acknowledgments

We thank Greg Dennis for his help on the Forge framework. This work was supported

in part by NSF CISE SoD Grant IIS-0438967.

References

1. Spin model checker. http://spinroot.com/spin/whatispin.html.

2. C. Boyapati, S. Khurshid and D. Marinov. Korat: Automated Testing Based on Java

Predicates. In Proc. of ACM/SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA), 2002.

3. C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: Automatically

Generating Inputs of Death. In Proc. of the 13th ACM Conference on Computer and

Communications Security(CCS), 2006

4. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H.

Zheng. Bandera: extracting finite-state models from Java source code. In Proc. of

International Conference on Software Engineering (ICSE), 2000.

5. P. Darga, and C. Boyapati. Efficient software model checking of data structure

properties. In Proc. of the International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), 2006.

6. G. Dennis, F. S. –H. Chang, and D. Jackson. Modular verification of code with sat. In

Proc. of the International Symposium on Software Testing and Analysis (ISSTA), 2006.

7. J. Dolby, M. Vaziri, and F. Tip. Finding Bugs Efficiently with a SAT Solver. In Proc. of

the 6th joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), 2007

8. N. Eén, and N. Sörensson. An extensible SAT solver. In Proc. of the 6th International

Conference on Theory and Applications of Satisfiability Testing(SAT), 2003

9. M. F. Frias, J. P. Galeotti, C. G. López Pombo, and N. M. Aguirre. DynAlloy: upgrading

alloy with actions. In Proc. of International Conference on Software Engineering

(ICSE), 2005.

10. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proc.of

ACM Symposium on Principles of Programming Languages (POPL), 1997.

11. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In

Proc. of ACM SIGPLAN conference on Programming language design and

implementation (PLDI), 2005.

12. C. Heitmeyer, J. James Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using

abstraction and model checking to detect safety violations in requirements

specifications. IEEE Transactions on Software Engineering. Vol. 24, No. 11, 927-948,

1998.

13. D. Jackson. Automating first-order relational logic. In Proc. of the International

Symposium on Foundations of Software Engineering (FSE), 2000.

14. D. Jackson. Software Abstractions: logic, language, and analysis. MIT Press,

Cambridge, MA, 2006.

15. D. Jackson, and M. Vaziri. Finding bugs with a constraint solver. In Proc. of the

International Symposium on Software Testing and Analysis (ISSTA), 2000.

16. D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The Alloy constraint analyzer. In

Proc. of International Conference on Software Engineering (ICSE), 2000.

17. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In Proc. of

the International Symposium on Foundations of Software Engineering/European

Software Engineering Conference (FSE/ESEC), 2001.

18. S. Khurshid and D. Marinov. TestEra: Specification-based Testing of Java Programs

Using SAT. Automated Software Engineering Journal, Volume 11, Number 4. October

2004.

19. S. Khurshid, C. Pasareanu and W. Visser. Generalized Symbolic Execution for Model

Checking and Testing. In Proc. of the 9th International Conference on Tools and

Algorithms for Construction and Analysis of Systems (TACAS), 2003.

20. J. C. King. Symbolic execution and program testing. Communications of the ACM,

Volume 19, Issue 7, July 1976.

21. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. In

Proc. of 5th International Conference on Implementation and Application of Automata,

2000.

22. Kuncak, V., “Modular Data Structure Verification,” Ph.D. thesis, EECS Department,

Massachusetts Institute of Technology, 2007.

23. M. Leonardo and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. of Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2008.

24. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

25. L. I. Millett, and T. Teitelbaum. Slicing Promela and its applications to model checking.

In Proc. of the 4th International SPIN Workshop, 1998.

26. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

Efficient SAT Solver. In Proc. of 39th Design Automation Conference (DAC), 2001

27. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM

Transactions on Programming Languages and Systems (TOPLAS), Volume 24 , Issue

3: 217 – 298, 2002

28. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proc.

of the 10th European software engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of software engineering

(ESEC/FSE), 2005.

29. F. Tip. A survey of program slicing techniques. Journal of Programming Languages

3(3), 121-189. 1995.

30. E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. In Proc. of 13th

International Conference on Tools and Algorithms for Construction and Analysis of

Systems (TACAS), 2007.

31. M. Vaziri, and D. Jackson. Checking properties of heap-manipulating procedures with a

constraint solver. In Proc. of the International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), 2003.

32. W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking programs. In

Proc. of International Conference on Automated Software Engineering (ASE), 2000

33. Y. Xie, and A. Aiken. Saturn: A scalable framework for error detection using boolean

satisfiability. ACM Transactions on Programming Languages and Systems (TOPLAS),

Vol. 29 , Issue 3, 2007.

