
Software Assurance by
Bounded Exhaustive Testing

David Coppit, Member, IEEE, Jinlin Yang,

Sarfraz Khurshid, Wei Le, and Kevin Sullivan, Senior Member, IEEE

Abstract—Bounded exhaustive testing (BET) is a verification technique in which software is automatically tested for all valid inputs up

to specified size bounds. A particularly interesting case of BET arises in the context of systems that take structurally complex inputs.

Early research suggests that the BET approach can reveal faults in small systems with inputs of low structural complexity, but its

potential utility for larger systems with more complex input structures remains unclear. We set out to test its utility on one such system.

We used Alloy and TestEra to generate inputs to test the Galileo dynamic fault tree analysis tool, for which we already had both a

formal specification of the input space and a test oracle. An initial attempt to generate inputs using a straightforward translation of our

specification to Alloy did not work well. The generator failed to generate inputs to meaningful bounds. We developed an approach in

which we factored the specification, used TestEra to generate abstract inputs based on one factor, and passed the results through a

postprocessor that reincorporated information from the second factor. Using this technique, we were able to generate test inputs to

meaningful bounds, and the inputs revealed nontrivial faults in the Galileo implementation, our specification, and our oracle. Our results

suggest that BET, combined with specification abstraction and factoring techniques, could become a valuable addition to our

verification toolkit and that further investigation is warranted.

Index Terms—Formal methods, program verification, testing and debugging.

�

1 INTRODUCTION

ASSURING the trustworthiness of even modestly complex
software remains a daunting and important problem.

Exhaustively testing software for all possible inputs is
effective in theory, but usually infeasible owing to the vast
sizes of many input spaces [1]. Instead, researchers have
developed a number of test selection criteria to identify
suitable sets of test cases [3], [7], [34], [48].

Recent research has demonstrated the feasibility of
employing bounded exhaustive testing (BET) to test small
software modules, such as programs that manipulate
simple data structures [32]. The underlying rationale for
BET lies in Jackson’s small scope hypothesis [24]: that any
given fault is likely to be revealed by testing some small
input and that testing all inputs up to some small scope thus
suffices to reveal a high proportion of faults. Despite
promising early results and the continuing advance of
hardware capability, we do not yet know if BET can be
feasibly and usefully applied to larger systems taking more
complex inputs.

BET can always be used within trivial bounds. The
question is whether it can produce enough inputs, and
whether those inputs can be run, to meaningfully test

meaningful systems. The main contribution of this paper is
a limited positive finding, based on one experiment, that
BET, perhaps combined with specification abstraction and
decomposition techniques, has the potential to produce
meaningful test results.

The subject of our experimental evaluation was Galileo
[10], [16], [43], a tool for modeling and analyzing the
reliability of complex, fault-tolerant, computer-based sys-
tems such as aircraft. Galileo analyzes models in the form of
dynamic fault trees (DFTs) [14], [15], [46] to estimate system
reliability. DFTs constitute a significantly more complex
input space than has been explored in prior studies of BET.

Our results rest on two separate efforts. First, we
leveraged our previous work on the formal specification
and validation of the syntax and semantics of DFTs [8], [11],
and the production of a relatively verifiable analyzer that
sacrificed performance scalability for ease of verification.
That analyzer served as our test oracle. Second—the new
effort—we automated bounded exhaustive generation of
DFT inputs by translating our specification into Alloy [23],
and using TestEra [32] as a generator.

Our initial attempts failed. Alloy would run out of
memory long before it generated a reasonable space of
input structures. We eventually overcame the problem by
decomposing and abstracting the input specification in a
way that allowed us to offload work from Alloy. We
abstracted certain details from the specification, recorded
the details separately, used TestEra to generate abstract
inputs from the abstracted specification, and finally
recombined the abstract inputs with the details to recon-
stitute the input space.

Using this technique, we were able to generate input
structures to meaningful bounds—to the point that testing

328 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

. D. Coppit is with the Department of Computer Science, The College of
William and Mary, Williamsburg, VA 23187. E-mail: david@coppit.org.

. J. Yang, W. Le, and K. Sullivan are with the Department of Computer
Science, The University of Virginia, Charlottesville, VA 22901.
E-mail: {jy6q, weile, sullivan}@virginia.edu.

. S. Khurshid is with Electrical and Computer Engineering, University of
Texas, Austin, TX 78712. E-mail: khurshid@ece.utexas.edu.

Manuscript received 26 Oct. 2004; revised 9 Apr. 2005; accepted 13 Apr.
2005; published online 26 May 2005.
Recommended for acceptance by G. Rothermel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0248-1004.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

did reveal some significant faults and to the point where
running the test cases, rather than generating them, became
the bottleneck. We generated and tested more than 250,000
dynamic fault tree inputs.

We have structured the rest of this paper as follows: The
next section introduces dynamic fault tree analysis and the
Galileo tool. Section 3 describes the setup of our case study,
focusing on the input generation and output validation
aspects of the testing process. Section 4 discusses the key
limiting factors we discovered during preliminary experi-
ments and presents our solution to the input generation
problem. Section 5 presents the results of our case study,
which we discuss in Section 6. Section 7 presents related
work. Section 8 concludes.

2 DYNAMIC FAULT TREES AND GALILEO

In this section, we introduce dynamic fault tree analysis and
the subject of our study, the Galileo dynamic fault tree
modeling and analysis tool. Galileo allows reliability
engineers to estimate the reliability of complex systems
using the DFT method. Galileo is in limited production use
at NASA now, and is one of two major new probabilistic
risk assessment (PRA) methods and tools planned for
agency-wide adoption.

2.1 Dynamic Fault Tree Analysis

Dynamic fault tree modeling and analysis [5], [15], [46]

allows reliability engineers to estimate reliability and other

dependability properties of computer-based systems using

complex redundancy management. Such systems are

essential in space, military, nuclear, and other critical,

hazardous applications. The Galileo DFT notation supports

coverage modeling, order-dependent failure, replicated

events, phased missions, common cause and cascading

failures, shared spares, numerous time-to-failure distribu-

tions, and more.

A dynamic fault tree (DFT) is a graph in which basic event

nodes represent component failure events or other events

that bear on system functioning, and in which gate nodes

represent events that occur as functions of other events.

Gates can be either static or dynamic, depending on

whether it matters in what order their input events occur.

For example, a static AND gate models a failure event that

occurs if and only if all of its input failure events occur. A

dynamic priority-AND gate (PAND) fails if and only if all of

its input gates fail in order. We say that a node fails as a

shorthand meaning that the event that the node models has

occurred. Constraint nodes assert constraints on events. A

functional dependency constraint (FDEP) models a cascading

failure by stating that one event triggers immediate,

simultaneous occurence of other basic events. A sequence

enforcing constraint (SEQ) states that given failures can

occur only in a given order.
Fig. 1 presents an example dynamic fault tree with a

spare gate, three basic events as inputs to the spare gate,
and a functional dependency constraint connecting the first
and third basic events. A spare gate fails if and only if all of
its inputs—which model redundant parts—have either
failed or become unavailable. Parts can become unavailable

in systems with shared spares. Operationally, a spare gate
functions for as long as a working part is available, and it

fails when there are no more working available parts. It uses
parts in the order in which they appear as inputs. Our spare

gate thus starts in a state in which Event 1 is in use and,
thus, unavailable to any other spare gate. If Event 1 fails, the

spare gate attempts to allocate Event 2. The functional
dependence constaint indicates that the failure of Event 1

causes the failure of Event 3. In this system, then, having

Event 1 and Event 2 fail suffices to cause the spare gate as a
whole to fail.

