Power electronic circuits modeling

- **Switched model**
 Switching function $g(t)$:

 ![Switching function diagram](image)

 $g(t+1) = 0 \Rightarrow$ Switch is commanded to be off.

 $\log g(t+1) = 1 \Rightarrow$ Switch is commanded to be on.

- Consider a buck converter operating in continuous conduction mode (CCM) \(\Rightarrow \) i.e., \(i(t+1) > 0 \) \(\forall t \geq 0 \)

 ![Buck converter diagram](image)

 - When $g(t) = 1$

 \[
 \dot{x}_1 = E - x_2 \\
 C \dot{x}_2 = x_1 - x_2/R
 \]

 - When $g(t) = 0$

 \[
 \dot{x}_1 = -x_2 \\
 C \dot{x}_2 = x_1 - x_2/R
 \]
Hence

\[\begin{align*}
 L \dot{x}_1 &= f(t) \cdot e - x_2 \\
 c \dot{x}_2 &= x_1 - \frac{x_2}{R}
\end{align*} \]

(a) Switched system
dynamic eqs.

Switching Function

Note that \(f(t) \) is non-linear. So power electronics circuits are non-linear circuits. Because of \(f(t) \) in (a) it cannot use Fourier, Laplace or identify impedances.

Steady state is a succession of transient states

That is \(x_1(t_0) \neq x_1(t_1) \) and \(x_1(t_1) \neq x_1(t_2) \) but \(x_1(t_0) = x_1(t_2) \)

Steady state

Equilibrium points \(\rightarrow \) are those points where \(\dot{x}_1 = 0 \) and \(\dot{x}_2 = 0 \) (e.g. "velocity" \(x_2 \) is zero)
For $g_{d}(t) = 1$ →
\[
\begin{align*}
\dot{O} &= E - x_2 \\ \dot{x}_{201} &= E \\
0 &= x_1 - x_2/R \quad \rightarrow \quad x_{101} &= E/R
\end{align*}
\]

For $\dot{g}(t) = 0$ →
\[
\begin{align*}
O &= -x_2 \\ \dot{x}_{202} &= 0 \\
0 &= x_1 - x_2/R \quad \rightarrow \quad x_{202} &= 0
\end{align*}
\]

In matrix form (1) and (2) can be written as:
\[
\begin{align*}
L \ddot{x}_1 &= f(t) E - x_2 \\
C \ddot{x}_2 &= x_1 - \frac{x_2}{R}
\end{align*}
\]
\[
\begin{align*}
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} &= A \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + B \begin{bmatrix}
f(t) E \\
0
\end{bmatrix}
\end{align*}
\]

Circuit structure:
\[
B = \begin{bmatrix}
f(t) E \\
0
\end{bmatrix}, \quad A = \begin{bmatrix}
0 & 1 \\
-1/R & 0
\end{bmatrix}
\]

Based on control input \rightarrow
\[
B = \begin{bmatrix}
f(t) E \\
0
\end{bmatrix}, \quad u = f(t)
\]

Based on power input \rightarrow
\[
B = \begin{bmatrix}
f(t) E \\
0
\end{bmatrix}, \quad u = E
\]

For a boost converter:

\[
\begin{align*}
\dot{g}(t) &= 1 - g(t) \\
L \ddot{x}_1 &= E \\
C \ddot{x}_2 &= -\frac{x_2}{R} \\
\end{align*}
\]

\[
\begin{align*}
0 &= x_1 - x_2/R \\
\end{align*}
\]

\[
\begin{align*}
\dot{g}(t) &= 1 \\
L \ddot{x}_1 &= E - \frac{g(t)}{R} x_2 \\
C \ddot{x}_2 &= \frac{g(t)}{R} x_1 - \frac{x_2}{R} \\
\end{align*}
\]

Switched model
Equilibrium points:

\[f(x_1) = 1 \rightleftharpoons \begin{cases} 0 = \frac{E}{x} & \rightarrow \quad \text{There is no equilibrium} \\ 0 = -\frac{x_2}{R} \end{cases} \]

If I leave the switch closed \(x_1 \to \infty \):

\[f(x_1) = \infty \rightleftharpoons \begin{cases} 0 = E - x_2 & \rightarrow \quad x_{2_{eq}} = \frac{E}{R} \\ 0 = x_1 - \frac{x_2}{R} \end{cases} \]

