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Abstract. We present a novel approach to optimize scope-bounded checking 

programs using a relational constraint solver. Given a program and its 

correctness specification, the traditional approach translates a bounded code 

segment of the entire program into a declarative formula and uses a constraint 

solver to search for any correctness violations. Scalability is a key issue with 

such approaches since for non-trivial programs the formulas are complex and 

represent a heavy workload that can choke the solvers. Our insight is that 

bounded code segments, which can be viewed as a set of (possible) execution 

paths, naturally lend to incremental checking through a partitioning of the set, 

where each partition represents a sub-set of paths. The partitions can be checked 

independently, and thus the problem of scope-bounded checking for the given 

program reduces to several sub-problems, where each sub-problem requires the 

constraint solver to check a less complex formula, thereby likely reducing the 

solver’s overall workload. Experimental results show that our approach 

provides significant speed-ups over the traditional approach.  

Keywords: Scope-bounded checking, Alloy, first-order logic, SAT, lightweight 

formal method, computation graph, white-box testing. 

1   Introduction 

Scope-bounded checking [2, 5, 6, 10, 12, 19], i.e., systematic checking for a bounded 

state-space, using off-the-shelf solvers [8, 23, 26], is becoming an increasingly 

popular methodology to software verification. The state-space is typically bounded 

using bounds (that are iteratively relaxed) on input size [2], and length of execution 

paths [10]. 

While existing approaches that use off-the-shelf solvers have been used effectively 

for finding bugs, scalability remains a challenging problem. These approaches have a 

basic limitation: they require translating the bounded code segment of entire program 

into one input formula for the solver, which solves the complete formula. Due to the 

inherent complexity of typical analyses, many times solvers do not terminate in a 

desired amount of time. When a solver times out, e.g., fails to find a counterexample, 

typically there is no information about the likely correctness of the program checked 

or the coverage of the analysis completed. 
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This paper takes a divide-and-solve approach, where smaller segments of bounded 

code are translated and analyzed—even if the encoding or analysis of some segments 

time out, other segments can still be analyzed to get useful results. Our insight is that 

bounded code segments, which can be viewed as a set of (possible) execution paths, 

naturally lend to incremental checking through a partitioning of the set, where each 

partition represents a sub-set of paths. The partitions can be checked independently, 

and thus the problem of scope-bounded checking for the given program reduces to 

several sub-problems, where each sub-problem requires the constraint solver to check 

a less complex formula, thereby likely reducing the solver’s overall workload. 

We develop our approach in the context of the Alloy tool-set [14]—a lightweight 

formal method—and the Java programming language. The Alloy specification 

language is a first-order logic based on sets and relations.  The Alloy Analyzer [13] 

performs scope-bounded analysis for Alloy formulas using off-the-shelf SAT solvers.   

Previous work [6, 7, 15, 31] developed translations for bounded execution 

fragments of Java code into Alloy’s relational logic. Given a procedure Proc in Java 

and its pre-condition Pre and post-condition Post in Alloy, the following formula is 

solved [15, 31]: 
( )Pre translate Proc Post∧ ∧ ¬  

Given bounds on loop unrolling (and recursion depth), the translate() function 

translates the bounded code fragments of procedure Proc from Java into a first order 

logic formula. Using bounds on the number of objects of each class, the conjunction 

of translate(Proc) with Pre and Post is translated into a propositional formula. Then, 

a SAT solver is used to search solutions for the formula. A solution to this formula 

corresponds to a path in Proc that satisfies Pre but violates Post, i.e., a 

counterexample to the correctness property. 

In our view, the bounded execution fragment of a program that is checked 

represents a set of possible execution paths. Before translating the fragment into 

relational logic, our approach implicitly partitions the set of paths using a partitioning 

strategy (Section 4), which splits the given program into several sub-programs—each 

representing a smaller bounded execution fragment—such that 
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Function path(p) represents the set of paths for a bounded execution segment p. 

Sub1, …, Subn are sub-programs corresponding to path portioning. To check the 

procedure Proc against pre-condition Pre and post-condition Post, we translate 

bounded execution fragment of each sub-program into a first order logic formula and 

check correctness separately.  
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Thus, the problem of checking Proc is divided into sub-problems of checking 

smaller sub-programs, Sub1, …, Subn. Since the control-flow in each sub-program is 

less complex than the entire procedure, we expect the sub-problems to represent 

easier SAT problems. 