In practice, time-to-failure distributions are associated

with basic events, and time-to-failure distributions are
computed for the top-level node of a fault tree, which

models an overall system failure. Fault tree analysis is used
to estimate numerous properties of systems being modeled.

For example, given a fault tree, failure rates for basic events,
and an expected mission time, one can compute system
reliability. Such analyses are performed by converting fault

trees into state-based or combinatorial representations [5].
In the state-based approach, for example, one converts the

fault tree into a continuous-time Markov chain where each
state represents an equivalence class of failure histories, and

each transition corresponds to the failure of a component. In
some histories, the top event in a tree has occurred. One
computes the probability of failure by solving the Markov

chain and determining the probability of being in any state
in which the top-level event has failed.

Fig. 2 shows a state machine for the example tree. The

left-most state is the initial state, in which all the basic
events are operational and the spare gate is using Event 1.

Transitions from states model basic event failures. For
example, when Event 1 fails, the next state has both Event 1

and Event 3 failed (the latter due to the functional
dependency) and the spare gate using Event 2. The shaded
state is a system failure state, as indicated by the failed

status of the (top-level) spare gate.

COPPIT ET AL.: SOFTWARE ASSURANCE BY BOUNDED EXHAUSTIVE TESTING 329

Fig. 1. A dynamic fault tree involving a spare gate, three basic events,

and a functional dependence (cascading failure) constraint.

Our example hints at the difficulties one faces in
developing a complex new modeling method and software
implementation to automate it. One challenge is to specify
and validate the modeling syntax. We spent a considerable
amount of time debating whether certain DFTs made sense:
whether they were trees that could conceivably arise in
actual modeling practice. Second, it is difficult to specify a
complete, precise, abstract semantics for the space of all
syntactically valid models. Although the semantics of any
given gate (such as PAND) are easy to describe, it is not
easy to discern the meaning of dynamic fault trees in which
many such constructs interact. For instance, functional
dependencies cause simultaneous failures, and PAND gates
fail if their inputs occur in order. Do simultaneous input
events count? We had to resolve many such issues in
developing an adequate semantics. Third, it is difficult to
develop an efficient and dependable implementation of the
specified mapping from fault tree expressions to analysis
results, given that complex optimizations are needed to
mitigate combinatorial explosion in expanding partial
failure states. Building confidence in the dependability of
a complex, optimized implementation is a challenge. There
is clearly no silver bullet. In this paper, we simply ask can
BET help?

2.2 Galileo

Galileo [10], [11], [16], [43] is a tool for modeling and
analyzing DFTs. It began as a research prototype for
assessing the viability of using mass-market applications
as components. The success of the approach and prototype
tool led NASA Langley Research Center to support us in
developing the work, and they have now deployed it for
use within the agency, e.g., on the International Space
Station project.

These developments have placed a greater premium on
the dependability of the core analysis functions. New

modeling and analysis features, such as phased mission
modeling and analysis, diagnostic decision trees, and
sensitivity analysis complicate the software analysis rou-
tines considerably. As a result, the dependability of the
DFT solver is of increasing concern.

The Galileo DFT solver is an interesting case study for
several reasons. First, DFTs are much more structurally
complex as inputs than the red-black trees and such data
structures used in previous evaluations of BET. Second, the
program is larger and more complex than systems pre-
viously used in evaluating BET. The translation of dynamic
fault trees to complex structures involving Markov chains
and other representations is not simple.

These routines are complicated by optimizations addres-
sing the combinatorial explosion problem. First, Galileo
decomposes large DFTs into independent subtrees when it
can, solves the subtrees independently, and composes the
intermediate results to produce the final result [18]. Second,
Galileo automatically chooses the faster of two DFT solvers:
a dynamic solver that translates to Markov chains and a static
solver that translates to BDDs [14]. The dynamic solver can
solve most trees, and is the focus of our case study. The
static solver is applicable only to trees without dynamic
gates. For such cases, however, it can be much more
efficient. A key required and expected property is that both
solvers produce exactly the same answers for inputs
for which they are both applicable. As we describe in
Section 3.1, we utilized the static solver whenever possible
to serve as an additional oracle for validating the results of
the dynamic solver.

3 CASE STUDY DESIGN

We designed our study to evaluate the feasibility of using
BET for meaningful testing of systems such as Galileo. Our
feasibility criterion had three parts. First, BET should
generate test inputs to bounds that we knew to include
certain known fault-revealing inputs for Galileo. Second,
BET should generate test inputs to bounds at which
unexpected interactions among modeling constructs are
possible—because that is where we believe faults are likely
to cluster. Third, BET should reveal previously unknown
faults.

The size of a structurally complex input is multidimen-
sional. For example, a DFT could be measured in number of
events, number of constraints, or number of connections. To
control the overall size of the inputs that BET generates, one
must set individual scope values for each such dimension.
The three dimensions in our experiment were the number
of events (basic events plus gates), the number of functional
dependence constraints, and the number of sequence
enforcing constraints.

As part of our evaluation, we iteratively increased these
three scope values in an attempt to include fault trees that
exercise known subtleties in the DFT semantics. Fig. 3
shows two such fault trees. The fault tree on the left
illustrates “lack of replicate identity.” Here, the 3 in the
circle under Event 3 indicates that Event 3 is a replicated
event—a node that models three functionally and statisti-
cally identical, anonymous components. Replication is a
notational convenience that allows a reliability engineer to

330 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 2. The state space for the DFT in Fig. 1.

use a single basic event to model multiple components. In
the state in which Event 1 and Event 2 have failed, both
spare gates are using replicates of Event 3. When one of the
three replicates fails, it is not clear whether it’s the replicate
in use by Spare Gate 1, Spare Gate 2, or neither.

The second fault tree illustrates a “simultaneous failure
conflict.” In this case, the functional dependence states that
the two dependent basic events Event 2 and Event 3 fail at
the same time that the trigger Event 1 fails. The semantics of
the priority and gate were not clear in the case where Event

2 and Event 3 fail at the same time.
The fault tree in Fig. 3a contains six events. The fault tree

in Fig. 3b contains four events and one functional
dependency. Based on these fault trees, we set our scope
targets to be six gates or basic events, one functional
dependence constraint, and one sequence enforcing con-
straint.