- Buck-boost converter

\[\begin{array}{c}
\text{Buck} \\
\text{Boost} \\
\end{array} \]

\[\text{opposite effects} \quad \text{redundant switches} \]
\[
\begin{align*}
\dot{X}_1 &= \frac{1}{2}(\dot{V}_1 - V_0) X_2 \\
\dot{X}_2 &= \frac{1}{2}(\dot{V}_1 - V_0) X_1 - \frac{X_2}{R}
\end{align*}
\]

Equilibrium points:

\[
\begin{align*}
\dot{V}_1 + 1 &= 0 \quad \Rightarrow \quad 0 &= \dot{V}_1 (\text{?}) \\
X_{2,01} &= 0 \\
\dot{V}_1 + 1 &= 0 \quad \Rightarrow \quad 0 &= -X_2 \quad \Rightarrow X_{2,02} = 0 \\
0 &= X_1 - \frac{X_2}{R} \quad \Rightarrow X_{1,02} = \infty
\end{align*}
\]

Fly back converter

From the buck-boost converter let’s split the inductor in two coupled inductors

\[
E \quad \Rightarrow \quad \text{Not a transformer} \\
\text{they are 2 coupled inductors}
\]

\[
\frac{d\phi}{dt} = \frac{V_1}{N_1} = \frac{V_2}{N_2}
\]

\[
\phi = A_L (i_1 N_1 + i_2 N_2) \quad \text{general form}
\]

\[
\text{Flux linkage} \quad \Rightarrow \quad A_L = \frac{\phi}{L} \quad \text{Reduction} \\
\phi \phi = L
\]

\[
L = \text{Ohm's law for a magnetic circuit}
\]
\[\frac{d\phi}{dt} = \frac{\xi E}{N_1} - \frac{\xi' V_c}{N_2} \]

\[\frac{dV_c}{dt} = \frac{\xi' \phi}{L_N} - \frac{V_c}{R} \]

\[i_2 = 0 \text{ when } i_1 \rightarrow \infty \]

This is why it can't be considered a transformer. Otherwise the general form should be valid.

\[\Phi = A_L i_2 N_2 \rightarrow i_2 = \frac{\phi}{A_L N_2} \]

Fast average model

Fast average operator

\[\bar{\phi}(t) = \frac{1}{T_{sw}} \int_{T_{sw}}^{t} \phi(t') dt' \]

An operator is a machine, what kind of machine is this?

If I apply a Laplace transform on both sides, I obtain that \(F(s) \) is proportional to \(\frac{E}{s} \)
Since \(\frac{T}{5} \) is indicative of a low-pass filter, the fast average operator acts as a low-pass filter.

So when I apply the fast average operator to the switching function \(f(t) \), I obtain the instantaneous duty cycle \(\overline{f}(t) \):

\[
\overline{f}(t) = \frac{1}{T_{SW}} \int_{t}^{t+T_{SW}} f(\tau) \, d\tau
\]

From (1)

\[
\begin{align*}
L \dot{x}_1 &= g(t) \xi - x_2 \\
C \dot{x}_2 &= x_1 - \frac{x_2}{12}
\end{align*}
\]

Fast average operator

\[
\begin{align*}
L \overline{x}_1 &= \overline{f}(t) \xi - \overline{x}_2 \\
C \overline{x}_2 &= \overline{x}_1 - \frac{\overline{x}_2}{12}
\end{align*}
\] (2)

time domain

Blue → Switched model
Red → Fast average model

state space (phase portrait)
Simulations performed with simulink with a buck converter with $E = 48V$, $R = 0.50$, $C = 500\mu F$, $L = 100\mu F$.

Note that in order to realize the switching function we sample an instantaneous duty cycle signal with linear transitions that do not add distortion

Like earlier I can represent the fast average model in a matrix form.

$$L \dot{x}_1 = \bar{d}(t)E - x_2$$

$$C \dot{x}_2 = \bar{x}_1 - \frac{x_2}{R}$$

If $\bar{d}(t)$ is constant an equal to D, then

$$L \dot{x}_1 = DE - x_2$$

$$C \dot{x}_2 = \bar{x}_1 - \frac{x_2}{R}$$

Eq. point $x_0 = \left(\begin{array}{c} \frac{DE}{R} \\ V_0 \end{array} \right)$.
Limit cycle

(ii) does not lead to an equilibrium point

Equilibrium point only achieved in a weighted average sense

\[\bar{\mathbf{x}}_e = \left(\frac{D E/R}{D E} \right) \mathbf{x}_{e_0} + (1-D) \mathbf{x}_{e_2} \]

What if we are not in con and \(i_{\text{SO}} \) for part of the period (we are in discontinuous conduction mode - DCM)