This paper makes the following contributions: 



• An incremental approach. To check a program against specifications, we propose 

to divide the program into smaller sub-programs and check each of them 

individually with respect to the specification. Our approach uses path partitioning 

to reduce the workload to the backend constraint solver. 

• Implementation. We implement our approach using the Forge framework [6] and 

KodKod model finder [30]. 

• Evaluation. Experiments using Java library code show that our approach can 

significantly reduce the checking time. 

2   Example 

This section presents a small example to illustrate our path partitioning and program 

splitting algorithm. Suppose we want to check the contains() method of class 

IntList in Figure 1 (a): 

An object of IntList represents a singly-linked list. The header field points to 

the first node in the list. Objects of the inner class Entry represent list nodes. The 

value field represents the (primitive) integer data in a node. The next field points to 

the next node in the list. Figure 1 (b) shows an instance of IntList. 

Consider checking the method contains(). Assume a bound on execution length 

of one loop unrolling. Figure 2 (a) shows the program and its computation graph [15] 

for this bound. 

Our program splitting algorithm uses the computation graph and is vertex-based: 

Given a vertex in the computation graph, we split the graph into two sub-graphs—(1) 

go-through sub-graph and (2) bypass sub-graph. The go-through sub-graph has all the 

paths that go through the vertex and the bypass sub-graph has all the paths that bypass 

the vertex. Given the computation graph in Figure 2 (a), splitting based on vertex 11 

generates the go-through sub-graph shown in Figure 2 (b) and the bypass sub-graph 

shown in Figure 2 (c). Thus the problem of checking the contains method using a 

bound of one loop unrolling is solved using two calls to SAT based on the two 

computation sub-graphs. 

  
(a) (b) 

Figure 1. Class IntList (contains() method and an instance). 



 

 
 
  public boolean  

  constains(int key) 

   { 

1 : Entry e = this.header; 

2 : if (e != null){ 

3 :  if (e.value == key){ 

4 :   return true; 

     } 

5 :  e = e.next; 

6 :  if (e != null){ 

7 :   if (e.value == key){ 

8 :    return true; 

      } 

9 :   e = e.next; 

     } 

10:  assume(e == null); 

    }  

11: return false; 

0 :}  

(a) 

 
 
  public boolean  

  go-through(int key) 

   { 

1 : Entry e = this.header; 

2 : if (e != null){ 

3’:  assume !(e.value=key); 

4 :  

     

5 :  e = e.next; 

6 :  if (e != null){ 

7’:   assume!(e.value=key); 

8 :    

      

9 :   e = e.next; 

     } 

10:  assume(e == null); 

    }  

11: return false; 

0 :}  

 (b) 

 
 
  public boolean  

  bypass(int key) 

  { 

1 : Entry e = this.header; 

2’: assume(e != null); 

3 : if (e.value == key){ 

4 :   return true; 

    } 

5 : e = e.next; 

6’: assume (e != null); 

7”: assume(e.value == key); 

8 : return true; 

      

9 :  

 

10:  

     

11: 

0 :}  

(c)

Figure 2. Splitting of program contains() based on Vertex 11 

Broken lines in sub-graph indicate edges removed constructing this sub-program during splitting. Gray 

nodes in a sub-graph denote that a branch statement in original program has been transformed into an 

assume statement. In programs below computation graph, the corresponding statements are show in Italic. 

Black nodes denote the statements removed during splitting. 

3   Background 

The goal of our computation graph splitting algorithm is to optimize traditional 

bounded exhaustive checking of programs using constraints in relational logic. The 

traditional approach [6] [15] [31] translates the entire bounded Java code segment into 

one relational logic formula. The conjunction of the code formula and the negation of 

correctness specifications are passed to a relational logic constraint solver. Solutions 

are translated back to executions that violate the specification.  



3.1   Relational logic and SAT-based analysis 

Traditional approaches use a subset of Alloy [14] as the relational logic for Java code 

translation. Alloy is a first-order declarative language based on relations. A relation is 

a collection of tuples of atoms. A relation can have any finite arity. A set is viewed as 

a unary relation, and a scalar is a singleton set.  

