
Using TestEra to Check the Intentional Naming System of Oxygen

Sarfraz Khurshid KHURSHID@LCS.MIT.EDU

Darko Marinov MARINOV@LCS.MIT.EDU

MIT Laboratory for Computer Science, 200 Technology Square, Cambridge MA, 02139 USA

1. Overview

We develop TestEra (Khurshid & Marinov, 2001), a novel
framework for automatic generation of test data and eval-
uation of correctness criteria for Java programs. As an
enabling technology, TestEra uses the first-order relational
language Alloy and its automatic analyzer (Jackson et al.,
2001). Checking a Java program using TestEra requires:
1. Creating an Alloy model of inputs to the program; 2. Cre-
ating an Alloy model expressing the correctness criteria re-
lating inputs and output of the program; and 3. Defining
concretization and abstraction translations between Alloy
model valuations and Java data structures for inputs and
output. TestEra gives concrete counterexamples to violated
correctness criteria. Figure 1 shows the TestEra framework.

The Intentional Naming System (INS) (Adjie-Winoto et al.,
1999) is the proposed naming infrastructure for dynamic
resource discovery in the MIT Oxygen project. In INS,
services are referred to by intentional names, which de-
scribe properties that services provide. An intentional
name is implemented as a tree consisting of alternating
levels of attributes and values, which make up the service
properties. Name resolvers in INS maintain a database that
stores a mapping between service descriptions and physical
network locations. Client applications invoke a resolver’s
Lookup-Name method to access services of interest. Fig-
ure 2(a) illustrates an example of invoking Lookup-Name.

As a case study to evaluate our framework, TestEra, we an-
alyzed the Java implementation of INS with TestEra. Here
we present the flaws TestEra identified in INS. These flaws
actually existed in the INS design, and we first corrected
the design. Then we fixed the code and checked its correct-
ness using TestEra. We believe TestEra presents a novel
lightweight formal method for checking Java programs.

2. Checking INS using TestEra

Our checking of INS using TestEra focuses on the Lookup-
Name method. Lookup-Name returns the set of services
from the input database that conform to the input query.
To investigate the correctness of Lookup-Name, we test its
soundness (i.e., if it returns only conforming services) and

completeness (i.e., if it returns all conforming services).
The INS inventors did not state a formal definition of con-
formance, but only certain properties of Lookup-Name.

Due to space limitation, we do not present here the Alloy
model of correctness for INS, and the concretization and
abstraction translations, used in TestEra’s analyses. They
appear elsewhere (Khurshid & Marinov, 2001). Table 1
outlines the results of the analyses explained below.

The published description of Lookup-Name claims: “This
algorithm uses the assumption that omitted attributes cor-
respond to wildcards; this is true for both the queries and
advertisements.” TestEra refutes this claim (Figure 2(b)).

TestEra also shows that addition in INS is not monotonic,
i.e., addition of a new service to a database can cause exist-
ing services to erroneously become non-conforming (Fig-
ure 2(c)). This flaw points out that INS did not have a con-
sistent notion of conformance. Both preceding flaws exist
in the original design and implementation of INS.

We define a service s as conforming to a query q if s pro-
vides all the attributes and values in q in the right order
(sub-tree). TestEra’s analysis of the original implemen-
tation of Lookup-Name with respect to this definition of
conformance reports several counterexamples. We modi-
fied the implementation and re-evaluated the correctness of
Lookup-Name using TestEra. This time TestEra reports no
flaws, increasing the confidence that our changes have cor-
rected the problems with INS. The corrected algorithm now
forms a part of the INS code base.

References

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., & Lil-
ley, J. (1999). The design and implementation of an in-
tentional naming system. SOSP 99. Kiawah Island.

Jackson, D., Shlyakhter, I., & Sridharan, M. (2001). A
micromodularity mechanism. FSE 01. Vienna, Austria.

Khurshid, S., & Marinov, D. (2001). Checking Java imple-
mentation of a naming architecture using TestEra. CAV
Workshop on Software Model Checking. Paris, France.



Alloy
instances

Alloy
output

Java
outputinput

Alloy Java
input

Alloy
Analyzer

Testera
Model

Alloy

model
I/Otester

Java
input
Alloy

model

model
evaluation

concretization

counter
example

abstractionrun code

fail

pass

Figure 1. TestEra framework. A TestEra model consists of Alloy and Java code. TestEra’s analysis proceeds in two phases: first, all
non-isomorphic instances of the Alloy input model (up to a given maximum input size) are automatically generated, and second, testing
is automatically performed using appropriate concretization and abstraction translations and verification of correctness properties.

Lookup−Name (Database, Query) = {R0}

service

camera

building

NE−43

servicebuilding

NE−43
camera printer

R0

R1

Query Database

A1

V1

V0

A0

A1

R0

IDatabase

V1

*

A0

A1

V1

IQuery IQueryNoWC

Lookup−Name (IDatabase, IQuery) = {R0}
Lookup−Name (IDatabase, IQueryNoWC = {}

R1 R0

A0

V1

A1

V0

IDatabase

A0

V1

A1

V0

IQuery

Lookup−Name (IQuery, IDatabase) = {}
Conforming−Services = {R0, R1}

(b)

(c)
(a)

Figure 2.(a) Intentional names in INS.Query describes a camera service in buildingNE-43. Database stores descriptions of two
services: serviceR0 provides a camera service inNE-43 and serviceR1 provides a printer service inNE-43. InvokingLookup-Name
onQuery andDatabase should returnR0. (b) TestEra’s counterexample to wildcard claim.IQueryNoWC is the same asIQuery,
except for the omission of the wildcarded attributeA0. Different results of the two invocations ofLookup-Name contradict the claim.
(c) TestEra’s counterexample to monotonicity of addition. Both servicesR0 andR1 are considered conforming toIQuery by the
semantics of INS, but their co-existence inIDatabase makes both of them erroneously non-conforming toIQuery.

Input size Phase 1 Phase 2
Property tested Val Att Ser # Tests t[sec] # Passed t[sec]
Published wildcard claim 3 3 2 12 9 10 (83%) 6
Monotonicity of addition 4 2 2 160 14 150 (93%) 9
Correctness (original Lookup-Name) 3 3 2 16 8 10 (62%) 6
Correctness (corrected Lookup-Name) 3 3 2 16 8 16 (100%) 6

Table 1.Summary of TestEra’s analyses. In all cases, TestEra takes a few seconds to complete the checking. All the properties are
refuted for small input sizes. The exhaustive checking performed by TestEra uncovers subtle bugs that went undetected for over a year
of use of INS.

Acknowledgements
We would like to thank Ilya Shlyakhter, Victor Kuncak, Daniel Jackson, Martin Rinard, Manu Sridharan, Radu Rugina, and Alexandru
Salcianu for helpful discussions and feedback. This work was funded in part by ITR grant #0086154 from the National Science
Foundation.