3.1 Evaluation Methodology

We first prepared the Galileo system to support testing. In
addition to a test driver, we required both automated input
generation and automated output validation. To generate
inputs exhaustively starting with the smallest, we used
TestEra as a state-of-the-art input generation technology. We
checked outputs using our previously developed Nova

solver as a test oracle. Unlike Galileo, we had derived Nova
by careful engineering from our previously developed
formal specification, eschewing complex optimization for
ease of verification. We discuss these aspects of the case
study in more detail in the next two subsections.

Our process starts with the smallest scope values for
various characteristics of fault trees: one event, zero FDEPs,
and zero SEQs. We generate all DFTs at that scope, test the
dynamic solver for the DFTs, then increment the scope
values and repeat generation and testing. We stop when we
reach our goal scope, or when generation or testing of the
software becomes infeasible.

To test at a given scope, we present generated test inputs
to the Galileo dynamic solver, to the Nova oracle, and, if
possible, to the Galileo static solver. We capture and
compare the outputs. On finding a discrepancy, we ask
domain experts acting as human oracles to hand-compute
the correct output. The smallness of inputs is advantageous
here: It makes manual computation of correct answers
relatively easy. Finally, we assess blame: to Galileo, to the
oracle implementation, or to the formal specification.

If BET detects a fault at all, it often manifests itself in a
large number of input cases. When there are several faults,
the problem becomes one of partitioning large numbers of
observed failures into small numbers of equivalence classes
by faults. Our approach is to start by selecting one failing
test case and then ask our domain experts to debug the
problem. Once we understand the problem, we then either
fix it right away or modify the generator input specification
to cause the generator to mark each input known to exercise
the fault. Modifying the test harness to skip marked tests in
the next round in effect focuses our testing on the remaining
unexplained faults. As this process unfolds, an interesting
side effect is that the specification evolves from one that
describes the desired system to one that describes the actual
system, with faults included but marked as such. We iterate
until no more faults are revealed, at which point we
increase the scope and continue generation and testing.

3.2 Automating Input Generation: TestEra

In our initial experiments, TestEra was unable to generate
fault trees beyond a scope of three events (e.g., two basic
events and an AND gate). The problem was clearly in the
size of the state space that we were asking TestEra to
expand. The need was to reduce the state space without
losing information because we did, in the end, want to
generate all specified inputs within scope. Our solution was
to develop a two-stage process that uses TestEra to generate
abstract fault trees, described by an abstracted specification,
and then to patch up these abstract inputs using a

COPPIT ET AL.: SOFTWARE ASSURANCE BY BOUNDED EXHAUSTIVE TESTING 331

Fig. 3. Two fault trees with subtle semantics.

postprocessor that reconstitutes concrete fault tree inputs
from the abstract inputs and from an auxiliary data
structure that describes the information that we had
abstracted from the specification. We defer discussion of
this work-around to the next section, focusing here on
TestEra itself.

TestEra [32] is a framework for automated specification-
based testing of Java classes. To test a method, one provides
a specification that consists of a precondition that describes
allowed inputs to a method and a postcondition that
describes the expected outputs. TestEra uses the precondi-
tion to generate a test suite for all test inputs up to a given
bound. A test input is within a bound of k if at most k objects
of any given class appear in it. TestEra executes the method
on each input, and uses the postcondition as a test oracle to
check the correctness of each output.

TestEra specifications are first-order logic formulas. As
an enabling technology, TestEra uses the Alloy toolset.
Alloy [23] is a first-order declarative language based on sets
and relations. The Alloy Analyzer [25] finds instances of
Alloy specifications using an off-the-shelf SAT solver that
supports enumeration, such as mChaff [35] or relsat [2].

TestEra supports efficient testing of isomorphic inputs
by identifying the subset of nonisomorphic inputs that form
a revealing subdomain [47]. The analyzer has automatic
symmetry breaking [40] to eliminate many isomorphic
inputs. TestEra can also exploit user-provided total orders
to guarantee generation of exactly nonisomorphic inputs
[26]. Considering only nonisomorphic inputs reduces the
time required to test the program, without reducing the
possibility of detecting faults.

Initial case studies with TestEra focused on checking
Java programs. TestEra exposed faults in a naming
architecture for dynamic networks [26], and in part of an
earlier version of the Alloy Analyzer [32]. TestEra was also
used to check methods on Java data structures, such as
those in the Java Collection Framework [45].

Although TestEra was designed to test Java programs,
we were able to modify it to serve as an input generator for
our case study. Instead of writing preconditions of class
member functions in Alloy, we provided TestEra with an
Alloy specification of DFTs directly. We also wrote Java and
Perl programs to interface with the TestEra generation back-
end, translating the Java object that it generated into a
textual representation of the DFT that could be read by
Galileo. In this way, we were able to leverage the input
generation capabilities of TestEra to enumerate all instances
that satisfied the input specification. By changing the scope
values in the specification, we could control the size of the
generated inputs.

3.3 Automating Output Validation: Nova Solver

To check test outputs, we used an implementation of the
Galileo dynamic analyzer called Nova as an oracle. Nova is
far simpler than the Galileo version because it eschews
optimizations (and is thus largely useless for analyzing
large inputs). We implemented Nova as a direct translation
into C++ of our previously developed formal specification
of the syntax and semantics of DFTs [8], [11], [12], [38],
written in Z [41].

We have developed the specification and Nova itself as
part of an overall effort to evaluate the feasibility of
combining formal methods and package-oriented pro-
gramming to achieve both dependability and usability in
engineering tools at low cost [8]. In creating Nova, we
traded efficiency for dependability. Although produced
for other reasons, Nova turned out to provide a good,
though not perfect, oracle: a relatively dependable im-
plementation able at least to handle small inputs. For
dynamic fault trees with the four nodes, Galileo is about
five times as fast as the oracle. We thus exploited the
nature of BET—that it involves only small inputs—to ease
the problem of developing (in this case, finding) a suitably
dependable oracle.

The Nova DFT analyzer differs from Galileo in several
ways. First, it supports a slight variant of the Galileo DFT
language that we designed for improved regularity and
orthogonality. The slight difference in input language was
an inconvenience at times. We worked around it, mainly by
lightly preprocessing generated inputs before dispatching
them to Galileo and Nova, respectively. Nova provides a
DFT dynamic solver, a DFT data structure, and a textual
DFT parser. It does not support many Galileo functions,
including phased missions, sensitivity analysis, or other
advanced capabilities. However, it does support the core
reliability analysis function of Galileo, which is what we
had set out to test.

4 PRELIMINARY STUDY OF LIMITING FACTORS

Our initial attempts to generate inputs to test Galileo
revealed two impediments to the use of BET. First and
foremost, TestEra was unable to generate DFTs beyond a
small bound of three events. This was due in part to the
combinatorial explosion of DFTs even for small scopes, and
in part to the use of mChaff as an underlying SAT solver,
which its author described as optimized for instance-
finding, not exhaustive generation. Nevertheless, TestEra
is a state-of-the-art tool that had been used to generate
simpler inputs, and we remained hopeful that it could be
made to work for our more complex inputs, as well.