In Alloy, expressions are formed by relations combined with a variety of operators. 

The standard set operators are union (+), intersection (&), difference (-). Unary 

relational operators are transpose (~), transitive closure (^), and reflexive transitive 

closure (*), which have their standard interpretation. Binary relational operators are 

join (.), product (->), and update (++).  

Expression quantifiers turn an expression into a formula. The formula ’no e’ is 

true when e denotes a relation containing no tuples. Similarly, ’some e’, and ’one e’ 

are true when e has some, and exactly one tuple respectively. Formulas can also be 

made with relational comparison operators: subset (in), equality (=) and inequality 

(!=). So ’e1 in e2’ is true when every tuple in (the relation denoted by the expression) 

e1 is also a tuple of e2. Alloy provides the standard logical operators: conjunction 

(&&), disjunction (||), implication (⇒ ), bi-implication ( ⇔ ), and negation (!).  

A model of an Alloy formula is an assignment of relational variables to sets of 

tuples built from a universe of atoms within a given scope. So Alloy Analyzer is a 

model finder for Alloy formula.  

The Alloy Analyzer uses a scope, i.e., a bound on the universe of discourse, to 

perform scope-bounded analysis: the analyzer translates the given Alloy formula into 

a propositional satisfiability (SAT) formula (w.r.t. the given scope) and uses off-the-

shelf SAT technology to solve the formula. 

3.2   Java to relational logic translation 

A relational view of the program heap [15] allows translation of a Java program into 

an Alloy formula using three steps: (1) encode data, (2) encode control-flow, and (3) 

encode data-flow.  

Encoding data builds a representation for classes, types, and variables. Each class 

or type is represented as a set, domain, which represents the set of object of this class 

or values of this type. Local variables and arguments are encoded as singleton sets. A 

field of a class is encoded as a binary, functional relation that maps from the class to 

the type of the field. For example, to translate the program in Figure 2 (a), we define 

four domains: List, Entry, integer, and boolean. Field header is a partial function from 

List to Entry, and field next is a partial function from Entry to Entry. Field value is a 

function from Entry to integer.  

Data-flow is encoded as relational operations on sets and relations. Within an 

expression in a Java statement, field deference is encoded as relational join, and an 

update to a field is encoded as relational override. For a branch statement, predicates 

on variables or expressions are encoded as corresponding formulas with relational 

expressions. Method calls are encoded as formulas that abstract behavior of the callee 

methods. 



Given a program, encoding control-flow is based on computation graph. Each edge 

(vi→vj) in the computation graph is represented as a boolean variable Ei,j. True value 

of edge variable means the edge is taken. The control flow from one statement to its 

sequential statement another is viewed as relational implication. For example, code 

segment {A; B; C;} is translated to ’EA,B⇒ EB,C’. Control flow splits at a 

branching statement—the two branch edges are viewed as a relational disjunction. 

For each branch edge, a relational formula is generated according to the predicate. 

Only data that satisfied the relational formula can take this edge. In Figure 2 (a), 

control flow at vertex 3 is translated into ’(E2,3⇒ E3,4 || E3,5) and (E3,4⇒ e.value = 

key) and (E3,5⇒ !(e.value = key))’. If the control flow takes then branch E3,4, the 

constraint ’(E3,4 ⇒ e.value = key)’ should be satisfied. An assume statement is 

translated into the formula for its predicate. For example, at vertex 10 of Figure 2 (a), 

the control-flow is encoded as ’(E10,3 ⇒ no e)’. This constraint restricts that this edge 

is taken only when e is null.  

In our splitting algorithm, sub-graphs are constructed by removing branch-edges at 

selected branch statements. According to the translation scheme, a branch statement is 

equivalent to two assume statements with complementary predicates. So removing 

one branch can be implemented as transforming the branch statement into an assume 

statement. In Figure 2 (a), removing the then branch of vertex 3, branch statement 

’if(e.value == key)’ will be transformed to ’assume !(e.value == key)’.  Its 

relational logic translation is ’(E2,3⇒ E3,4) and (E3,5⇒ !(e.value = key))’. The 

semantics of else branch is preserved after the transformation to an assume 

statement. 

