
VAlloy
Virtual Functions Meet a Relational Language

Darko Marinov and Sarfraz Khurshid

MIT Laboratory for Computer Science
200 Technology Square

Cambridge, MA 02139 USA
{marinov,khurshid}@lcs.mit.edu

Abstract. We propose VAlloy, an extension to the first order, relational
language Alloy. Alloy is suitable for modeling structural properties of
object-oriented software. However, Alloy lacks support for dynamic dis-
patch, i.e., function invocation based on actual parameter types. VAlloy
introduces virtual functions in Alloy, which enables intuitive modeling
of inheritance. Models in VAlloy are automatically translated into Alloy
and can be automatically checked using the existing Alloy Analyzer. We
illustrate the use of VAlloy by modeling object equality, such as in Java.
We also give specifications for a part of the Java Collections Framework.

1 Introduction

Object-oriented design and object-oriented programming have become predom-
inant software methodologies. An essential feature of object-oriented languages
is inheritance. It allows a (sub)class to inherit variables and methods from su-
perclasses. Some languages, such as Java, only support single inheritance for
classes.

Subclasses can override some methods, changing the behavior inherited from
superclasses. We use C++ term virtual functions to refer to methods that can be
overridden. Virtual functions are dynamically dispatched—the actual function to
invoke is selected based on the dynamic types of parameters. Java only supports
single dynamic dispatch, i.e., the function is selected based only on the type of
the receiver object.

Alloy [6] is a first order, declarative language based on relations. Alloy is
suitable for specifying structural properties of software. Alloy specifications can
be analyzed automatically using the Alloy Analyzer (AA) [5]. Given a finite scope
for a specification, AA translates it into a propositional formula and uses SAT
solving technology to generate instances that satisfy the properties expressed in
the specification.

Alloy supports some features of object-oriented design. However, Alloy does
not have built in support for dynamic dispatch. Recently, Jackson and Fekete [4]
presented an approach for modeling parts of Java in Alloy, pointing out that
modeling “the notion of equality is problematic”.

2 Marinov and Khurshid

In Java, the equals method, which allows comparing object values, as op-
posed to using the ‘==’ operator, which compares object identities, is overridden
in majority of classes. Good programming methodology suggests that equals

be overridden in all immutable classes [19]. This method is pervasively used, for
example in the Java Collections Framework [17] for comparing elements of collec-
tions. Any equals method must satisfy a set of properties, such as implementing
an equivalence relation; otherwise, the collections do not behave as expected.
However, getting equals methods right is surprisingly hard.

We present VAlloy, an extension to Alloy that enables intuitive modeling of
dynamic dispatch. VAlloy introduces in Alloy virtual functions and related in-
heritance constructs. We give VAlloy a formal semantics through a translation
to Alloy. The translation is similar to compilation of object-oriented languages,
involving creation of virtual function tables. Since VAlloy models can be auto-
matically translated to Alloy, they can also be automatically analyzed using the
existing AA.

Having an easy way to model dynamic dispatch is important for several
reasons. First, it enables automatic analysis of models of overridden methods.
Second, it allows modeling comparisons based on object values and developing
specifications for collections that use these comparisons, such as Java collections.
Third, such specifications can be used to test the actual implementations, for
example using the TestEra framework [12].

The rest of this paper is organized as follows. Section 2 gives an example that
illustrates the key constructs of VAlloy. Section 3 defines a semantics for VAlloy
through a translation to Alloy. Section 4 presents VAlloy specifications that
partially model Java-like collections. Section 5 reviews related work. Section 6
discusses future work, and Section 7 presents our conclusions.

2 Example

We illustrate VAlloy by modeling and analyzing an (in)correct overriding of the
equals method in Java. We first develop an Alloy specification that contains only
one equals method, and then describe challenges that arise in modeling method
overriding. Finally, we present how VAlloy tackles these challenges.

