
Spring 2009: EE379K Software Testing

Time/Location: TTh 11am-12:30pm ENS 302A

Instructor

Sarfraz Khurshid
ACES 5.120
x1-8244
khurshid@ece.utexas.edu
Office hours: TBD

Catalog entry

Basic concepts and techniques for testing software and finding bugs. Topics include the testing
process, unit, integration and system testing, manual and automatic techniques for generation of
test inputs and validation of test outputs, and coverage criteria, and focus on functional testing.

Prerequisites

Electrical Engineering 322C with a grade of at least C. Knowledge of Java will be benefical but is
not required; language constructs necessary for this course will be introduced in the class. Students
must be able to write correct technical English.

Description

This course first introduces the basics of software testing theory and practice, and then presents
some recently developed techniques for systematically finding bugs in programs and improving their
reliability. A NIST report from 2002 estimates that software failures cost the US economy $59.5
billion dollars annually and over a third of this cost could be saved using a better infrastructure
for testing. It is widely accepted that testing currently accounts for more than one half of the cost
of software development. Learning the techniques and tools presented in this course is likely to
significantly increase the students’ productivity as software developers and testers and improve the
quality of the code they develop.

Deliverables

There will be four problem sets, a mid-term exam, and a final exam.

Grading

Each problem set will account for 10% of the grade. The mid-term and the final will each account
for 30% of the grade.

Textbook—required

Introduction to Software Testing by Paul Amman and Jeff Offutt. Cambridge University Press.
ISBN: 0521880386.

Lab resources

Students will need access to a Java development environment. Additional resources may be required
based on particular assignments.

Collaboration

Students must solve the problem sets individually. Please be sure to submit your own independent
homework solution.

ECE’s academic honesty statement

Faculty in the ECE Department are committed to detecting and responding to all instances of
scholastic dishonesty and will pursue cases of scholastic dishonesty in accordance with university
policy. Scholastic dishonesty, in all its forms, is a blight on our entire academic community. All
parties in our community—faculty, staff, and students—are responsible for creating an environment
that educates outstanding engineers, and this goal entails excellence in technical skills, self-giving
citizenry, an ethical integrity. Industry wants engineers who are competent and fully trustworthy,
and both qualities must be developed day by day throughout an entire lifetime. Scholastic dishonesty
includes, but is not limited to, cheating, plagiarism, collusion, falsifying academic records, or any act
designed to give an unfair academic advantage to the student. The fact that you are in this class as
an engineering student is testament to your abilities. Penalties for scholastic dishonesty are severe
and can include, but are not limited to, a written reprimand, a zero on the assignment/exam, re-
taking the exam in question, an F in the course, or expulsion from the University. Don’t jeopardize
your career by an act of scholastic dishonesty. Details about academic integrity and what constitutes
scholastic dishonesty can be found at the website for the UT Dean of Students Office and the General
Information Catalog, Section 11-802.

Calendar (tentative)

Week 1 1/20 Introduction and course overview
1/22 Java and JUnit basics

Week 2 1/27 Graph theory, logic, and discrete math basics
1/29 Chapter 1: Basic software testing principles and concepts

Week 3 2/ 3 Chapter 2: Graph coverage
Graph coverage criteria

2/ 5 Chapter 2: Graph coverage
Graph coverage of designs/specifications/use-cases

Week 4 2/10 Chapter 3: Logic coverage
Logic expression coverage criteria

2/12 Chapter 3: Logic coverage
Logic coverage of specifications/finite-state machines

Week 5 2/17 Chapter 4: Input space partitioning
Input domain modeling

2/19 Chapter 4: Input space partitioning
Combination strategies criteria and constraints among partitions

Week 6 2/26 Chapter 5: Syntax-based Testing
Syntax-based coverage

2/28 Chapter 5: Syntax-based Testing
Specification-based and input space grammars

Week 7 3/ 3 Chapter 6: Practical considerations
Regression testing

3/ 5 Chapter 6: Practical considerations
Test process and test plans

Week 8 3/10 Chapter 7: Engineering criteria for technologies
Testing object-oriented software and web applications

3/12 Mid-term exam
Week 9 Spring break
Week 10 3/24 Chapter 7: Engineering criteria for technologies

Testing GUIs and real-time/embedded software
3/26 Chapter 8: Building testing tools

Instrumentation
Week 11 3/31 Symbolic execution

4/ 2 Combinatorial testing
Week 12 4/ 7 Constraint-based testing

4/ 9 Parallel algorithms for testing
Week 13 4/14 Incremental algorithms for testing

4/16 Stateful model checking
Week 14 4/21 Stateless model checking

4/23 Bounded model checking
Week 15 4/28 Directed/heuristic model checking

4/30 TBD
Week 16 5/ 5 TBD

5/ 7 Review