With encoding of data-flow and control-flow, the conjunction of all generated 

formulas is the formula for the code segment under analysis. A model to this code 

formula corresponds to a valid path of the code fragment. 

4   Algorithm 

 

The goal of our splitting algorithm is to divide the complexity of checking the 

program while preserving its semantics (w.r.t. to the given scope). This paper presents 

a vertex-based splitting algorithm. Splitting a program into two sub-programs 

partitions paths in the program based on a chosen vertex: one sub-program has all 

paths that go through the vertex and the other sub-program has all paths that bypass 

that vertex. Our vertex-based path splitting guarantees the consistency between the 

original program and sub-programs. For a heuristic measure of the complexity of 

checking, we propose to use the number of branches. Our strategy is selecting a 

vertex so that the number of branches in each of sub-programs is minimized.  

Our approach checks a given program p as follows. 

1. Translate p into p’ where p’ represents the computation graph [15] of p, i.e., 

the loops in p are unrolled and method calls in-lined to generate p; 

2. Represent p’ as a graph CG = (V, E) where V is a set of vertices such that 

each statement in p’ has a corresponding vertex in V, and E is a set of edges 

such that each control-flow edge in p’ has a corresponding edge in E; 



3. Apply the splitting heuristic to determine a likely optimal splitting vertex v; 

4. Split CG into two sub-graphs CG1 and CG2; 

5. Recursively split CG1 and CG2 if needed; 

6. Check the set of sub-programs corresponding to the final set of sub-graphs. 

  

Recall a computation graph has one Entry vertex and one Exit vertex for the 

program. Entry has no predecessor and Exit has no successor. A vertex v representing 

a branch-statement has two successors: vertex v.then and vertex v.else. Vertices that 

do not represent branch-statements have only one successor, v.next. The computation 

graph of a program is a DAG (Directed Acyclic Graph). An execution path in the 

computation graph is a sequence of vertices from Entry to Exit through edges in E. 

 

Definition. Given a CG = (V, E) and a set of edges S ⊂ E,  

then-branch-predecessor(S) =  

{ u | u∈V, u is a branch-statement, at least one edge in S is 

reachable from u.then, but no edge in S is reachable from u.else} 

else-branch-predecessor(S) =  

{ u | u∈V, u is a branch, at least one edge in S is reachable from 

u.else, but no edge in S is reachable from u.then} 

Sub-CG(S) = (V’, E’) 

V’ = V, and 

E’= E – {e | e∈E, e = u→u.else if u is in then-branch-

predecessor(S), or e = u→u.then if u is in else-branch-

predecessor(S)} . 

 

Theorem 1. Given a computation graph CG=(V, E) and a set of edges S ⊂ E, an 

execution path p visits at least one edge in S if and only if p is a path in Sub-CG(S) = 

(V’, E’). 

Proof. Sub-CG(S) is a sub-graph of CG with fewer edges. An execution path in CG 

is still in Sub-CG(S) if and only if this path does not contain any edge in E - E’. 

⇒ Assume that there is a path p in CG that visits an edge in S but is not in the sub-

graph. Suppose p visits an edge vi→vj that has been removed. According to the 

definition of the sub-graph, none of the edge in E is reachable from vi→vj, i.e., a 

contradiction.  

⇐ Assume p is a path in CG that does not visit any edge in S. Let P = {q | q is a 

path of CG, q visits S}. Since S is not empty, P is not empty. For each path q in P, 

match p and q according to their vertex sequence. Let vi be the last vertex in p that 

matches a vertex in P. vi must be a branch vertex. Let edge vi→vj and edge vi→vj’ be 

the two branches from vi. Suppose edge vi→vj is in p. vi→vj cannot reach any edge in 

S. Since vi is the last vertex-match with paths in P, vi→vj’ can reach an edge in S. So 

vi→vj should be removed according to definition of then-branch-predecessor (S) or 

else-branch-predecessor (S). So any path that does not visit an edge in S will be 

removed from sub-graph.                                                                                              ■ 

 

Since the computation graph of the program is a DAG after loop unrolling, we can 

linearly order the vertices using a topological sort. 



