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is taken so seriously by computer custom- 
ers. Even though performance measurement 
usually compares only one aspect of com- 
puters (speed), this aspect is often dominant. 
Normally, a mainframe customer can run 
typical applications on anew machine before 
buying it. With microprocessor-based 
systems, however, original equipment man- 
ufacturers must make decisions without 
detailed knowledge of the end user’s code, 
so performance measurements with standard 
benchmarks become more important. 

Performance is a broad area, and tradi- 
tional benchmarks cover only part of it. 
This article is restricted to benchmarks 
measuring hardware speed, including 
compiler code generation; it does not cover 
the more general area of system benchmarks 
(for example, operating system perfor- 
mance). Still, manufacturers use traditional 
benchmarks in their advertising, and cus- 
tomers use them in making decisions, so it 
is important to know as much as possible 
about them. This article characterizes the 
most often used benchmarks in detail and 
warns users about a number of pitfalls. 

The ubiquitous MIPS 
numbers 

For comparisons across different in- 
struction-set architectures, the unit MIPS, 
in its literal meaning of millions of instruc- 
tions per second (native MIPS), has lost 

“Fair benchmarking” 
would be less of an 
oxymoron if those 
using benchmark 
results knew what 

tasks the benchmarks 
really perform and 
what they measure. 

nearly all its significance. This became 
obvious when reduced instruction-set 
computer architectures appeared.’ Opera- 
tions that can be performed by one CISC 
(complex instruction-set computer) in- 
struction sometimes require several RISC 
instructions. Consider the example of a 
high-level language statement 

A = B + C /* Assume mem operands */ 

With a CISC architecture, this can be 
compiled into one instruction: 

add mem ( B ) ,  mem (C), mem (A) 

On a typical RISC, this requires four in- 
structions: 

add 
store reg (A), mem (A) 

reg ( E ) ,  reg ( C ) ,  reg (A) 

If both machines need the same time to 
execute (not unrealistic in some cases), 
should the RISC then be rated as a 4-MIPS 
machine if the CISC (for example, a VAX 
1 1) operates at 1 MIPS? The MIPS number 
in its literal meaning is still interesting for 
computer architects (together with the CPI 
number - the average number of cycles 
necessary for an instruction), but it loses its 
significance for the end user. 

Because of these problems, “MIPS” has 
often been redefined, implicitly or explic- 
itly, as “VAX MIPS.” In this case MIPS is 
just a performance factor for a given ma- 
chine relative to the performance of a VAX 
1 1 /780. If a machine runs some program or 
set of programs X times faster than a VAX 
11/780, it is called an X-MIPS machine. 
This is based on computer folklore saying 
that for typical programs a VAX 11/780 
performs one million instructions per sec- 
ond. Although this is not true,* the belief is 

*Some time ago I ran the Dhrystone benchmark pro- 
gram on VAX I1/780s with different compilers. With 
Berkeley Unix (4.2) Pascal, the benchmark was trans- 
lated into 483 instructions executed in 700 microsec- 
onds, yielding 0.69 (native) MIPS. With DEC VMS 
Pascal (V. 2.4), 226 instructions were executed in 543 
microseconds, yielding 0.42 (native) MIPS. Interest- 
ingly, the version with the lower MIPS rating executed 
the program faster. 



widespread. When VAX MIPS are quoted, 
it is important to know what programs 
form the basis for the comparison and what 
compilers are used for the VAX 111780. 
Older Berkeley Unix compilers produced 
code up to 30 percent slower than VMS 
compilers, thereby inflating the MIPS rat- 
ing of other machines. 

The MIPS numbers that manufacturers 
give for their products can be any of the 
following: 

MlPS numbers with noderivation. This 
can mean anything, and flippant interpre- 
tations such as “meaningless indication of 
processor speed’ are justified. 

Native MIPS, or MIPS in the literal 
meaning. To interpret this you must know 
what program the computation was based 
on and how many instructions are generated 
per average high-level language statement. 

Peak MIPS. This term sometimes ap- 
pears in product announcements of new 
microprocessors. It is largely irrelevant, 
since i t  equals the clock frequency for most 
processors (most can execute at least one 
instruction in one clock cycle). 