2.1 Modeling equals in Alloy

Consider the following equals method that appears in java.awt.Dimension in the
standard Java libraries [17]:

class Dimension {
int width;
int height;
public boolean equals(Object obj) {

if (!(obj instanceof Dimension))
return false;

Dimension d = (Dimension)obj;
return (width == d.width) && (height == d.height);

}
}

VAlloy: Virtual Functions Meet a Relational Language 3

We develop in Alloy (not yet VAlloy) a specification for the above method.
An Alloy specification consists of a sequence of paragraphs that either introduce
an uninterpreted type or express constraints over the types. We start with the
following declarations:

sig Object {} // java.lang.Object
sig Dimension extends Object { // java.awt.Dimension
width: Integer,
height: Integer

}

Each signature, introduced by the keyword sig, denotes a set of atomic individu-
als. In this specification, atoms in sig Object model Java objects. The signature
Dimension is declared it to be a subset of Object. Alloy subsets model Java sub-
classing with typing rules being as follows.

Signatures declared without extends are basic signatures. Basic signatures are
disjoint from one another and represent Alloy types. Subsets do not introduce
new Alloy types. The type of an atom is the basic signature it belongs to; all
atoms in the above specification, including those in Dimension, have Alloy type
Object. We can reconstruct Java type, i.e., class, of modeled Java objects based
on their (sub)set membership.

Fields width and height introduce relations between Dimension atoms and
Integer atoms, where Integer is predefined in Alloy. More precisely, each field
introduces a function that maps Dimension atoms to Integer atoms.

We next add to the specification a model of the above equals method:

fun Dimension::equals(obj: Object) {
obj in Dimension // instanceof
this.width = obj.width && this.height = obj.height

}

The Alloy function equals records constraints that can be invoked elsewhere in
the specification. This function has two arguments: obj and the implicit this ar-
gument, introduced with ‘::’. The function body constrains obj to be an atom of
Dimension, effectively modeling Java’s instanceof. This constraint is conjoined
with the other that requires the fields to be the same. However, the above dec-
laration does not constrain this to be an atom of Dimension; the declaration is
equivalent to fun Object::equals(obj: Object).

We next use the Alloy Analyzer (AA) to automatically check properties of
the above specification. Each equals method should satisfy a set of properties:
implement an equivalence relation and be consistent with hashCode [17]. The
following Alloy assertion requires the function equals, which models the method
equals, to be an equivalence relation:

assert equalsIsEquivalence {
all o: Object | // reflexivity

o..equals(o)
all o1, o2: Object | // symmetry

o1..equals(o2) => o2..equals(o1)
all o1, o2, o3: Object | // transitivity

o1..equals(o2) && o2..equals(o3) => o1..equals(o3)
}

The operator ‘..’ invokes Alloy functions (using static resolution). AA checks
the above assertion and reports that there are no counterexamples.

4 Marinov and Khurshid

2.2 Overriding

Consider Dimension3D, a subclass of java.awt.Dimension that adds a field depth
and overrides equals:
class Dimension3D extends java.awt.Dimension {

int depth;
boolean equals(Object obj) {

if (!(obj instanceof Dimension3D))
return false;

Dimension3D d = (Dimension3D)obj;
return super.equals(obj) && depth = d.depth;

}
}

In order to check the equals method in Dimension3D, we would like to add
the following to the Alloy specification presented so far:
sig Dimension3D extends Dimension {
depth: Integer

}
// duplicate function names are NOT allowed in Alloy
fun Dimension3D::equals(obj: Object) {
obj in Dimension3D
// super.equals needs to be inlined because
// there is no built in support for super
this.width = obj.width && this.height = obj.height
this.depth = obj.depth

}

However, this does not produce the intended model of overriding. In fact, this is
not even a legal Alloy specification—each Alloy specification must have unique
function names.1 We could try renaming one of the equals functions, but it does
not directly solve the problem of modeling overriding. Namely, the invocations
o..equals(o’) should choose the function based on the Java type/class of o. Since
Alloy has no built in support for dynamic dispatch, we would need to model it
manually for each function. Instead, we propose that it be done automatically.