The second bottleneck that emerged over time was the
performance of the oracle. Because we designed Nova for
verifiability, not performance, it took no measures against
exponential growth in the size of the state space to be
processed, and its execution time grew hugely as the size of
DFT inputs increased. Throughout most of our effort,
however, generating the DFTs remained the primary
bottleneck.

Given our preliminary results, we focused on improving
the scalability of input generation. We used several
strategies. Following Khurshid et al. [26], we added
symmetry breaking predicates to the specification provided
to TestEra, to avoid generating fault trees that were
isomorphic to previously generated inputs. However, even
with symmetry breaking, the input space was too large.
Next, we tightened our specification to exclude fault trees
accepted by Nova, but that we knew would be rejected by
Galileo. (This is one place where the slight language
differences were an inconvenience.) For instance, we

332 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

restricted the generation of DFTs having disconnected
components, which Nova accepts but Galileo rejects.

While these techniques did allow us to extend the
generation bound, the most effective technique was what
we called separation of generation concerns. This approach
combines specification abstraction (the generation of inputs
satisfying the abstracted specification) and postprocessing of
the abstract inputs to restore the details initially abstracted
away. This approach offloads relatively trivial state space
expansion work from the constraint-solving generator to a
simple postprocessor, significantly reducing the state space
that the generator has to traverse. For example, scalar value
attributes of basic events (such as parameters of time-to-
failure distributions) do not influence DFT structures at all
and need not be managed by a constraint-solver. Rather, a
simple postprocessor can just fill in different concrete
values in where an abstract value appears in a generated
abstract input. In this way, the constraint solver’s workload
is lightened, but the same results are obtained in the end.

Our approach is thus to abstract details from the
specification that need not be handled by the constraint-
solving generator and to replace them with abstract
placeholders. This approach allows the constraint solver
to handle only the hard parts of structure generation, while
simple dimensions of the input space that merely exacer-
bate the curse of dimensionality are handled by a post-
processing phase. We called the inputs generated from our
abstracted specification abstract fault trees (AFTs). We used
Perl scripts to generate concrete fault trees (FTs) from the
abstract ones by systematically substituting concrete values
for the placeholders. The reduction in the state space that
this factoring approach achieved enabled us to generate
concrete trees with up to six events and abstract trees with
up to eight. (See Table 1.)

The main benefit of this approach is that the generator
can generate inputs exhaustively to larger bounds because
the number of states within given bounds as seen by the
constraint-solving generator is much smaller. We also found it
is easier to check for—and at one point we detected—errors
in the generation function by calculating the number of
generated inputs expected within a given bound and
checking the actual number against it.

Fig. 4 compares the number of fault trees and abstract
fault trees generated as a function of scope: in particular, in
terms of the number of events in a tree. The X-axis
represents the number of events; the Y-axis, the logarithm
of the number of instances. The dashed line denotes fault
trees; the solid line, abstract fault trees. The curve for AFTs
is not only lower, allowing generation to a larger bound, but
it also grows more slowly so that improvements in
generation technology have more leverage.

Prior uses of TestEra have involved data translations that
used a similar form of abstraction, but they mapped each
abstract input to one concrete input [33]. The bottom line
result in our case was that we were able to transcend input
generation as a bottleneck and increase the generation of
test inputs to meaningful bounds.

5 RESULTS

We now present the results of our application of BET to the
Galileo solver.

5.1 Executing the Tests

For fault tree generation we used a dual-CPU Pentium 3 at
1GHz with 1GB of RAM running Red Hat Linux 2.4.18-
27.7.xsmp #1 SMP. The generator ran unsatisfactorily under
Windows due to incompatible memory management
requirements of the underlying SAT solver. After generat-
ing the inputs for a particular set of scope values, we ran the
Galileo dynamic solver, Nova, and possibly the static solver
for the inputs, and compared the results. The machine used
to run test cases was a dual-CPU Pentium 4 at 3GHz with
1GB RAM and Windows XP Professional Service Pack 1.

Table 1 summarizes the number of inputs we generated.
We were able to generate all abstract fault trees up to scopes
of eight events and no functional dependencies or sequence
enforcers. We were able to instantiate all concrete DFTs
with up to six events and no constraints.

Having addressed the input generation limitation, the
speed of the oracle became a more significant factor. Of the
fault trees we generated, we were able to test all fault trees
up to a scope of five events and no constraints. We tested
approximately 250,000 inputs in this scope, taking about a
week to complete. As expected, the performance of the
oracle degraded as the size of the input fault tree increased.
As a result, it would be impossible to run all trees with six

COPPIT ET AL.: SOFTWARE ASSURANCE BY BOUNDED EXHAUSTIVE TESTING 333

TABLE 1
The Number of DFTs and AFTs Generated

Fig. 4. Comparison of the number of AFTs and DFTs.

events without optimizing the oracle (which would be an
option, in practice). The Nova solver takes 2 minutes to
solve a six-event fault tree, so it would take 355 years to run
all such DFTs.

5.2 A Fault in Galileo

BET revealed eight faults in Galileo, three in the specifica-

tion, and three in the oracle. To make the results concrete,

we describe an instance of each. The example DFT

presented earlier in Fig. 1 shows a test input that revealed

a fault in Galileo. As discussed in Section 2, basic events

Event 1, Event 2, and Event 3 must all fail for the spare gate

to fail. If only Event 1 fails, the spare gate should remain

operational for as long as Event 2 or Event 3 do. Consulting

the state machine in Fig. 2, from the initial state in which no

events have failed, a transition for the failure Event 1 should

lead to a state in which Event 2 and the spare gate remain

operational (the lower-most state in the figure).

However, debugging of Galileo revealed that the transi-

tion led to a state with Event 2 operational but not the spare

gate. The resulting unreliability estimate for this model was

thus higher than the correct value. This fault had gone

undetected for at least three reasons. First, the DFT is one

probably never previously considered, given the currently

limited usage of the tool. It is just the kind of case that BET

aims to test. Second, the fault is in the interaction of two

novel constructs: functional dependencies and multiple

spares. Third, the output is not obviously wrong, so it

would not be caught easily during development.

5.3 A Fault in the Specification

One of the more interesting faults that our testing revealed

was the omission of an important precondition in the

specification. The fault was both revealed by N-version

programming [30] and showed that we had been “bitten”

by one of its known risks. Recall that we used the static DFT

solver as a second oracle when applicable. We assumed that

if the Nova oracle result agreed with one of the solvers, then

there must be a fault in the other solver. That assumption

turned out to be wrong.