Given a computation graph CG, let order represent topological-sort(CG) such that 

order[Exit] =0; order[Entry] = n-1; and n is number of vertices in CG. 

 

Definition. Let u be a vertex in CG. Define the set go-through-edge(u) = {e | e∈E, 

e.to = u }. 

 

Theorem 2. Given a vertex u in CG, a path visits u if and only if the path visits an 

edge in go-through-edge(u). 

Proof. Since CG is a directed graph, all paths visiting vertex u will go through an 

edge whose end point is u.                           ■ 

 

Definition. Given a vertex u in CG, bypass-edge(u) = {e | e∈E, order[e.from] > 

order[u] and order[e.to] < order[u]}.  

 

Theorem 3. Given a vertex u, a path p bypasses u if and only if p visits an edge in 

bypass-edge(u). 

Proof. ⇒  Let path p: v0→v1→v2→ …→vm be a path in CG, v0 = Entry and vm = 

Exit. According to the topological sort, order[v0] > order[v1] > order[v2] > … > 

order[vm]. For vertex u, if u ≠ Entry and u ≠ Exit, then order[u] < order[Entry]  and 

order[u] >order[Exit]. Since u is not in p, there must be two vertices vi and vj in p 

such that order[vi] > order[u] and order[vj] <order[u].  By definition, edge vi→vj is in 

bypass-edge(u). 

⇐  Let path p: v0→v1→v2→ …→vm be a path in CG, v0 = Entry and vm = Exit. 

Since p visits a path in bypass-edge(u) there exist an edge vi→vj such that  order[vi] > 

order[u] and order[vj] <order[u].  According to the topological sort, order[vk] > 

order[vi] > order[u] if k < i,  and  order[vk] < order[vj] < order[u] if k>j. So path p can 

not visit u.                                                                                                                     ■ 

 

Theorem 4. Given a vertex u in CG, a path visits u if and only if the path is in           

Sub-CG (go-through-edge(u)). 

Proof. Follows from Theorem 2 and Theorem 1. Since paths that visit u are the 

paths that visit go-through-edge(u) and paths that visit go-through-edge(u) are the 

paths in Sub-CG(go-through-edge(u)), therefore paths that visit u are the paths in                                

Sub-CG(go-through-edge(u).                                                                                    ■ 

 

Theorem 5. Given a vertex u in CG, a path bypasses u if and only if the path is in       

Sub-CG(bypass-edge(u)). 

Proof. Follows from Theorem 3 and Theorem 1. Since paths that visit u are the 

paths that visit bypass-edge(u) and paths that visit bypass-edge(u) are the paths in 

Sub-CG(bypass-edge(u)), therefore paths that visit u are the paths in Sub-CG(bypass-

edge(u)).                                                                                                                      ■ 
 

Algorithm. 

Figure 3 shows our splitting algorithm. The method branches() returns the branch 

vertices of a given computation graph. If one edge of a branch vertex has been 

removed in a sub-graph, this branch vertex will not be counted as a branch in that sub-

graph.  



To illustrate, consider the example form Section 2.  The split-complexity of v11 can 

be calculated in the following steps: 

1) For go-through sub-graph,  

go-through-edge(v11) = { v2→v11, v6→v11, v10→v11}; 

branches(Sub-CG(go-through-edge(v11)))= {v2, v6}; 

2) For bypass sub-graph,  

bypass-edge(v11) = { v3→v4, v7→v8)}; 

branches(Sub-CG(bypass-edge(v11)))= {v3}; 

3) For split-complexity, 

Split-complexity(v11) = max {|{ v2,v6}|, |{v3}|} = 2. 

According to the definition of Sub-CG, some branch edges will be removed to 

construct a sub-graph. Given a branch, edge removing is implemented by 

transforming the branch statement into an assume statement. The semantic 

consistency of this transformation is discussed in the background section. 

5   Experiments 

To evaluate our approach, we compare performance of our sub-program-based 

incremental analysis and the traditional entire program analysis. We select the Forge 

tool-set [] as the baseline, since it is the most recent implementation of the traditional 

approach from the Alloy group at MIT. We piggyback on Forge to implement our 

incremental approach.  