2.3 Modeling equals in VAlloy

VAlloy introduces a natural way to model dynamic dispatch in Alloy. The fol-
lowing VAlloy specification models the above Java classes:
class Object {}
virtual fun Object::equals(obj: Object) { this = obj }

class Dimension {
width: Integer,
height: Integer

}
virtual fun Dimension::equals(obj: Object) {
obj in Dimension
this.width = obj.width && this.height = obj.height

}

class Dimension3D extends Dimension {
depth: Integer

}
virtual fun Dimension3D::equals(obj: Object) {
obj in Dimension3D
super..equals(obj) && this.depth = obj.depth

}

1 That is why we do not initially add equals function for Object.

VAlloy: Virtual Functions Meet a Relational Language 5

The class declaration in VAlloy corresponds to the Alloy declaration disj

sig, where disj indicates that the declared subset is disjoint from other disj

subsets of its parent set. As in Java, VAlloy classes by default extend Object.
The virtual function modifier2 is the main VAlloy extension to Alloy. This

modifier declares a function that is dynamically dispatched at invocation, based
on the VAlloy class of the receiver. VAlloy allows virtual functions to have the
same name. The above example also shows the keyword super that VAlloy pro-
vides for modeling super as found in Java.

2.4 Checking VAlloy specifications

Every VAlloy specification can be automatically translated into an Alloy speci-
fication. Section 3 presents the translation and the resulting Alloy specification
for our running example.3

We use AA to automatically check the above assertion equalsIsEquivalence.
Note that the invocations in the assertion do not need to change; the translation
properly models dynamic dispatch. AA generates a counterexample:

Object_2: Dimension3D {
width = 0,
height = 1,
depth = 3

}
Object_1: Dimension {
width = 0,
height = 1

}

These two objects violate the symmetry property: Object 1..equals(Object 2),
but not Object 2..equals(Object 1). This is because equals of Dimension is obliv-
ious of the field depth declared in Dimension3D. This counterexample shows that
it is hard to extend the java.awt.Dimension class and preserve the properties of
equals.

A way to provide an overridable implementation of equals in Java is to use
the getClass method instead of the instanceof primitive [14]. In the running
example, it requires changing equals of java.awt.Dimension to use the expres-
sion obj.getClass() == this.getClass() instead of obj instanceof Dimension.
A similar change should be made in Dimension3D, unless it is declared final, and
therefore cannot be extended.

Modeling this change in VAlloy is straightforward: change obj in Dimension

with obj..getClass() = this..getClass() in the function Dimension::equals.
VAlloy provides the function getClass that models the final method getClass

from the class java.lang.Object. We translate the changed VAlloy specification
into Alloy and again use AA to check the equivalence assertion. This time AA
reports that there are no counterexamples.

2 VAlloy borrows the modifier name from C++.
3 We have not yet implemented the translation; we perform it manually.

6 Marinov and Khurshid

3 VAlloy

This section presents VAlloy as an extension to Alloy. We define a formal seman-
tics for VAlloy by giving a translation of VAlloy specifications to Alloy specifi-
cations. Details of Alloy semantics can be found in [6].

VAlloy adds the following to Alloy:

· virtual function modifier that declares a function whose invocation depends
on the class of the receiver;

· class declaration that introduces VAlloy classes;
· super keyword that directly correspond to Java;
· getClass function that corresponds to the getClass method of the class
java.lang.Object.

These constructs are syntactically added to Alloy in the obvious way.

3.1 Translation Example

We give a semantics to the new constructs through a translation into Alloy.
The translation algorithm operates in six steps, which we first describe through
examples. Figures 1 and 2 show the Java code and VAlloy specification from
Section 2. For this example, the translation proceeds as follows.

Step 1. Compute the hierarchy of class declarations:

Object
+-- Dimension

+-- Dimension3D

Step 2. Construct sig Class and sig Object based on the above hierarchy:

sig Class { ext: option Class }
static part sig Object_Class, Dimension_Class,

Dimension3D_Class extends Class {}
fact Hierarchy {
no Object_Class.ext

Dimension_Class.ext = Object_Class
Dimension3D_Class.ext = Dimension_Class

}
sig Object { class: Class }
fact ObjectClasses {
(Object - Dimension).class = Object_Class

(Dimension - Dimension3D).class = Dimension_Class
Dimension3D.class = Dimension3D_Class

}
fun Object::getClass(): Class { result = this.class }

Atoms in Class and the fact Hierarchy represent the VAlloy class declarations.
(A fact in Alloy expresses constraints that must hold for all instances of the
specification.) For each atom c in Class, c.ext gives the Class atom that cor-
responds to the superclass of c.4 The keyword static constrains each of the

4 For simplicity, we only present single inheritance, where the hierarchy can only be a
tree. In multiple inheritance, each class can have a set of superclasses.