One class of test inputs revealed a discrepancy. Galileo’s

dynamic solver translates fault trees to Markov chains. It

agreed with the oracle, which also translates them to

Markov chains (albeit usually much larger ones). Galileo’s

static solver, which translates fault trees to binary decision

diagrams, disagreed with both. We concluded that there

must be a fault in the static solver. We submitted one of the

input fault trees to our domain experts to verify that the

static solver did not implement its specification.
To our surprise, our colleagues reported that the static

solver calculated the correct answer according to published
accounts of BDD-based techniques. We then assumed that
the dynamic solver and oracle must have been exhibiting an
identical failure—a classic N-version programming pro-
blem. However, when we asked our experts to compute the
solution by hand using Markov techniques, they reported
that once again the manually computed solution matched
the ones produced by the two Markov solvers. This odd
result created much confusion, because everyone knew

from the literature that the Markov and BBD techniques

should produce exactly the same answers in cases where

they’re both applicable.
A weekend’s inquiry by a leading domain expert

resolved the apparent contradiction. The journal article in

which the equivalence of the two methods was demon-

strated contained an easy-to-overlook condition: provided

that basic event failure probabilities are sufficiently small, the

methods are valid and produce negligibly divergent answers. (The

article provided no definition of sufficiently small.) High

failure rates would violate the statistical assumptions on

which the methods are based. Fig. 5 shows the simple fault

tree that first revealed this fault. Event 1, a basic event, has a

large lambda value of 0.01 for its failure rate.
This condition had been forgotten, in a sense. Our

testing rediscovered it. The Markov-based dynamic solvers

(Galileo and Nova) agreed, but were both wrong because no

answer should have been produced for the precondition-

violating input DFT. We thus had, in some sense, an

N-version programming failure, with the common faulty

behavior traceable to a common faulty specification. The

BDD-based solver had the same underlying fault—not

checking a required precondition on the input—but the

BDD algorithm misbehaved in a different way. We thus

detected the fault because of algorithmic diversity, a small

N-version programming success. Bounded exhaustive test-

ing was able to quickly reveal this subtle fault.

5.4 A Fault in the Nova Test Oracle

We also found a fault in Nova’s implementation of

sequence enforcement constraints. Recall that a sequence

enforcer precludes events occuring in other than a specified

order. In Fig. 6, the sequence enforcer states that Event 2

cannot fail before Event 1. The implementation should

invalidate system states with out-of-order failures, but

Nova erroneously omitted this check. Our informal deriva-

tion of the Nova oracle from our formal specifications did

not eliminate programmer error in this case.

6 DISCUSSION

We now discuss limitations in our study, benefits and

limitations of BET, and the practical challenges of employ-

ing the approach.

334 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Fig. 5. The DFT that revealed a specification error.

6.1 Limitations of the Case Study

There are a number of limitations in our study. The first is
our choice of tools. For example, TestEra does not handle
numeric data types well. Being based on Alloy, a first order
logic of relations, it handles complex data structures, but
has only minimal support for integers and none for real
numbers. Thus, the tool cannot easily generate scalar
parameters of fault trees, such as basic event failure rates
represented by floating point numbers. We simply pro-
grammed our postprocessor to sample from a small set of
possible scalar values. In cases where scalar features are
subject to complex constraints, it would be necessary to use
an additional constraint solver designed for this purpose.

Similarly, our choice to trade performance for verifia-
bility in our oracle limited the feasible scope in our
experiment. Moreover, as we saw, manually implementing
the oracle created fault introduction risks. Using an
executable specification as an oracle might have helped,
had we had a suitably expressive notation, but it might
have created even more serious problems in terms of oracle
performance.

In terms of the inputs, recall that we had developed an
Alloy specification of DFTs to be used by TestEra to
generate instances. This Alloy specification was a transla-
tion of our Z specification. This translation step also
introduced the possibility of error. Indeed, our first version
of the Alloy specification did fail to generate all legal trees.
Alloy’s visualization facility, in which a series of generated
trees can be examined onscreen, can help mitigate this
problem. It does suggest however that ideally there should
be no additional translation step, and that a single
specification should suffice. An executable specification
that could serve as both an oracle and for test input
generation would be particularly attractive.

Despite the limitations of our case study, BET did reveal
subtle and substantial faults in the dynamic solver and its
specification. Overall, our experiment constitutes a single
test of BET on a single but interesting system. We achieved
limited but positive results. We advise caution in inferring
too much from our results. First, the level of testing we were
able to perform did not leave us as convinced as we wanted
to be of the correctness of Galileo across the whole input
space. We could not generate DFTs to a large enough size to
test all relevant combinations of modeling features. Even if

we could generate them, we could not run them because
their number is vast; moreover, our oracle, without
optimizations, could not handle much larger inputs that
we did run. Second, ours is just one experiment. Other
systems will have different characteristics, and our results
do not necessarily predict the results others would achieve.
Third, we had to employ special measures to get the success
we had—in the refactoring of the input specification. It is
not clear how complex specifications will be for other
applications, or whether similar opportunities would exist
for state space reduction. Our results do suggest that BET
has potential to provide a useful testing technique.
Additional efforts and experiments to develop and evaluate
its potential appear to be justified.

6.2 Strengths and Weaknesses of the Approach

Bounded exhaustive testing has properties that suggest that
it might be a good addition to our quality assurance toolkit.
The exhaustive coverage of an initial segment of the input
space that it achieves give it a fault-detecting ability that in
many cases seems likely to be greater than that of ad hoc
testing, in which a suite comprises at most a few hundred,
usually manually crafted, tests. The inclusion of every test
within a given scope ensures that most, if not all, faults
related to the handling of structures within the scope will be
detected.

Our previous testing of Galileo included tests of all gates
and constraints, tests involving boundary conditions in the
input space, and some tests of cases involving subtle
interactions among fault tree constructs. In some sense, we
thus tested for suspected faults. BET, by contrast, like other
coverage criteria, makes no assumptions about the distribu-
tion of fault-revealing inputs (save for Jackson’s hypoth-
esis). It is thus perhaps more likely to reveal unsuspected
faults involving rare combinations of conditions. On the
other hand, as with other coverage-based criteria, it is
difficult at best to infer quantified improvements in fielded
reliabity from the application of BET. It might be possible to
collect data to correlate uses of BET with remaining fault
densities—an idea that we leave to future work. The more
specific such data are to given kinds of programs, the more
credible they would be. In particular, data for one version of
a program, or for members of a family, could be quite
relevant.

There is also evidence [32] from the analysis of the Java
library that input space coverage correlates strongly with
code coverage. As the researchers increased the bounds on
data structure size, code coverage increased rapidly, in
tandem. Moreover, code coverage shouldered off at small
bounds, achieving a higher level of coverage than that
obtained by a random test suite of the same size containing
both large and small inputs.

Like any testing technique, BET clearly has limitations.
First, if there are faults in the oracle or specification, the
approach is unsound. Second, the approach is also clearly
incomplete. An adversary can always seed faults beyond
any given scope. Third, as we have said, one cannot draw
conclusions about the statistical reliability of a system based
on the use of BET. Generated inputs generally do not
represent a statistically valid sample of the inputs seen in
production use. Fourth, performance bottlenecks limit the

COPPIT ET AL.: SOFTWARE ASSURANCE BY BOUNDED EXHAUSTIVE TESTING 335

Fig. 6. The DFT that revealed a fault in Nova.

use of the technique. We encountered two: first in the
generator, then in the running of the test cases, especially in
the use of our oracle to check Galileo outputs. Our
specification factoring approach removed the generation
bottleneck. Running test cases was then the problem. That
bottleneck limited us still to testing within a relatively
modest bound.