When \(Q_1 = \text{ON} \),

\[V_c = V_{in} - V_{out} = L \frac{d i_c}{dt} = L \frac{d i_{\text{peak}}}{dt} \]

Then \(i_{\text{peak}} = \frac{D_i T}{L} (E - V_{out}) \) \((**) \)

Also

\[P_{in} = \frac{1}{T} \int_0^T V_{in} i_{in} dt = \]

\[= \frac{E}{T} \int_0^T i_{in} dt \]

Now,

\[\langle i_{in} \rangle \]

\[\langle i_{in} \rangle = \frac{1}{T} D_i T i_{\text{peak}} = \frac{D_i i_{\text{peak}}}{2} \]

\[= \frac{1}{2} \text{Area of Triangle} \]
And, since \(P_{in} = P_{out} \rightarrow E\langle \dot{i}_{in} \rangle = \frac{V_{out}^2}{R} \)

\[
\frac{D^2 T}{Dx^2} (E - V_{out}) \dot{V}_{in} = \frac{V_{out}^2}{R}
\]

\[
V_{out} = -\frac{D^2 E RT}{4L} + \sqrt{\frac{R_T}{2L} + \frac{E^2 T^2 D^2}{16L^2}}
\]

A complete average model for a buck converter is:

\[
L \dot{\bar{x}}_1 = \frac{dE}{dt} - 2 \bar{x}_1 \bar{x}_2 \frac{d}{dt} (E - \bar{x}_1)
\]

\[
C \dot{\bar{x}}_2 = \bar{x}_1 - \frac{\bar{x}_2}{R}
\]

For the boost converter:

\[
\begin{cases}
L \dot{\bar{x}}_2 = E - g'(\bar{x}_1) \bar{x}_2 \\
C \dot{\bar{x}}_2 = g''(\bar{x}_1) \bar{x}_1 - \frac{\bar{x}_2}{R}
\end{cases}
\]

But I cannot replace \(g'(t) \) by \(\dot{g}(t) \) as I did with the buck converter without some clarification:

Fast average issue:

\[
\frac{1}{T} \int_{-T/2}^{T/2} \left(\int_{t-T}^{t} x_1 \, dt \right) \, dt = \frac{1}{T} \int_{-T/2}^{T/2} \left(\int_{t-T}^{t} dt \right) \, dt x_1(t)
\]

That is, the fast average operator applied to \(g'(t) \) is not necessarily \(\dot{g}(t) \).
Since in the switched model the state variables follow linear transitions consider that

\[x_i = a_i t \]

Then

\[x_i g(t) = \frac{1}{T_{sw}} \int_{t_i}^{t + T_{sw}} A t + \frac{f(t) dt}{2} D \left(2t + D T_{sw} \right) \]

This is the only difference.

For \(T_{sw} \) very small there is no problem.

So, for high switching frequency \((f_{sw} = \frac{1}{T_{sw}}) \)

\[
\begin{align*}
 \dot{\bar{x}}_i &= \bar{e} - \bar{A} \bar{x} \\
 \dot{\bar{e}} &= \bar{A} \bar{x}, \quad t \in [0, T] \\
 \dot{\bar{x}}_i &= \bar{A} \bar{x}, \quad t \in [T, T_{sw}] \\
 \bar{e} &= \bar{x}_i - \bar{x}_2 \\
 \bar{A} &= \frac{1}{T_{sw}}
\end{align*}
\]

But how "high" is a "high" switching frequency?

Consider a switched linear system

\[
\dot{x} = \begin{cases}
 A_1 g(t) + A_2 \left(1 - g(t) \right) x, & t \in [0, T] \\
 f_1(t) A_1 x, & t \in [T, T_{sw}] \\
 f_2(t) A_2 x, & t \in [T_{sw}, t_i]
\end{cases}
\]
The exact solutions for \(x(t) \) and \(f_x(t) \) are

\[
x(t) = e^{A_2(t-t_0)} x(t_0)
\]

\[
x(t) = e^{A_2(T-t_0)} x(t_0) = e^{A_2(T-dT)} x(t_0)
\]

which is calculated as \(e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!} \)

Since \(x(t) \) is continuous at \(t_0 \) (\(x(t_0^-) = x(t_0^+) \)) then

\[
x(t) = e^{A_2 (t-dT)} x(t_0)
\]

\[
x(t_0) = e^{A_1 t_0} x(t_0)
\]