VAlloy: Virtual Functions Meet a Relational Language 7

class Object {
boolean equals(obj: Object) {

return this == obj;
}

}
class Dimension {

int width;
int height;
boolean equals(obj: Object) {

if (obj.getClass() != this.getClass())
return false;

Dimension d = (Dimension)obj;
return width == d.width &&

height == d.height;
}

}
class Dimension3D extends Dimension {

int depth;
boolean equals(obj: Object) {

if (obj.getClass() != this.getClass())
return false;

Dimension3d d = (Dimension3d)obj;
return super.equals(obj) &&

depth == d.depth;
}

}

Fig. 1. Java code

class Object {}
virtual fun Object::equals(obj: Object) {
this = obj

}

class Dimension {
width: Integer,
height: Integer

}
virtual fun Dimension::equals(obj: Object) {
obj..getClass() = this..getClass()
this.width = obj.width
this.height = obj.height

}
class Dimension3D extends Dimension {
depth: Integer

}
virtual fun Dimension3D::equals(obj: Object) {
obj..getClass() = this..getClass()
super..equals(obj)
this.depth = obj.depth

}

assert equalsIsEquivalence {
all o: Object | // reflexivity

o..equals(o)
all o1, o2: Object | // symmetry

o1..equals(o2) => o2..equals(o1)
all o1, o2, o3: Object | // transitivity

o1..equals(o2) && o2..equals(o3) =>
o1..equals(o3)

}

Fig. 2. VAlloy specification

sig Class { ext: option Class }
static part sig
Object_Class, Dimension_Class,
Dimension3D_Class extends Class {}

fact Hierarchy {
no Object_Class.ext

Dimension_Class.ext = Object_Class
Dimension3D_Class.ext = Dimension_Class

}
sig Object { class: Class }
fact ObjectClasses {
(Object - Dimension).class = Object_Class

(Dimension - Dimension3D).class =
Dimension_Class

Dimension3D.class = Dimension3D_Class
}
fun Object::getClass(): Class {
result = this.class

}
fun Object::equals(obj: Object) {
this.class = Object_Class =>
this..Object_equals(obj)

this.class = Dimension_Class =>
this..Dimension_equals(obj)

this.class = Dimension3D_Class =>
this..Dimension3D_equals(obj)

}

fun Object::Object_equals(obj: Object) {
this = obj

}

disj sig Dimension extends Object {
width: Integer,
height: Integer

}
fun Object::Dimension_equals(obj: Object) {
obj..getClass() = this..getClass()
this.width = obj.width
this.height = obj.height

}

disj sig Dimension3D extends Dimension {
depth: Integer

}
fun Object::Dimension3D_equals(obj: Object) {
obj..getClass() = this..getClass()
this..Dimension_equals(obj)
this.depth = obj.depth

}

assert equalsIsEquivalence {
all o: Object | // reflexivity

o..equals(o)
all o1, o2: Object | // symmetry

o1..equals(o2) => o2..equals(o1)
all o1, o2, o3: Object | // transitivity

o1..equals(o2) && o2..equals(o3) =>
o1..equals(o3)

}

Fig. 3. Translated Alloy specification

8 Marinov and Khurshid

declared subsets to contain exactly one atom, and the keyword part declares a
partition—the subsets are disjoint and their union is the whole set.

For each atom o in Object, o.class gives the corresponding Class atom.
This correspondence is set with fact ObjectClasses based on the VAlloy class

hierarchy. (The ‘-’ operator denotes set difference in Alloy.) This translation step
also introduces the function getClass.

Step 3. Change class declarations into disj sig declarations, adding extends
Object where required:

disj sig Dimension extends Object { ... }
disj sig Dimension3D extends Dimension { ... }

This step does not change field declarations.5

Step 4. Rename each virtual function so that all functions in the specification
have unique names:

fun Object::Object_equals(obj: Object) { this = obj }
fun Object::Dimension_equals(obj: Object) { ... }
fun Object::Dimension3D_equals(obj: Object) { ... }

This step also removes the modifier virtual, translating dynamically dispatched
VAlloy functions into statically dispatched Alloy functions.