Experimental evaluation is based on checking four procedures in Java library 

classes: contains() of LinkedList (a singly-linked acyclic list), contains() of 

BinarySearchTree, add() of BinarySearchTree, and topologicalsort() of 

Graph (directed acyclic graph).  

In relational logic based bounded verification, the bound specifies the numbers of 

loop unrolling, scope, and bit-width—the  number of bits used to represent an integer 

value. Since our optimization does not address integer representation, we set the bit-

width to 4 in all the four experiments. Scope defines the maximum number of nodes 

in a list, tree, or graph. Unrolling specifies the number of unrollings for a loop body. 

For contains() of LinkedList and contains() of BinarySearchTree, we check 

them with fixed scope and varied unrolling. For add() of BinarySearchTree, and 

 
Figure 3. Program splitting algorithm. 



topologicalsort() of Graph, we check them with fixed unrolling and varied 

scope. 

For each bound, we run our incremental analysis and the traditional entire program 

analysis to check a procedure against its pre-condition and post-condition, which 

represent the usual correctness properties including structural invariants. For each 

sub-program, we record the checking time, number of branches, variables and clauses 

of CNF formula. The total time is the sum of the checking time of all sub-programs. 

For the traditional analysis, we similarly record the checking time, number of 

branches, variables and clauses of CNF formula. The speedup is the ratio of the 

checking time of the traditional analysis to the total checking time of our incremental 

analysis. 

We ran experiments on a Dual-Core 1.8GHz AMD Opteron processor with 2 GB 

RAM. We selected MiniSAT as the SAT solver. We run each experiment three times 

and use the average as the final result. The results are showed in the tables that 

follow.  

 
unrolling  sub0 sub1 sub2 sub3 total entire speedup 

time (sec.) 2 1 82 1 86 343 3.99X 

# branch 1 2 2 2  10 

# variable 4655 4149 4731 3969  4740 

5 

# clauses 10081 8353 10167 7563  14271 

 

time(sec.) 8 1 173 7 189 653 3.46X 

# branch 2 2 2 3  12 

# variable 4911 4149 4985 4226  4996 

6 

# clauses 10945 8353 11031 8436  15213 

 

time(sec.) 66 1 428 3 498 4541 9.12X 

# branch 2 3 3 3  14 

# variable 5165 4406 5242 4226  5252 

7 

# clauses 11809 9218 11904 8436  16155 

 

time(sec.) 179 1 359 44 583 21414 36.73X 

# branch 3 3 3 4  16 

# variable 5422 4406 5496 4484  5508 

8 

# clauses 12674 9218 12768 9310  17097 

 

Table 1. LinkedList.contains() (bit-width = 4, scope = 8) 

unrolling sub0 sub1 sub2 sub3 total entire speedup 

time(sec.) 564 552 390 388 1894 6468 3.42X 

# branch 4 4 3 4  12 

# variable 7776 7369 6961 6724  7808 

4 

# clauses 20734 19185 17635 16726  21193 

 

time(sec.) 1 2427 1745 301 4474 15015 3.36X 

# branch 7 7 5 4  15 

5 

# variable 8151 8151 7376 6724  8224 

 



# clauses 22170 22178 19300 16726  22859 

time(sec.) 698 1879 546 936 4059 18982 4.68X 

# branch 7 5 5 6  18 

# variable 8599 8192 7539 6976  8640 

6 

# clauses 23941 22400 19822 17861  24525 

 

time(sec.) 1 2535 2834 686 6056 28435 4.71X 

# branch 11 11 6 7  21 

# variable 8975 8975 7784 7140  9056 

7 

# clauses 25386 25394 20850 18392  26191 

 

time(sec.) 794 1085 1289 623 3791 18703 4.94X 

# branch 13 13 7 7  24 

# variable 9384 9384 7948 7140  9472 

8 

# clauses 26945 26953 21381 18392  27857 

 