EDN MIPS, Dhrystone MIPS, or sim- 
ilar. This could mean native MIPS, when a 
particular program is running. More often 
it means VAX MIPS (see below) with a 
specific program as the basis for compar- 
ison. 

VAX MIPS. A factor relative to the 
VAX 11/780, which then raises the fol- 
lowing questions: What language? What 
compiler (Unix or VMS) was used for the 
VAX? What programs have been measured? 
(Note that DEC uses the term VUP, for 
VAX unit of performance, in making 
comparisons relative to the VAX 111780. 
These units are based on a set of DEC 
internal programs, including some floating- 
point programs.) 

In short, Omri Serlin2 is correct i n  say- 
ing, “There are no accepted industry stan- 
dards for computing the value of MIPS.” 

Benchmarks 

Any attempt to make MIPS numbers 
meaningful (for example, VAX MIPS) 
comes down to running a representative 
program or set of programs. Therefore, we 
can drop the notion of MIPS and just 
compare the speed for these benchmark 
programs. 

It has been said that the best benchmark 
is the user’s own application. But this is 
often unrealistic, since it is not always 

possible to run the application on each 
machine in question. There are other con- 
siderations, too: The program may have 
been tailored to run optimally on an older 
machine; original equipment manufactur- 
ers must choose a microprocessor for a 
whole range of applications; journalists 
want to characterize machine speed inde- 
pendent of a particular application program. 
Therefore, the next best benchmark (1) is 
written in a high-level language, making it 
portable across different machines, (2) is 
representative for some kind of program- 
ming style (for example, systems pro- 
gramming, numerical programming, or 
commercial programming), (3) can be 
measured easily, and (4) has wide distri- 
bution. 

Obviously, some of these requirements 
are contradictory. The more representative 
the benchmark program - in terms of 
similarity to real programs - the more 
complicated it will be. Thus, measurement 
becomes more difficult, and results may be 
available for only a few machines. This 
explains the popularity of certain benchmark 
programs that are not complete application 
programs but still claim to be representa- 
tive for a given area. 

This article concentrates on the most 
common “stone age” benchmarks (CPU/ 
memorykompiler benchmarks only) - in 
particular the Whetstone, Dhrystone, and 
Linpack benchmarks. These are the 
benchmarks whose results are most often 
cited in manufacturers’ publications and in 
the trade press. They are better than 
meaningless MIPS numbers, but readers 
should know their properties - that is, 
what they do and don’t measure. 

Whetstone and Dhrystone are synthetic 
benchmarks: They were written solely for 
benchmarking purposes and perform no 
useful computation. Linpack was distilled 
out of a real, purposeful program that is 
now used as a benchmark. 

Tables A-D in the sidebar on pages 68- 
69 give detailed information about the high- 
level language features used by these 
benchmarks. Comparing these advantages 
with the characteristics of the user’s own 
programs shows how meaningful the results 
of a particular benchmark are for the user’s 
own applications. The tables contain 
comparable information for all three 
benchmarks, thereby revealing their dif- 
ferences and similarities. 

All percentages in the tables are dynam- 
ic percentages, that is, percentages obtained 
by profiling or, for the language-feature 
distribution, by adding appropriate counters 
on the source level and executing the pro- 

gram with counters. Note that for all pro- 
grams, even those normally used in the 
Fortran version, the language-feature-re- 
lated statistics refer to the C version of the 
benchmarks; this was the version for which 
the modification was performed. Howev- 
er, since most features are similar in the 
different languages, numbers for other 
languages should not differ much. The 
profiling data has been obtained from the 
Fortran version (Whetstone, Linpack) or 
the C version (Dhrystone). 

Whetstone 
The Whetstone benchmark was the first 

program in the literature explicitly designed 
for benchmarking. Its authors are H.J. 
Curnow and B.A. Wichmann from the 
National Physical Laboratory in Great 
Britain. It was published in 1976, with 
Algol 60 as the publication language. To- 
day it is used almost exclusively in its 
Fortran version, with either single precision 
or double precision for floating-point 
numbers. 