Step 5. Add, for each overridden function name, a dispatching function, i.e., a
new Alloy function that models dynamic dispatch:

fun Object::equals(obj: Object) {
this.class = Object_Class =>
this..Object_equals(obj)

this.class = Dimension_Class =>
this..Dimension_equals(obj)

this.class = Dimension3D_Class =>
this..Dimension3D_equals(obj)

}

This step is the crux of the translation. It allows function invocations in VAl-
loy to be written in the usual Alloy notation, but it models dynamic dispatch
semantics—the actual function is selected based on the class of the receiver.

Step 6. Replace each invocation on super with an invocation to the correspond-
ing, previously renamed, static function:

fun Object::Dimension3D_equals(obj: Object) {
obj..getClass() = this..getClass()
this..Dimension_equals(obj) && this.depth = obj.depth

}

This completes the translation. Figure 3 shows the full resulting Alloy speci-
fication. Note that the translation does not change the assertion; the invocations
o..equals(o’) remain written in the most intuitive manner, but they have dy-
namic dispatch semantics.

5 For simplicity, we do not present modeling null, which would require slightly chang-
ing field declarations.

VAlloy: Virtual Functions Meet a Relational Language 9

3.2 General class hierarchy

To illustrate the general translation of class hierarchy, consider the following
excerpt from a VAlloy specification:
class O {} virtual fun O::hC() { /*O*/ }
class C extends O {} virtual fun C::hC() { /*C*/ }

class C1 extends C {} // C1 does not define fun hC
class C2 extends C {} virtual fun C2::hC() { /*C2*/ }

class D extends O {} // D does not define fun hC
class D1 extends D {} virtual fun D1::hC() { /*D1*/ }

For this hierarchy, the translation generates the following sig Class and sig
Object:
sig Class { ext: option Class }
static part sig O_Class, C_Class, C1_Class, C2_Class,

D_Class, D1_Class extends Class {}
fact Hierarchy {
no O_Class.ext

C_Class.ext = O_Class
C1_Class.ext = C_Class
C2_Class.ext = C_Class

D_Class.ext = O_Class
D1_Class.ext = D_Class

}
sig Object { class: Class }
fact ObjectClasses {
(O - C - D).class = O_Class

(C - C1 - C2).class = C_Class
C1.class = C1_Class
C2.class = C2_Class

(D - D1).class = D_Class
D1.class = D1_Class

}

For the function hC, the translation generates the following Alloy functions:
fun O::O_hC() { /*O*/ }
fun O::C_hC() { /*C*/ }
// there is no O::C1_hC()
fun O::C2_hC() { /*C2*/ }
// there is no O::D_hC()
fun O::D1_hC() { /*D1*/ }
fun O::hC() {
this.class = O_Class => this..O_hC()

this.class = C_Class => this..C_hC()
this.class = C1_Class => this..C_hC() /* not C1 */
this.class = C2_Class => this..C2_hC()

this.class = D_Class => this..O_hC() /* not D */
this.class = D1_Class => this..D1_hC()

}

3.3 Summary

To summarize, the translation from VAlloy to Alloy proceeds in the following
six steps:

1. Compute the hierarchy of class declarations.
2. Construct sig Class and sig Object.
3. Change class into disj sig declarations.
4. Rename uniquely each virtual function.
5. Add dispatching functions.
6. Replace super with an appropriate static invocation.

10 Marinov and Khurshid

4 Collections

This section presents VAlloy models for some collection classes. Our main focus
is comparison based on object values. We ignore the orthogonal issue of modeling
state, i.e., sharing and object interactions. An approach for modeling state in
Alloy is discussed in [4], and we can apply the same approach to VAlloy.

4.1 Sets

We develop a VAlloy specification for sets whose membership is based on object
values, not object identities. As in Java, elements of the sets are objects of classes
that (in)directly extend Object and potentially override equals.