Now let's call \(A_2 (1-d)T = A_{21} \) (it's a matrix) and

\[
A_1 dT = A_{01} \quad \text{(another matrix)}
\]

So, \(x(t) = e^{A_{21}} e^{A_{01}} \) \((3)\)

Before continuing, let's see some useful properties of the function of the exponential of a matrix:

\[
e^0 = I
\]

\[
e^{a+b} = e^a e^b
\]

\[
e^b e^{-b} = I
\]

If \(B \) is invertible then \(e^{B^{-1}} = \beta e^b \beta^{-1} \)
\[\text{det}(e^B) = e^{\text{Tr}(B)} \]

L: Invariance of \(B \to x(B) = \sum_{j=1}^{n} a_{jj} \)

\[e^{B^T} = (e^B)^T \]

If \(A \) and \(B \) commute (i.e., \(AB = BA \)) then \(e^{A+B} = e^A e^B \)

If \(A \) and \(B \) do not commute we can use Baker-Campbell-Hausdorff formula

\[\exp \left(\sum_{n=1}^{\infty} \frac{1}{n!} [X, [X, \ldots [X, Y] \ldots]] \right) = \exp(X) \exp(Y) \]

\[\text{commutator} \left[[X, Y] = X Y - Y X \right] \]

So if they commute \([X, Y] = 0 \)

and \(\exp(X) \exp(Y) = \exp(X + Y) \)

So let's go back to (3) \(\chi(T) = e^{B_2} e^{B_1} \)

Since \(A_1 \) and \(A_2 \) do not necessarily commute then from (2)

\[A_0 = A T = A_1 + A_2 + \frac{1}{2} \left[A_1 , A_2 \right] = \]

\[d' = 1-d = (d' A_1 + d' A_2) T + d A_1 (A_1 A_2 - A_2 A_1) T^2 + \ldots \]

Now, if \(T \) is small (i.e., for large) then \(T^2 \ll CT \) and

\[A T = (d' A_1 + d' A_2) T \]

and \(\chi(T) = e^{AT} \chi_0 = e^{(d A_1 + d' A_2) T} \chi_0 \) \((4) \)

solution \(\dot{\chi} = (d A_1 + d' A_2) \chi \)

\[\chi(T) = \frac{1}{T^2} \left[\chi(T) \right] \]

weighted average of \(\sum \left\{ \dot{\chi} = A_1 \chi \right\} \)

So the fast average model is a good approximation for the switched model if \(T \) is small (or \(f \) is large) so the following approximation is valid.
So let's go back to the buck converter for a quick example.

Switched System

\[
\begin{align*}
L\dot{x}_1 &= f(I^{\dagger})x_2 - x_2, \\
C\dot{x}_2 &= x_1 - \frac{x_2}{R}
\end{align*}
\]

*For \(f(I^{\dagger}) = 0 \):

\[x_2 = 0, \quad x_1 = 0\]

*For \(f(I^{\dagger}) = 1 \):

\[x_2 = E, \quad x_1 = \frac{E}{R}\]

\[T_{sw} = 2 \times 10^{-2}\]

\[T = 2 \times 10^{-4}\]

\[T = 5 \times 10^{-4}\]
Small signal model

Let's consider once again the buck converter.

From (2)

\[
\begin{align*}
\frac{\dot{x}_1}{L} &= \dot{u} \left(u - \overline{x}_2
ight) \\
C \frac{\dot{x}_2}{R} &= \overline{x}_1 - \overline{x}_2
\end{align*}
\]
Consider the linear operator Δ that is defined as

$$\Delta(f) = f - f_0$$

so it just calculates the difference with respect to a point f_0.

So, $\delta_x = \Delta(x_1) = x_1 - x_1^0 \rightarrow (\delta x_1) = \dot{x}_1$. Coordinate in x_1 of the equilibrium point.

Let $\gamma_1 = x_1$, $\gamma_2 = x_2$ then

$$L \delta x_1 = E \delta \gamma_1 - \delta x_1$$

In the same way $L \delta x_2 = \delta x_2 - \delta x_2^R$.

Thus,

$$L \delta x_1 = E \delta \gamma_1 - \delta x_1$$

$$L \delta x_2 = \delta x_2 - \delta x_2^R$$

→ Model valid in a small neighborhood around the equilibrium point x_0.

If the input voltage E is allowed to vary then:

$$L \delta x_1 = E \delta \gamma_1 + \delta E \delta \gamma_0 - \delta x_1$$

$$L \delta x_2 = \delta x_2 - \delta x_2^R$$

→ The product of two variables d and e becomes two terms.