Table 2. BinarySearchTree.contains() (bit-width = 4, scope = 7) 

 
scope  sub0 sub1 sub2 sub3 total entire speedup 

time(sec.) 2 3 1 3 9 43 4.78X 

# branch 5 6 6 7  11 

# variable 4878 5092 4692 5083  9686 

4 

# clauses 16132 17393 15079 17397  36929 

 

time(sec.) 13 15 3 9 40 249 6.23X 

# branch 5 6 6 7  11 

# variable 6705 7038 6446 6653  12837 

5 

# clauses 22457 24308 20990 22973  49623 

 

time(sec.) 140 316 30 19 505 4339 8.59X 

# branch 5 6 6 7  11 

# variable 8689 9161 8349 8340  16335 

6 

# clauses 29414 31943 27487 28965  63809 

 

time(sec.) 1675 6409 863 76 9023 109730 12.16X 

# branch 5 6 6 7  11 

# variable 11030 11661 10601 10247  20380 

7 

# clauses 37703 40998 35270 35738  80187 

 



Table 3. BinarySearchTree.add() (unrolling = 3, bit-width = 4) 

 
scope  sub0 sub1 sub2 sub3 total entire speedup 

time(sec.) 183 152 118 1 454 1436 3.16X 

# branch 1 1 1 1  7 

# variable 269908 197682 125456 53230  269962 

7 

# clauses 1073479 785037 496595 208153  1084273 

 

time(sec.) 210 199 114 1 524 1422 2.71X 

# branch 1 1 1 1  7 

# variable 299104 219070 139036 59002  299158 

8 

# clauses 1197974 875832 553690 231548  1210304 

 

time(sec.) 214 278 157 1 650 2113 3.25X 

# branch 1 1 1 1  7 

# variable 357978 262236 166494 70752  358032 

9 

# clauses 1457783 1065867 673951 282035  1471649 

 

time(sec.) 357 255 187 2 801 2844 3.55X 

# branch 1 1 1 1  7 

# variable 402696 295010 187324 79638  402750 

10 

# clauses 1659106 1212870 766634 320398  1674508 

 

time(sec.) 611 341 263 2 1217 3694 3.04X 

# branch 1 1 1 1  7 

# variable 439783 322189 204595 87001  439837 

11 

# clauses 1829579 1337181 844783 352385  1846517 

 

time(sec.) 558 519 247 2 1326 4372 3.31X 

# branch 1 1 1 1  7 

# variable 476935 349417 221899 94381  476989 

12 

# clauses 2003834 1464198 924562 384926  2022308 

 

Table 4. Graph.TopologicalSort () (unrolling = 7, bit-width = 4) 

Table 1 and Table 2 show the performance comparison for different loop 

unrollings. Table 3 and Table 4 show the comparison for different scopes. Results 

from the four experiments showed that our splitting algorithm gave at least a 2.71X 

performance improvement over the traditional approach, whereas the maximum 

speed-up was 36.73X.  



The results also show that our splitting algorithm scales better. As unrolling 

increasing from 5 to 8, speedup of checking contains() of LinkedList increases 

from 3.99X to 36.73X. As scope increasing from 4 to 7, speedup of checking add() of 

BinarySearchTree increases from 4.78X to 12.6X.   

 The relative lower speedup in contains() of BinarySearchTree and 

topologicalsort() of Graph show a limitation of our approach. Compared with 

traditional approach which checks correctness against specifications only once, our 

divide-and-solve approach requires multiple correctness checking, one checking for 

one sub-program. In case the complexity of specification formula is much heavier 

than code formula, the benefit from dividing the code formula will be reduced largely 

by the overhead from multiple checking specification formulas. However, even with 

specification of complex data structure invariants, our approach still shows 5X 

speedup in contains() of BinarySearchTree with 8 unrollings and 7 nodes.  

The results show that our splitting heuristic is effective at evenly splitting the 

branches. Moreover, the smaller number of variables and clauses for the incremental 

approach shows the workload to SAT has been effectively divided by splitting entire 

program into sub-programs using our approach. 

6   Related work 

Our work is based on previous research [15] that models a heap-manipulating 

procedure using Alloy and finds counterexamples using SAT. Jackson et al. [15] 

proposed an approach to model complex data structures with relations and encode 

control flow, data flow, and frame conditions into relational formulas. Vaziri et al. 

[31] optimized the translation to boolean formulas by using a special encoding of 

functional relations. Dennis et al. [6] provided explicit facilities to specify imperative 

code with first-order relational logic and used an optimized relational model finder 

[30] as the backend constraint solver. Our algorithm can reduce the workload to the 

backend constraint solver by splitting the computation graph that underlies all these 

prior approaches and dividing the procedure into smaller sub-programs. 