We first declare a VAlloy class for sets:
class Set { s: set Object }

For each atom a in Set, a.s is the (Alloy) set of objects in the (modeled) set
a. To constrain set membership to be based on object values, we introduce the
following fact:
fact SetIsBasedOnEquals {
all a: Set | all disj e1, e2: a.s | !e1..equals(e2)

}

This fact requires distinct elements in each set to be not equal with respect to
equals. For example, this rules out the set a such that a.s={d1,d2}, where d1

and d2 are distinct atoms (i.e., d1!=d2) of Dimension, but d1.width=3, d1.height=8
and also d2.width=3, d2.height=8, which makes d1..equals(d2). Note that a.s

is a valid Alloy set.
It is now easy to specify some set functions from the java.util.Set interface:

virtual fun Set::contains(o: Object) {
some e: this.s | o..equals(e)

}
virtual fun Set::add(o: Object): Set {
this.s..contains(o) =>

result.s = this.s,
result.s = this.s + o

}
virtual fun Set::remove(o: Object): Set {
result.s = this.s - { e: this.s | e..equals(o) }

}
virtual fun Set::isEmpty() { no this.s }
virtual fun Set::clear(): Set { no result.s }
virtual fun Set::size(): Integer { result = #this.s }
virtual fun Set::subset(a: Set) {
all e: this.s | a..contains(e)

}
virtual fun Set::equals(o: Object) {
o in Set
o..size() = this..size()
o..subset(this)

}

The most interesting function is equals, which compares two sets for equality. It
checks that both sets have the same number of elements and that o is a subset
(based on equals) of this. The function remove uses set comprehension to specify
an object’s removal from a set.

VAlloy: Virtual Functions Meet a Relational Language 11

The above VAlloy specification closely models java.util.Set. The main dif-
ference is that this specification is written in a functional style and does not
model state modifications. As mentioned, state can be modeled using the ap-
proach from [4], which also presents a way to handle iterators. Therefore, we do
not model “bulk operations” on sets, such as addAll, based on iterators. Instead,
we present an analogous function for set union:

virtual fun Set::union(a: Set): Set {
this..subset(result)
a..subset(result)
all e: result.s | this..contains(e) || a..contains(e)

}

Note that the use of contains (and subset based on contains), which is based
on equals, enables specifying union in a direct way.

4.2 Maps

We next develop a partial VAlloy specification for maps, such as java.util.Map,
that compare keys based on equals. In this specification, we reuse the class Set
defined above to automatically constrain the set of keys:

class Map {
keys: Set
map: keys.s ->! Object

}

We model the mapping from keys to values using an Alloy relation map; the
multiplicity marking ‘!’ indicates that for each key, there is exactly one Object.
For each atom a in class Map, a.map is the actual mapping. For a key k, a.map[k]
gives the value that k is mapped to in map a.

We next model the essential map functions:

virtual fun Map::get(key: Object): Object {
this.keys..contains(key) => result = this.map[key]

}
virtual fun Map::put(key: Object, value: Object): Map {
result.keys = (this.key - { e: this.keys | e..equals(key) }) + key,
result.map = (this.map - { e: this.keys | e..equals(key) }->Object) + key->value

}

The function get returns the value that key is mapped to, if such a key exists
in the map; otherwise, the behavior of get is unspecified. (Since Alloy is a re-
lational language, non-determinism comes for free.) We can constrain get to be
deterministic, e.g., to return an explicit Null object, if the key is not in the map.

4.3 Trees

We next use a tree-based implementation of sets to illustrate how properties of
abstract data types can be expressed in VAlloy. Consider the following declara-
tion for binary trees:

class Tree { root: Node }
class Node {
left: Node,
right: Node,
data: Object

}

12 Marinov and Khurshid

Suppose that these VAlloy trees model a Java implementation of sets based
on equals. We can state the abstraction function [19] for these trees in VAlloy:

fun Tree::abstractionFunction(): Set {
result.s = this.root.*(left+right).data

}

The ‘*’ operator is reflexive transitive closure, and root.*(left+right) denotes
an (Alloy) set of all Nodes reachable from the root. The set of Objects from those
nodes is obtained accessing data, and the abstraction function constrains this
Alloy set to be a Set.

We also use VAlloy to state representation invariant [19] for these trees. As-
sume that they have the following structural constraints: root nodes are sentinels
(and thus never null) and leaf nodes point to themselves. The following repOk
predicate characterizes the representation invariants for a tree:

fun Tree::repOk() {
// no node points to root
no this.root.~(left+right)
// acyclic (with self loops for leafs)
all n: this.root.*(left+right) {

n.left = n || n !in n.left.*(left+right)
n.right = n || n !in n.right.*(left+right)

}
// no duplicates w.r.t equals()
some a: Set | a = this..abstractionFunction()

}

(The ‘~’ operator denotes transpose of a binary Alloy relation.) Beside the struc-
tural invariants, a valid tree is required to be a concrete representation of some
Set. Note how the equals constraints from the abstract representation, Set, prop-
agate to the concrete representation, Tree.