So I can now do standard linear analysis. For example, I can calculate the transfer functions from
\[
\begin{pmatrix}
\delta x_1 \\
\delta x_2 \\
\delta x_3 \\
\delta x_4 \\
\delta x_5 \\
\delta x_6
\end{pmatrix} =
\begin{pmatrix}
0 & 1/C & 0 & -1/L & 0 & 0 \\
1/C & 0 & -1/RC & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\delta e \\
\delta d \\
\delta e \\
\delta d \\
\delta e \\
\delta d
\end{pmatrix}
\]

Note that \(\delta x_2 \) is controlled through \(\delta x_1 \)

\[
\delta y = \delta x_2
\]

Using Laplace:

\[
L \left(\delta x_4 \right) = S \Delta x_1 (s) - \ldots
\]

\[
\begin{cases}
L S \Delta x_1 (s) = - \Delta x_2 (s) + \delta D (s) + \delta e (s) \\
L S \Delta x_2 (s) = \Delta x_1 (s) - \frac{\Delta x_2 (s)}{R}
\end{cases}
\]

\[
G(s) = \frac{\Delta x_2 (s)}{\Delta D (s)} \rightarrow \text{output} \div \text{control input}
\]

Transfer function

\[
L S \Delta x_1 (s) = L S \left(L S \Delta x_2 (s) + \Delta x_2 (s) \right) = - \Delta x_2 (s) + \delta D (s) + \delta e (s)
\]

\[
\Delta x_2 (s) \left(L C S^2 + L S + R \right) = \delta D (s)
\]

When calculating the transfer function with respect to the control input, it is considered that the power input is fixed, \(\delta e (s) = 0 \)

For the boost converter:
Linearization:

$$\Delta f = \frac{\partial f}{\partial x_1} \Delta x_1 + \frac{\partial f}{\partial x_2} \Delta x_2$$

If $f = \frac{\partial}{\partial x_2}$

Then $\delta f = x_{i_0} \delta x_1 + D_0 \delta x_2$

Thus,

$$\dot{x}_1 = x_{i_0} \delta x_1 - (1-D_0) \delta x_2$$

$$\dot{x}_2 = -x_{i_0} \delta x_1 + (1-D_0) \delta x_2 - \frac{\delta x_2}{R}$$

Equivalent circuits based on the fast energy well

Buck converter

\[
\begin{align*}
\dot{x}_1 &= T(t) e - x_1 \\
C \dot{x}_2 &= x_1 - \frac{x_2}{R}
\end{align*}
\]

![Buck converter diagram]
Boost converter

\[
\begin{align*}
L \frac{\dot{x}_1}{x_1} &= e^{\dot{d}'t}x_0 \\
C \frac{\dot{x}_2}{x_2} &= \frac{\dot{d}'}{N_2} x_1 - \frac{x_2^2}{\sqrt{R}} \\
(1-d) \cdot 1
\end{align*}
\]

Fly Back

\[
\begin{align*}
\dot{\phi} &= \frac{J E}{N_1} - \frac{J'}{N_2} x_2 \\
C \frac{\dot{x}_4}{x_4} &= \frac{\dot{d}'}{L_2} x_0 - \frac{x_2^2}{\sqrt{R}} \\
\frac{\Delta \phi}{\Delta c} N_1 &= \frac{\phi N_2}{L_2} = \frac{N_1}{N_2} \frac{\dot{x}_4}{\phi}
\end{align*}
\]

Some good papers for reference:

Small-Signal Modeling of Pulse-Width Modulated Switched-Mode Power Converters

R. D. MIDDLEBROOK, FELLOW, IEEE

On the Use of Averaging for the Analysis of Power Electronic Systems

PHILIP T. KREIN, MEMBER, IEEE, JOSEPH BENTSMAN, MEMBER, IEEE, RICHARD M. BASS, STUDENT MEMBER, IEEE, AND BERNARD L. LESEJUETRE
LARGE-SIGNAL DESIGN ALTERNATIVES FOR SWITCHING POWER CONVERTER CONTROL

Richard M. Bass¹ and Philip T. Krein²

Modeling of PWM Converters in Discontinuous Conduction Mode - A Reexamination

Jian Sun, Daniel M. Mitchell Matthew F. Greuel, Philip T. Krein and Richard M. Bass

GENERATION, CLASSIFICATION AND ANALYSIS OF SWITCHED-MODE DC-TO-DC CONVERTERS BY THE USE OF CONVERTER CELLS

Richard Tymerski and Vatche Vorperian