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e Introduction

e Microgrids
* Planning: Lifelines, renewable energy sources and energy
storage availability modeling
e Circuits: Multiple-input dc-dc converters and power routing
interfaces
« Control: constant power loads and maximum power point
tracking

e Smart Grids

Pecan Street “customer side of the meter”

- Data centers and other relevant topics
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e Top to Bottom Research Approach

» Power electronics research often refers to:
* Circuits
e controls
e devices

 But significant issues appears when integrating all
components into systems. Analysis from a system approach
tends to be uncommon in traditional power electronics
research.

« Some key focus topics from a system approach includes
modeling, availability, energy efficiency, operational flexibility.
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« Conventional power grids are very fragile systems

« Work underway .
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* What is a microgrid?

» Microgrids are considered to be locally confined and independently
controlled electric power grids in which a distribution architecture integrates
loads and distributed energy resources—i.e. local distributed generators
and energy storage devices—which allows the microgrid to operate
connected or isolated to a main grid
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« Highly available power supply during disasters

*Power electronic enabled micro-grids may be the solution that achieves
reliable power during disasters (e.g. NTT’s micro-grid in Sendai, Japan)
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« Highly available power supply during disasters

* Focus on critical loads, such as communications facilities.
* E.g. Verizon’s Garden City Central Office after Irene.
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e Research view for power electronics systems

LOCAL AREA POWER AND ENERGY SYSTEMS

(MICROGRIDS AND SMART GRIDS)
ULTRA-AVAILABLE AND EFFICIENT ELECTRIC SYSTEMS

LOCAL -
SYSTEM ENERGY LIFELINES
INTERFACES | CONTROLS LOADS POWER
ARCHITECTURE STORAGE il -
RELIABILITY THEORY POWER
PHYSICS OPTIMIZATIOMN AND CONTROL THEOQORY ELECTRONICS POWER SYSTEMS
RISK MANAGEMENT CIRCUITS

» Selected applications:
— power during natural disasters
— electric ship
— microgrids
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 Calculation using minimal cut sets

A minimal cut set is a group of components such that if all fail the
system also fails but if any one of them is repaired then the system is
no longer in a failed state. Much simpler than Markov approaches.

(00-+ mu):_‘ o N . q ~101)

fxx"l]'-xx__.” ' -
7| xxelexx

Qe TNy

-\-.._,__,__."

‘\_j

e :

4 01111

. Approximation with highly vailable components and no energy

storage: Mc
Ul Z P(K,)
jEl

l IT ECE THE UNIVERSITY OF TEXAS AT AUSTIN
BEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERIMNG




113 WY1 Es 1T oM | FEs i ALSTIM

THE UNIVERSITY OF Micro ridS ’r‘]mmlﬂﬂﬂ“
RS J

AT AUSTIN

e Lifelines and energy storage

 Local generators depend on other infrastructures, called lifelines (e.g.
natural gas distribution networks or roads)

 But lifelines can be affected by the natural disaster like conventional grids.

» Approaches to address lifeline dependencies:
 Diverse power source technologies
* Local Energy Storage: U,
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 Renewable energy sources

* Renewable energy sources do not need lifelines, but their output varies
and they have large footprints.

« Approaches to address variable output:
» Diverse power source technologles (combine PV and wind)
* Add energy storage
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 Renewable energy sources

« Markov based availability modeling of renewable energy sources
considering energy storage
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 Cost effective solution for integrating diverse power
sources without compromising reliability or efficiency.
 Effective way for integrating power sources with inherently
low output voltage (e.g. fuel cells, PV cells, batteries) by
reducing the number of series connected cells.

Microturbines
" with bio fuel
. Dual-input
converters

Fuel cells
with locally

reformed il = Load following
natural gas energy storage
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e Modular approach.
« Both voltage-source and current-source input modules
(suitable for fuel cells or PV modules) have been developed.

INPUT
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« Multiple-input converters.