6.3 Achieving Effective Separation of
Generation Concerns

The separation of generation concerns approach that we
described in Section 4 turns out to be conceptually
straightforward. However, it was only by making a mistake
that we learned how to do it properly. We based our initial
partitioning on a poor choice of abstraction boundary. The
postprocessor ended up being more complex than neces-
sary, which in turn led to our having introduced two faults.
In the end, certain test cases that should have been
generated were not.

The problem was that we overabstracted the gate type

and, thereby, offloaded from Alloy not only trivial state

space expansion tasks, but some constraint-satisfaction

tasks, as well. We had abstracted AND, OR, PAND,

THRESHOLD, and SPARE gates to a single abstract GATE

type, with the idea that the postprocessor would simply fill

in each abstract GATE token with one of the actual gate

types. The problem was that spare gates are subject to

connectivity constraints above and beyond those on AND,

OR, PAND, and THRESHOLD gates. Overabstracting thus

forced us to implement constraint reasoning for SPARE

gates as a special case within the postprocessor. The

programmer made a mistake in implementing this reason-

ing. First, he constrained the number of inputs to a spare

gate to be no less than two. Second, he forgot that the order

of the inputs to a spare gate affects the connectivity

constraints on spare gates. The generator ended up not

producing fault trees having spare gates with one input,

and fault trees in which two spare gates share spares. These

are important cases to test.
In studying the separation of generation concerns more

closely, we observed that the key operation in our case

study was to abstract distinctions between essentially

equivalent values within certain domains in the specifica-

tion. With respect to the constraints that define a DFT, AND

and OR gates are interchangeable with each other, but not

with SPARE gates. The latter are subject to additional

constraints. The better factorization that we ended up with,

abstracted AND, OR, and THRESHOLD to an abstract

COMBINATORIAL gate. We recorded separately that

COMBINATORIAL comprised AND, OR, and THRESH-

OLD. The postprocessor then reconstituted abstract inputs

with COMBINATORIAL tokens by systematically substi-

tuting AND, OR, and THRESHOLD. Writing this sort of

postprocessor is trivial. It could be automated quite easily.

Automating the specification decomposition operation itself

is another matter that we have just started to investigate.

The question is: Can opportunities to abstract (in ways that

keep the postprocessor free of constraint reasoning) be

found without expanding the whole state space, which

would defeat the purpose? In our experiment, we analyzed

the specification and identified these opportunities by hand.
In addition to abstracting specifications and offloading

the abstract elements to a postprocesser, it appears that
decomposing (or modularizing) specifications might also be

useful for enabling scalable test input generation. One could
decompose a specification into nearly independent parts,
generate partial inputs from the parts, and combine the

parts in a postprocessing stage.

7 RELATED WORK

In this section, we survey related work on specification-

based test generation and test selection criteria.

7.1 Evaluating Bounded Exhaustive Testing

Previous work has demonstrated the feasibility and effec-

tiveness of bounded exhaustive testing on small-scale

systems using the TestEra tool [32]. Prior to this experiment,

the largest system on which the technology had been

evaluated was the Intentional Naming System [32], [39],

with 2,000 lines of Java code. It was unclear that BET could

scale to more complex systems This paper helps to fill that

void with a study of the feasibility and potential utility of

bounded exhaustive testing of a software system having

more complex input structures and a code base at least five

times larger.
A recent study [32] compares bounded exhaustive

testing with testing using randomly selected inputs, for a

variety of data structure implementations. The inputs in the
random sample are within larger size bounds, but the
number of inputs is the same as the number in the

exhaustive sample. The research then compared the test
sets using mutation testing. For the benchmark structures,
bounded exhaustive testing outperformed random selection

in a majority of the cases.
This paper is a revised and extended version of a

previously published work [44]. Here, we describe our
evaluation approach in more detail, describe the separation

of generation concerns method, and present tests results
corrected for the error in our first-version generator (as
described above).

7.2 Specification-Based Test Generation

Korat [4] is a testing tool similar to TestEra [32]. Like
TestEra, it can exhaustively generate all nonisomorphic

instances of a given data structure type up to certain size
bounds. Unlike TestEra, it takes input specifications written

as Java predicates. This feature is useful in unit testing code
modules because programmers do not have to learn a new
notation. For applications such as ours, TestEra is more

appropriate. Korat is highly sensitive to specification
structure. TestEra uses the Alloy Analyzer’s translation to
SAT and is relatively insensitive to minor variations in the

structure of the specification. It is easier to write useful
input specifications for TestEra as conjunctions of separate
properties. Alloy is also better suited than Java to describing

data structures: Its relational operators allow for more
succinct and abstract descriptions.

336 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

Dick and Faivre [13] pioneered the idea of generating test
cases automatically from model-based formal specifica-
tions. They developed the well-known DNF approach.
Later, Helke et al. [21] developed a technique based on the
DNF approach for automatically generating test cases from
Z specifications. They employed a theorem prover to
support generation. They evaluated their approach by
generating test cases from a steam boiler specification.
Horcher [22] developed a technique for deriving test cases
from a Z specification. Offut et al. [36] developed a
technique to generate test cases based on UML state-charts.
They evaluated their approach on a system with 400 lines of
C and seven functions. Chang and Richardson [6] devel-
oped Structural Specification-Based Testing (SST) using
ADL as the formal specification language. Stocks et al. [42]
developed the Test Template framework. They applied it to
test the implementation of a symbol table, and a very small
topological sort program [31]. Without tool support, users
had to generate test cases by hand.

Our work differs from these in several respects. First,
these techniques generate test cases for control-intensive
systems; TestEra targets structurally complex inputs.
Second, DFTs are structurally more complex than inputs
spaces previously targeted, and the part of Galileo on which
we evaluated our approach is larger than the systems in
previous case studies.

7.3 Test Selection Criteria

Our criterion of exhausting a bounded input space differs
from traditional adequacy criteria, such as statement and
branch coverage, dataflow coverage [37], and modified
condition/decision coverage [7]. Code-based model check-
ers, such as Java Pathfinder [20] and Verisoft [17], have
traditionally focused on checking control properties. Recent
work [28] based on Java PathFinder shows how traditional
symbolic execution [29] can be generalized to enable
software model checking. For example, the framework
enables correctness checking and nonisomorphic input
generation for programs that manipulate structurally
complex data.

Harrold [19] points out that more research is needed on
the effectiveness of test selection criteria in revealing faults.
Our work is one step in evaluating the feasibility of
bounded exhaustive testing on real systems. Assessing the
effectiveness of the BET criterion relative to other criteria
remains an important area of future work.

8 CONCLUSION

In this paper, we have tested the feasibility of applying
bounded exhaustive testing to software systems taking
structurally complex inputs. The basis for our evaluation
was an experimental application of BET to the Galileo
dynamic fault tree solver. The initial attempt failed, but
factoring the specification and using an auxiliary post-
processing step allowed us to test over 250,000 inputs.
Testing within the feasible bounds revealed previously
unknown faults in the implementation, specification, and
in our test oracle.