DynAlloy [9] is a promising approach that builds on Alloy to directly support 

sequencing of operations. We believe our incremental approach can optimize 

DynAlloy’s solving too. 

Bounded exhaustive checking, e.g., using TestEra [18] or Korat [2] can check 

programs that manipulate complex data structures.  Testing, however, has a basic 

limitation that running a program against one input only checks the behavior for that 

input. In contrast, translating a code segment to a formula that is solved allows 

checking all (bounded) paths in that segment against all (bounded) inputs. 

The recent advances in constraint solving technology have led to a rebirth of 

symbolic execution [20]. Guiding symbolic execution using concrete executions is 

rapidly gaining popularity as a means of scaling it up in several recent frameworks, 

most notably DART [11], CUTE [28], and EXE [3]. While DART and EXE focus on 

properties of primitives and arrays to check for security holes (e.g., buffer overflows), 

CUTE has explored the use of white-box testing using preconditions, similar to Korat 

[2]. Symbolic/concrete execution can be viewed as an extreme case of our approach 



where each sub-program represents exactly one path in the original program.  As the 

number of paths increases, the number of calls to the constraint solver increases in 

symbolic execution.  Our approach is motivated by our quest to find a sweet spot 

between checking all paths at once (traditional approach) and each path one-by-one 

(symbolic/concrete execution). 

Model checkers have traditionally focused on properties of control [1, 24].  Recent 

advances in software model checking [10, 32] have allowed checking properties of 

data.  However, software model checkers typically require explicit checking of each 

execution path of the program under test. 

Slicing techniques [29] have been used to reduce workload of bounded 

verification. Dolby et al. [7] and Saturn [33] perform slicing at the logic 

representation level. Millett et al. [25] slice Promela programs for SPIN model 

checker [1]. Visser et al. [32] and Corbett et al. [4] prune the parts that are not related 

to temporal constraints and slice at the source code level. Since slicing is based on 

constraints, the effectiveness depends on the properties to be checked. Statements do 

not manipulate any relations in properties will not be translated into formula for 

checking. If constraints are so complex that all the relations show up, no statements 

will be pruned. Our program-splitting algorithm can still reduce workload to backend 

constraint solvers because our path partitioning algorithm is independent of 

constraints to be checked. 

Sound static analyses, such as traditional shape analysis [27, 21] and recent 

variants [22], provide correctness guarantees for all inputs and all execution paths 

irrespective of a bound.  However, they typically require additional user input in the 

form of additional predicates or loop invariants, which are not required for scope-

bounded checking, which provides an under-approximation of the program under test. 

7   Conclusions 

Scalability is a key issue in scope-bounded checking. Traditional approaches translate 

the bounded code segment of the entire program into one input formula for the 

underlying solver, which solves the complete formula in one execution. For non-

trivial programs, the formulas are complex and represent a heavy workload that can 

choke the solvers.  

We propose a divide-and-solve approach, where smaller segments of bounded code 

are translated and analyzed. Given a vertex in the control-flow graph, we split the 

computation graph of the program into two sub-graphs: go-through sub-graph and 

bypass sub-graph. The go-through sub-graph has all the paths that go through the 

vertex and the bypass sub-graph has all the paths that bypass the vertex. Our vertex-

based path partitioning can guarantee the semantic consistency between the original 

program and the sub-programs. We propose to use the number of branch statements 

as a heuristic to compute an analysis complexity metric of a program. To effectively 

divide the analysis complexity of a program, the heuristic selects a vertex so that the 

number of branch statements in each of sub-programs is minimized.  

We evaluated our divide-and-solve approach by comparison with the traditional 

approach by checking four Java methods against pre-conditions and post-conditions 



defined in Alloy. The experimental results show that our approach provides 

significant speed-ups over the traditional approach. 

The results also show other potential benefits of our program splitting algorithm. 

Because all sub-graphs are independent, they can be checked in parallel. Since our 

program splitting algorithm can effectively divide the workload, parallel checking the 

sub-programs would likely introduce significant speedups. 
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