« Example: Isolated and non-isolated multiple-input SEPIC

VilL NZ(Dl,iE1+ Dz,iEz)
o N1 (1_ Dl,i ol DZ,i)
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Microgrids

« Multiple-input converters.
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* Power routers (MIMO converters): application of
MICs in distribution systems

= d-port MIMO
| do-de comeartar

« Example of application in a possible power
architecture for the Navy’s electric ship.
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e Control: Constant-Power loads

» dc power architectures is a natural choice for microgrids
Integrating various sources, energy storage and modern |loads.

» dc microgrids comprise cascade distributed architectures —
converters act as interfaces

*Point-of-load converters present constant-power-load (CPL)
characteristics

( o
' Fast output | 0 If V(t) <V
Vget ---#i regulating |

_controller =1 P if v(t) >V
(t)

v Line Lossless
SOURCE regulating n Point-of-
= | converter load (POL)
(LRC) conﬂ.rerter
P; = Constant

*CPLs introduce a destabilizing effect in dc microgrids
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lim
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e Control: Constant-Power loads
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» Without proper controls large oscillations and/or voltage collapse is

observed.
» We were the first ones to show why the conventional approach of using PID

controllers was a valid one.
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e Control: Constant-Power loads

1 Pos: 22.00ms CURSOR

* New approach: boundary control. oot oion |
 Uses state-dependent switching (g = q(x)) ACATATATAVAY i Somce
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« First-order boundary (linear switching surface § ;;;L;';p;_rl—-cmsea-mp
with a negative slope)
« Valid for all types of converters
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e Arcs and faults study

* Model developed for arcs in series faults.
 Study of parallel faults in power .
electronics-based systems.
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e Arcs and faults study

« Comparison of ac and dc systems (ac faults are electrically malign, dc
faults are mechanically hazardous). g

DC arcs last longer

AC series faults show voltage
spikes during re-strikes

ECE THE UNIVERSITY OF TEXAS AT AUSTIN
BEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERIMNG




THE UNIVERSITY OF Mi r ri ’r‘]ww'i?*.:illl:
E XS crog A

AT AUSTIN

«Control: Maximum Power Point Tracking (MPPT)

 Focus on digital implementation
« Methods based on root finding algorithms

* Developed a Modified Regula Falsi Method that ensures convergence
faster than other methods
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«Control of a self-sustained micro-grid

£ &

» Development of a micro-grid model
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* M, IS Setto 1.1 in order to provide a good tradeoff between
Introducing sufficient harmonics into the system without exceeding
the prescribed limit of 5% THD in IEEE Std 519-1992

* |nstead of measuring the THD of the system, only one or two
voltage harmonics are measured (typically the 5th and 7th)

« Advantages: smaller NDZ, no need for non-linear load, distortion
Injected during a short time, no synchronization issues.

Modulation
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« Experimental results

« THD with the grid-connected inverter
IS 3.9 % (even with a very weak grid)

I e e
output
Modulation Signal

W-
Normal operation : Inverter

output

Islanding detection ¢ m---
mI 1.016V 1.000V
UT ECE THE UNIVERSITY OF TEXAS AT AUSTIN
EPARETMENT F ELECTRICAL & COMPUTER ENGINEER | NG




THE UNIVERSITY OF A Smart rid ViSion ’r‘]ww'i?*.:illl:
E DS J

AT AUSTIN

« Based at a local level, through microgrids or
residential-level energy management systems

LOCAL DISTRIBUTED INTEGRATED LEVEL:
=—— —__EﬂERGY SOURCES, USE AND S:TCIRAGE

NETWURK -
_ INTERCONNECTIONLEVEL

CENTRALIZED BULK LEVEL
__ENERGY SOURCES _
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e Customer focus

 Traditional grids: Generation focus

e Smart grids represent a paradigm change: now the focus in on
customers

 New questions:

* What do customers want?

e How do they behave?

 How do evaluate their behavior in order to obtain meaningful
information? What information we need to look at?

 How do we measure without affecting our measured parameters (smart
grid version of Heisenberg uncertainty principle)?