This paper focuses primarly on the input generation

bottleneck. Beyond the experiment itself, our core technical

contribution is in the idea of factoring specifications in a

principled way to reduce the load on a constraint solver

while enabling the complete input space to be reconstituted

by a simple postprocessor. Overall, we found the TestEra

approach, augmented by our specification-factoring techni-

que, profitable. We speculate that it is possible to automate

both our specification factoring method and generation of

the required postprocessors. Such a capability could

provide a general-purpose optimization technique for

constraint-based test input generation.

Our results suggest that BET could be a useful addition

to our verification toolkit. Exhausting all inputs up to a

given size is intuitively appealing and, in practice, can

reveal subtle faults, but it is not a panacea. We cannot

conclude from a successful test that faults of a particular

class are absent, or that the probability of failure has been

reduced by, or to, a known quantity. Nor, in our experience,

were we able to perform bounded exhaustive testing to a

point that would convince us we had found all significant

faults. Our previous work had already revealed subtle

modeling feature interactions in DFTs that arise only in

cases involving 15 or more events. Clearly, finding ways to

obtain precise measures of increased dependability is a vital

area of future work. In the meantime, the technique still

offers a useful standard. BET adds to the list of traditional

coverage criteria, and as such provides an objective level of

scrutiny that can be compared across projects, and for

which statistical data can be collected.

ACKNOWLEDGMENTS

The work of Kevin Sullivan was supported in part by an

ITR grant from the US National Science Foundation

(number 0086003). Daniel Jackson and Sarfraz Khurshid

acknowledge support from the ITR program of the US

National Science Foundation (number 0086154), and from

the NASA Ames High Dependability Computing Program

(cooperative agreement NCC-2-1298). The authors thank

David Evans for commenting on a version of this paper and

Matthew Moskewicz for helping them understand the

performance of mChaff. They thank Joanne Bechta Dugan

and her students for serving as domain experts. Finally,

they thank Phyllis Frankl for discussions that helped them

see the need to move from the original study to a

generalized, albeit still not formal, statement of the under-

lying specification factoring approach.

REFERENCES

[1] W.R. Adrion, M.A. Branstad, and J.C. Cherniavsky, “Validation,
Verification, and Testing of Computer Software,” Comm. ACM,
vol. 14, no. 2, pp. 159-192, June 1982.

[2] R.J. Bayardo, Jr. and R.C. Schrag, “Using CSP Look-Back
Techniques to Solve Real-World SAT Instances,” Proc. Nat’l Conf.
Artificial Intelligence and Ann. Conf. Innovative Applications of
Artificial Intelligence (AAAI/IAAI ’97), pp. 203-208, July 1997.

[3] B. Beizer, Software Testing Techniques, second ed. New York: Van
Nostrand Reinhold, 1990.

[4] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated
Testing Based on Java Predicates,” Proc. Int’l Symp. Software
Testing and Analysis (ISSTA ’02), pp. 203-208, July 2002.

COPPIT ET AL.: SOFTWARE ASSURANCE BY BOUNDED EXHAUSTIVE TESTING 337

[5] M.A. Boyd, “Dynamic Fault Tree Models: Techniques for Analysis
of Advanced Fault Tolerant Computer Systems,” PhD disserta-
tion, Dept. of Computer Science, Duke Univ., Durham, N.C., Apr.
1991.

[6] J. Chang and D.J. Richardson, “Structural Specification-Based
Testing: Automated Support and Experimental Evaluation,” Proc.
European Software Eng. Conf. and ACM SIGSOFT Symp. Foundations
of Software Eng., Sept. 1999.

[7] J.J. Chilenski and S.P. Miller, “Applicability of Modified Condi-
tion/Decision Coverage to Software Testing,” Software Eng. J.,
vol. 9, no. 5, pp. 193-200, Sept. 1994.

[8] D. Coppit, “Engineering Modeling and Analysis: Sound Methods
and Effective Tools,” PhD dissertation, Dept. of Computer
Science, The Univ. of Virginia, Charlottesville, Va., Jan. 2003.

[9] D. Coppit, R.R. Painter, and K.J. Sullivan, “Shared Semantic
Domains for Computational Reliability Engineering,” Proc. Int’l
Symp. Software Reliability Eng., pp. 168-180, Nov. 2003.

[10] D. Coppit and K.J. Sullivan, “Galileo: A Tool Built from Mass-
Market Applications,” Proc. Int’l Conf. Software Eng., pp. 750-753,
June 2000.

[11] D. Coppit and K.J. Sullivan, “Sound Methods and Effective Tools
for Engineering Modeling and Analysis,” Proc. Int’l Conf. Software
Eng., pp. 198-207, May 2003.

[12] D. Coppit, K.J. Sullivan, and J.B. Dugan, “Formal Semantics of
Models for Computational Engineering: A Case Study on
Dynamic Fault Trees,” Proc. Int’l Symp. Software Reliability Eng.,
pp. 270-282, Oct. 2000.

[13] J. Dick and A. Faivre, “Automating the Generation and Sequen-
cing of Test Cases from Model-Based Specifications,” Proc. Conf.
Formal Methods Eng.: Industrial-Strength Formal Methods, pp. 268-
284, Apr. 1993.

[14] S.A. Doyle and J.B. Dugan, “Dependability Assessment Using
Binary Decision Diagrams (BDDs),” Proc. Int’l Fault-Tolerant
Computing Symp., pp. 249-258, July 1995.

[15] J.B. Dugan, S. Bavuso, and M. Boyd, “Dynamic Fault-Tree Models
for Fault-Tolerant Computer Systems,” IEEE Trans. Relativity,
vol. 41, no. 3, pp. 363-377, Sept. 1992.

[16] J.B. Dugan, K.J. Sullivan, and D. Coppit, “Developing a Low-Cost
High-Quality Software Tool for Dynamic Fault Tree Analysis,”
IEEE Trans. Relativity, vol. 49, no. 1, pp. 49-59, Mar. 2000.

[17] P. Godefroid, “Model Checking for Programming Languages
Using VeriSoft,” Proc. Conf. Principles of Programming Languages,
pp. 174-186, Jan. 1997.

[18] R. Gulati and J.B. Dugan, “A Modular Approach for Analyzing
Static and Dynamic Fault Trees,” Proc. Ann. Reliability and
Maintainability Conf., pp. 57-63, Jan. 1997.

[19] M.J. Harrold, “Testing: A Roadmap,” Proc. ICSE ’00—Future of
Software Eng., pp. 61-72, June 2000.

[20] K. Havelund and T. Pressburger, “Model Checking Java Programs
Using Java PathFinder,” Int’l J. Software Tools for Technology
Transfer, vol. 2, no. 4, Apr. 2000.

[21] S. Helke, T. Neustupny, and T. Santen, “Automating Test Case
Generation from Z Specifications with Isabelle,” LNCS, vol. 1212,
pp. 52-71, 1997.

[22] H.-M. Horcher, “Improving Software Tests Using Z Specifica-
tions,” LNCS, vol. 967, pp. 152-166, 1995.