5 Related work

Recently, Jackson and Fekete [4] proposed an approach for modeling in Alloy ob-
ject interactions, like those in Java. Their approach models heap using explicit
references and captures properties of object sharing and aliasing. However, the
approach does not handle inheritance in the presence of method overriding and
dynamic dispatch. Their approach is orthogonal to our handling of virtual func-
tions; we are planning to combine these two approaches.

Alloy has been used to check properties of programs that manipulate dy-
namic data structures. Jackson and Vaziri [7] developed a technique for analyzing
bounded segments of procedures that manipulate linked lists. Their technique
automatically builds an Alloy model of computation and checks it against a
specification. They consider a small subset of Java, without dynamic dispatch.

We developed TestEra [12], a framework for automated testing of Java pro-
grams. In TestEra, specifications are written in Alloy and the Alloy Analyzer is
used to provide automatic test case generation and correctness evaluation of pro-
grams. Writing specifications for Java collections, which use comparisons based
on object values, requires modeling the equals method in Alloy. This led us

VAlloy: Virtual Functions Meet a Relational Language 13

to tackle modeling general Java-like inheritance in Alloy. VAlloy presents some
ideas toward that goal.

The Java Modeling Language (JML) [10] is a popular specification language
for Java. JML assertions use Java syntax and semantics, with some additional
constructs, most notably for quantification. Leveraging on Java, JML specifica-
tions can obviously express dynamic dispatch. However, JML lacks static tools
for automatic verification of such specifications.

The LOOP project [18] models inheritance in higher order logic to reason
about Java classes. Java classes and their JML specifications are compiled into
logical theories in higher order logic. A theorem prover is used to verify the
desired properties. This framework has been used to verify that the methods of
java.util.Vector maintain the safety property that the actual size of a vector
is less than or equal to its capacity [3].

Object-oriented paradigm has been integrated into many existing languages,
typically to make reuse easier. For example, Object-Z [15] extends the Z specifi-
cation language [16], which enables building specifications in an object-oriented
style. Object-Z retains the syntax and semantics of Z, adding new constructs.
The major new construct is the class schema that captures the object-oriented
notion of a class.. Object-Z allows inheritance to be modeled, but it lacks tool
support for automatically analyzing specifications.

Objects and inheritance have also been added to declarative languages. For
example, Prolog++ [13] extends Prolog. OOLP+ [1] aims to integrate object-
oriented paradigm with logic programming by translating OOLP+ code into
Prolog without meta-interpretation.

Keidar et al. [8] add inheritance to the IOA language [11] for modeling state
machines, which enables reusing simulation proofs between state machines. This
approach allows only a limited form of inheritance, subclassing for extension:
subclasses can add new methods and specialize inherited methods, but they
cannot override those inherited methods, changing their behavior arbitrarily.
VAlloy allows subclasses to arbitrarily change the behavior of inherited methods.

6 Future work

VAlloy presents our first step towards modeling in Alloy advanced constructs
from object-oriented languages. The main focus has been on method overrid-
ing in Java. We have therefore designed VAlloy to support subclasses that can
arbitrarily change behavior of inherited methods.

Our approach can easily be extended to support intuitive modeling of mul-
tiple inheritance, such as in C++, and multi-method dispatch, such as in Cecil.
Support for method overloading can clearly be added through a simple syntac-
tic manipulation. We omitted support for Java’s interfaces, keeping in line with
Alloy’s “micromodularity” philosophy of being a lightweight language amenable
to fully automatic analysis. Similarly, we do not consider encapsulation.

We would like to explore modeling in VAlloy other constructs of Java. Ini-
tially, we plan to add state to VAlloy, adapting the approach of [4], or maybe

14 Marinov and Khurshid

TAlloy [9]. We also want to add support for exceptions to enable VAlloy spec-
ifications to directly model exceptional behavior of methods, as well as normal
behavior. Further, having exceptions would allow modeling arrays with bound
checking. We are also evaluating whether VAlloy specifications should include
computation, such as control flow, recursion, and multi-threading.