» The paradigm change implies designing a very complex experiment.
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« Highlighted research areas

» Residential technologies
* Electric vehicles (EV)
 Grid’s power distribution modeling.

e Data management and analysis

THE UNIVERSITY OF TEXAS AT AUSTIN
BEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERIMNG




113 WY1 Es 1T oM | FEs i ALSTIM

THE UNIVERSITY OF ’ ’ - ’r‘]mmlﬂﬂﬂ“
e Residential-level Research

AT AUSTIN

« Home Energy Management Systems

« Work originated in “Customer Side of the Meter” team

e Initial work providing support for testing data collection
systems before being deployed.

* Next, interoperability studies, effects of different pricing
models, development of energy management strategies (at
home research lab), and load pattern recognition.

e Special focus Is on electric vehicles (EVs) charging, PV power
generation and energy storage management.
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« HEMS averaging rate

* Observations:
* Energy
consumption is the
same but power
consumption is not
the same.

Aptiige Walls
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 Varying time resolution (60 minutes)

« What is the optimal time resolution to meet the energy
management goals?

« Consequences affecting data storage and processing.

» Lessons to be used for load pattern recognition and HEMS
management algorithms.

Source: Scott Hinson §
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 VVarying time resolution (15 minutes)

« What is the optimal time resolution to meet the energy
management goals?

« Consequences affecting data storage and processing.

» Lessons to be used for load pattern recognition and HEMS
management algorithms.

Source: Scott Hinson §
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 Varying time resolution (1 minute)

« What is the optimal time resolution to meet the energy
management goals?

« Consequences affecting data storage and processing.

» Lessons to be used for load pattern recognition and HEMS
management algorithms.

Source: Scott Hinson [
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* PV power generation

e Factors to be assessed:
 Relationship with disaggregated loads (particularly a/c and EV)
« Coordinated PV, EV, air conditioning and energy storage
operation.
 Effects of coordinated generation at neighborhood level.
« Optimum orientation and usage patterns
. Additional functionalities from local generation

®- 'i! =0
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 Electric vehicles (EVs) charge management

« Two proposed research thrusts:
 High-level: Wind-aligned PEV
charging and aggregated PEV
ancillary services
« End-level: Intelligent charging
algorithms.

» Research interests:
e (PV + a/c) - HEMS - EV coordination
In terms of communications and control.
 EV communications security
e Identifying EV charging profiles.

l IT ECE THE UNIVERSITY OF TEXAS AT AUSTIN
BEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERIMNG




113 WY1 Es 1T oM | FEs i ALSTIM

THE UNIVERSITY OF "]mmlﬂﬂﬂ“
s Residential-level Research

AT AUSTIN

« EVSs, air conditioning, PV coordination

Single Home Power Consumption

—=Total Home Usage (PV
Excluded)

—=Total Grid Usage (PV Included)

—Total Grid Usage, 1 PEV, 5:30
Charge Start Time

| ! -—=Total Grid Usage, 2 PEV, 5:30
Charge Start Time

-0
12:006:00 AM 6:20:00 AM 12:00:00PM 5:00:00PM 12:30:00 A

Weekday, August 2011
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e Interoperability

* Two levels:
e Hardware (power architecture)
« Software (communications
and control).

>

e Two domains:
e Internal, within home
« External, with the grid and
other surrounding infrastructures (e.g. natural gas,
roads, and water)
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o Interoperability (power architectures)

 dc elements:
e Energy Storage
 Local generation (PV, wind, fuel cells; at higher power
levels microturbines).

» Loads (computers, entertaining systems, lights, more
energy efficient appliances and air conditioners, EVS).

e ac elements:
e The grid
« Heating and conventional loads (lights, air conditioners).
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» Matlab/simpower-based
* Includes PV, EV and other assets
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* Mueller area power distribution

* Results
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e Power factor

» Low power factor due to harmonic content and reactive power
° nghtS | Total Home Power Factor And Power

* Air conditioning
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Source: Scott Hinson

* Interoperabllity issues:

* PV inverters provide power at unity power factor.
* PV generation assets may provide all real power needed In

the neighborhood so the electric utility is left providing only
harmonics and reactive power.
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e PV integration

» Grid-tied (utility centered)
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* Most widely used PV integration approach.