[23] D. Jackson, “Micromodels of Software: Modelling and Analysis
with Alloy,” http://sdg.lcs.mit.edu/alloy/reference-manual.pdf,
2001.

[24] D. Jackson and C.A. Damon, “Elements of Style: Analyzing a
Software Design Feature with a Counterexample Detector,” IEEE
Trans. Software Eng., vol. 22, no. 7, pp. 484-495, July 1996.

[25] D. Jackson, I. Scheckter, and I. Shlyakhter, “Alcoa: the Alloy
Constraint Analyzer,” Proc. Int’l Conf. Software Eng., pp. 730-733,
June 2000.

[26] S. Khurshid and D. Marinov, “Checking Java Implementation of a
Naming Architecture Using TestEra,” Electronic Notes in Theoretical
Computer Science, vol. 55, no. 3, 2001.

[27] S. Khurshid, D. Marinov, I. Shlyakhter, and D. Jackson, “A Case
for Efficient Solution Enumeration,” LNCS, vol. 2919, pp. 272-286,
2004.

[28] S. Khurshid and C. Pasareanu, “Generalized Symbolic Execution
for Model Checking and Testing,” Proc. Int’l Conf. Tools and
Algorithms for Construction and Analysis of Systems, Apr. 2003.

[29] J.C. King, “Symbolic Execution and Program Testing,” Comm.
ACM, vol. 19, no. 7, pp. 385-394, July 1976.

[30] J.C. Knight and N.G. Leveson, “An Experimental Evaluation of
the Assumption of Independence in Multiversion Programming,”
IEEE Trans. Software Eng., vol. 12, pp. 96-109, Jan. 1986.

[31] I. MacColl, D. Carrington, and P. Stocks, “An Experiment in
Specification-Based Testing,” Technical Report 96-05, Software
Verification Research Centre, Dept. of Computer Science, The
Univ. of Queensland, May 1996.

[32] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard,
“An Evaluation of Exhaustive Testing for Data Structures,”
Technical Report MIT-LCS-TR-921, MIT CSAIL, Cambridge,
Mass., Sept. 2003.

[33] D. Marinov and S. Khurshid, “TestEra: A Novel Framework for
Automated Testing of Java Programs,” Proc. Int’l Conf. Automated
Software Eng., Nov. 2001.

[34] L. Morell, “A Theory of Fault-Based Testing,” IEEE Trans. Software
Eng., vol. 16, no. 8, pp. 844-857, Aug. 1990.

[35] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” Proc. Design
Automation Conf., June 2001.

[36] J. Offutt and A. Abdurazik, “Generating Tests from UML
Specifications,” Proc. Int’l Conf. Unified Modeling Language, Oct.
1999.

[37] S. Rapps and E. Weyuker, “Selecting Software Test Data Using
Data Flow Information,” IEEE Trans. Software Eng., vol. 11, no. 4,
pp. 367-375, Apr. 1985.

[38] M. Saaltink, “The Z/EVES System,” LNCS, vol. 1212, pp. 72-85,
1997.

[39] E. Schwartz, “Design and Implementation of Intentional Names,”
master’s thesis, MIT Laboratory for Computer Science, Massachu-
setts Inst. of Technology, Cambridge, June 1999.

[40] L. Shlyakhter, “Generating Effective Symmetry-Breaking Predi-
cates for Search Problems,” Proc. Workshop Theory and Applications
of Satisfiability Testing, June 2001.

[41] J.M. Spivey, The Z Notation: A Reference Manual. Prentice-Hall,
1992.

[42] P. Stocks and D. Carrington, “A Framework for Specification-
Based Testing,” IEEE Trans. Software Eng., vol. 22, no. 11, pp. 777-
793, Nov. 1996.

[43] K.J. Sullivan, J.B. Dugan, and D. Coppit, “The Galileo Fault Tree
Analysis Tool,” Proc. Int’l Fault-Tolerant Computing Symp., pp. 232-
235, June 1999.

[44] K.J. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson,
“Software Assurance by Bounded Exhaustive Testing,” Proc. Int’l
Symp. Software Testing and Analysis, pp. 133-142, July 2004.

[45] Sun Microsystems, Java 2 platform, standard edition, v1.3.1 API
Specification, http://java.sun.com/j2se/1.3/docs/api/, 2001.

[46] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl, “Fault
Tree Handbook,” Technical Report NUREG-0492, US Nuclear
Regulatory Commission, Washington, D.C., 1981.

[47] E.J. Weyuker and T.J. Ostrand, “Theories of Program Testing and
the Application of Revealing Subdomains,” IEEE Trans. Software
Eng., vol. 6, no. 3, pp. 236-246, May 1980.

[48] H. Zhu, P.A.V. Hall, and J.H.R. May, “Software Unit Test
Coverage and Adequacy,” ACM Computer Surveys, vol. 29, no. 4,
pp. 366-427, Dec. 1997.

338 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005

David Coppit received the Master’s and PhD
degrees in computer science from the University
of Virginia in 1998 and 2003, respectively. He
received his undergraduate degrees in computer
science and physics from the University of
Mississippi in 1995. He is an assistant professor
of computer science at the College of William
and Mary. His research interests include soft-
ware development methods, software plans,
applied formal methods, and software verifica-

tion. He is a member of the IEEE.

Jinlin Yang received the MCS degree in
computer science from the University of Virginia
in 2004 and the BE degree in computer science
and technology from the Tsinghua University,
P.R. China in 2001. He is a PhD candidate in the
Department of Computer Science at the Uni-
versity of Virginia. His research interests include
program analysis, program testing and verifica-
tion, software evolution, and model checking. He
is a member of ACM and ACM SIGSOFT.

Sarfraz Khurshid received the PhD degree in
computer science at the Massachusetts Institute
of Technology in 2004. He received the BSc
degree in mathematics and computer science
from Imperial College London in 1994, and
completed Part III of the Mathematical Tripos
at Trinity College Cambridge in 1998. He is an
assistant professor in the Electrical and Com-
puter Engineering Department at the University
of Texas at Austin, where he leads the Software

Testing and Verification Group at the Center for Advanced Research in
Software Engineering. His current research focuses on software testing,
specification languages, code conformance, model checking, and
applications of heuristics in program analysis.

Wei Le received the master’s degree at the
University of Virginia in 2005 and the bachelor’s
degree at Zhejiang University, China in 2002,
both in computer science. She is a graduate
student in computer science at the University of
Virginia. Her research focuses on software
testing, software security, and program analysis.
She is a member of the ACM.

Kevin Sullivan received the PhD degree in
computer science and engineering in 1994 from
the University of Washington. He is an associate
professor and VEF Faculty Fellow in Computer
Science at the University of Virginia. His inter-
ests are in the structures, properties, and value
of design, with a particular emphasis on issues
of modularity and integration in software design,
and dependability as a user-perceived property.
He is a senior member of the IEEE and a

member of the ACM and ACM SIGSOFT.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

COPPIT ET AL.: SOFTWARE ASSURANCE BY BOUNDED EXHAUSTIVE TESTING 339