To explore practical value of VAlloy, we intend to use it in connection with
some existing frameworks. Daikon [2] is a tool for dynamically detecting likely
program invariants; we are considering to use it to detect (partial) VAlloy speci-
fications of Java classes. TestEra [12] is a framework for automated test genera-
tion and correctness evaluation of Java classes; we are considering to use VAlloy
specifications for TestEra.

7 Conclusions

We described VAlloy, an extension to the first order, relational language Alloy.
All function invocations in Alloy are static; Alloy has no direct support for
dynamic dispatch. VAlloy introduces virtual functions in Alloy, which enables
intuitive modeling of inheritance, such as that of Java. We illustrated the use of
VAlloy by modeling a small part of the Java Collections Framework.

We defined a formal semantics for VAlloy through a translation to Alloy.
VAlloy models can be automatically translated into Alloy. The translation is
similar to building virtual function tables for object-oriented languages and can
benefit from optimizations based on class hierarchy. The translated specifications
can be automatically checked using the existing Alloy Analyzer. We believe that
VAlloy can be effectively used for specification and checking of Java classes.

Acknowledgements

We would like to thank Manu Sridharan and Ang-Chih Kao for comments on an
earlier draft of this paper. This work was funded in part by ITR grant #0086154
from the National Science Foundation.

References

1. Mukesh Dalal and Dipayan Gangopahyay. OOLP: A translation approach to
object-oriented logic programming. In Proc. First International Conference on De-
ductive and Object-Oriented Databases (DOOD-89), pages 555–568, Kyoto, Japan,
December 1989.

2. Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD the-
sis, University of Washington Department of Computer Science and Engineering,
Seattle, Washington, August 2000.

3. Marieke Huisman, Bart Jacobs, and Joachim van den Berg. A case study in class
library verification: Java’s Vector class. Software Tools for Technology Transfer,
2001. (to appear).

VAlloy: Virtual Functions Meet a Relational Language 15

4. Daniel Jackson and Alan Fekete. Lightweight analysis of object interactions. In
Proc. Fourth International Symposium on Theoretical Aspects of Computer Soft-
ware, Sendai, Japan, October 2001.

5. Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. ALCOA: The Alloy constraint
analyzer. In Proc. 22nd International Conference on Software Engineering (ICSE),
Limerick, Ireland, June 2000.

6. Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mech-
anism. In Proc. 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), Vienna, Austria, September 2001.

7. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In Proc.
International Symposium on Software Testing and Analysis (ISSTA), Portland,
OR, August 2000.

8. Idit Keidar, Roger Khazan, Nancy Lynch, and Alex Shvartsman. An inheritance-
based technique for building simulation proofs incrementally. In Proc. 22nd In-
ternational Conference on Software Engineering (ICSE), pages 478–487, Limerick,
Ireland, June 2000.

9. Sarfraz Khurshid and Darko Marinov. TAlloy: Multiple instances in a single Alloy
model. (unpublished extended abstract), May 2001.

10. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report TR 98-06i,
Department of Computer Science, Iowa State University, June 1998. (last revision:
Aug 2001).

11. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
12. Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for automated

testing of Java programs. In Proc. 16th IEEE International Conference on Auto-
mated Software Engineering (ASE), San Diego, CA, November 2001.

13. Chris Moss. Prolog++ The Power of Object-Oriented and Logic Programming.
Addison-Wesley, 1994.

14. Mark Roulo. How to avoid traps and correctly override methods
from java.lang.Object. http://www.javaworld.com/javaworld/jw-01-1999/

jw-01-object.html.
15. G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers,

2000.
16. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition,

1992.
17. Sun Microsystems. Java 2 Platform, Standard Edition, v1.3.1 API Specification.

http://java.sun.com/j2se/1.3/docs/api/.
18. Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and JML.

In Proc. Tools and Algorithms for the Construction and Analysis of Software
(TACAS), (Springer LNCS 2031, 2001), pages 299–312, Genoa, Italy, April 2001.

19. Barbara Liskov with John Guttag. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison-Wesley, 2000.