* PV and home operation subject to grid operation: Due to
IEEE 1547, the inverter cannot power the home when the
grid is not present.

e Power factor issues with high penetration of PV
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e PV integration

e Customer centered approaches
* More equal interoperable approaches (but far less common
or inexistent):
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« HEMS operation in disasters

Wealher and Grid's pricing and yslem's

» General architecture intended astonomical data || gtatusdata || historical
for operation during extreme
events

« Communications may
be limited.

. Dynamic Availabili : g ’
« HEMS managing local " Calcusor sy
resources and loads to = o
optimize power availability

Power Grid
Distribution
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e Issues in the conventional approach

» Data centers represent a noticeable fast increasing load.

* Increasing power-related costs, likely to equal and exceed
ICT equipment cost in the near to mid-term future.
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 Solutions under study

» Analysis of power architectures for highly available and efficient data
centers:
» Large data centers with dc micro-grids
» Stand alone and small distributed and modular data centers with
photons used as a proxy for dispatchable electrons.
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e Energy use - efficiency in new approach

* Energy Is used more effectively.
« Generation inefficiencies is energy that is not harvested (i.e.
converted), contrary to inefficiencies in conventional power plants

which represent power losses.
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« Advantages

» Cost savings: fiber optics costs several orders of magnitude less
than electricity transmission lines cost.

* Reduced need for batteries

« DC power architecture

 Cooling infrastructure may be avoided

« Enable a higher penetration of renewables

* More robust and secure system (both in normal conditions and In
extreme events).

 Fully independent from the grid or grid connected.
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« Additional projects in power electronics systems at UT

« Modeling of charging demand from electric vehicles
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AT AUSTIN * Previous 10 years experience in telecom power industry
(significant part of it in Lucent Technologies Power Systems
— now Lineage / GE Energy).

*Publications sample

v" A. Kwasinski, “ldentification of Feasible Topologies for Multiple-Input dc-dc Converters,” IEEE
Transactions on Power Electronics, vol. 24, no. 3, pp. 856-861, March 2009.

v' S. Bae and A. Kwasinski, “Dynamic Modeling and Operation Strategy for a Microgrid with Wind and
Photovoltaic Resources,” in press IEEE Transactions on Smart Grid

v" A. Kwasinski and C. N. Onwuchekwa, “Dynamic Behavior and Stabilization of dc Micro-grids with
Instantaneous Constant-Power Loads.” IEEE Transactions on Power Electronics, in print.

v" A. Kwasinski “Quantitative Evaluation of dc Micro-Grids Availability: Effects of System Architecture and
Converter Topology Design Choices.” IEEE Transactions on Power Electronics, in print.

v" A. Kwasinski, P. T. Krein and P. Chapman, "Time domain Comparison of Pulse-Width Modulation
Schemes," in IEEE Power Electronics Letters, vol. 1, no. 3, pp. 64-68, Sep. 2003.

v" A. Kwasinski, V. Krishnamurthy, J. Song, and R. Sharma, “Availability Evaluation of Micro-Grids for
Resistant Power Supply During Natural Disasters,” in press IEEE Transactions on Smart Grid.

v J. Song, V. Krishnamurthy, A. Kwasinski, and R. Sharma, “Development of a Markov Chain Based
Energy Storage Model for Power Supply Availability Assessment of Photovoltaic Generation Plants,” in
press IEEE Transactions on Sustainable Energy
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savstiv ¢ Relevant awards
v' 2011 IBM Faculty Innovation Award
v' 2009 NSF CAREER Award
v 2007 Best Paper Award at INTELEC
v 2005 Joseph Suozzi Fellowship

e Lab capabilities and research group

v' Currently supervising 8 graduate students

v Power electronics lab developed by the researcher and fully
prepared for advanced research in power electronics and
power related systems. Some relevant equipment:

v" Advanced power analyzer and oscilloscopes
v Multi-kW level loads and power sources
v' Computers for simulations and analysis

v' Dynamometer bed for electric motor cycle study.
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