The benchmark owes its name to the 
Whetstone Algol compiler system. This 
system was used to collect statistics about 
the distribution of “Whetstone instructions,” 
instructions of the intermediate language 
used by this compiler, for a large number of 
numerical programs. A synthetic program 
was then designed. It consisted of several 
modules, each containing statements of 
some particular type (integer arithmetic, 
floating-point arithmetic, “if‘  statements, 
calls, and so forth) and ending with a 
statement printing the results. Weights were 
attached to the different modules (realized 
as loop bounds for loops around the indi- 
vidual modules’ statements) such that the 
distribution of Whetstone instructions for 
the synthetic benchmark matched the dis- 
tribution observed in the program sample. 
The weights were chosen in such a way that 
the program executes a multiple of one 
million of these Whetstone instructions; 
thus, benchmark results are given as KWIPS 
(kilo Whetstone instructions per second) 
or MWIPS (mega Whetstone instructions 
per second). This way the familiar term 
“instructions per second” was retained but 
given a machine-independent meaning. 

A problem with Whetstone is that only 
one officially controlled version exists - 
the Pascal version issued with the Pascal 
Evaluation Suite by the British Standards 
Institution - Quality Assurance (BSI- 
QAS). Versions in other languages can 
be registered with BSA-QAS to ensure 
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comparability. 
Many Whetstone versions copied infor- 

mally and used for benchmarking have the 
print statements removed, apparently with 
the intention of achieving better timing 
accuracy. This is contrary to the authors’ 
intentions, since optimizing compilers may 
then eliminate significant parts of the 
program. If timing accuracy is a problem, 
the loop bounds should be increased in 
such a way that the time spent in the extra 
statements becomes insignificant. 

Users should know that since 1988 there 
has been a revised (Pascal) version of the 
b e n ~ h m a r k . ~  Changes were made to mod- 
ules 6 and 8 to adjust the weights and to 
preclude unintended optimization by 
compilers. The print statements have been 
replaced by statements checking the values 
of the variables used in the computation. 
According to Wichmann,’ performance 
figures for the two versions should be very 
similar; however, differences of up to 20 
percent cannot be ruled out. The Fortran 
version has not undergone a similar revi- 
sion, since with the separate compilation 
model of Fortran the danger of unintended 
optimization is smaller (though it certainly 
exists if all parts are compiled i n  one unit). 
All Whetstone data in this article is based 
on the old version; the language-feature 
statistics are almost identical for both 
versions. 

Size, procedure profile, and language- 
feature distribution. The static length of 
the Whetstone benchmark (C version) as 
compiled by the VAX Unix 4.3 BSD C 
compiler* is 2,117 bytes (measurement 
loops only). However, because of the pro- 
gram’s nature, the length of the individual 
modules is more important. They are be- 
tween40 and 527 bytes long; all except one 
are less than 256 bytes long. The weights 
(upper loop bounds) of the individual 
modules number between 12 and 899. 

Table 1 shows the distribution ofexecu- 
tion time spent in the subprograms of 
Whetstone (VAX 11/785, BSD 4.3 For- 
tran, single precision). The most important, 
and perhaps surprising, result is that Whet- 
stone spends more than half its time in 
library subroutines rather than in the com- 
piled user code. 

The distribution of language features is 
shown in Tables A-D in the sidebar on 

*With the Unix 4.3 BSD language systems, it was 
easier to determine the code size for the C version. The 
numbers for the Fortran version should be similar. 
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Table 1. Procedure Drofile for Whetstone.* 

Procedure Percent What is done there 

Main program 
P3 
PO 
Pa 
User code 

18.9 
14.4 FP arithmetic 
11.6 Indexing 

1.9 FP arithmetic 
46.8 
- 

Trigonometric functions 21.6 Sin, cos, atan 
Other math functions - 31.7 Exp, log, sqrt 
Library functions 53.3 

- 
Total 100 

*Because of rounding, all percentages can add up to a number slightly below or above 100. 

pages 68-69. Some properties of Whet- 
stone are probably typical for most numer- 
ic applications (for example, a high num- 
ber of loop statements); other properties 
belong exclusively to Whetstone (for ex- 
ample, very few local variables). 

Whetstone characteristics. Some im- 
portant characteristics should be kept in 
mind when using Whetstone numbers for 
performance comparisons. 

( I )  Whetstone has a high percentage of 
floating-point data and floating-point op- 
erations. This is intentional, since the 
benchmark is meant to represent numeric 
programs. 

(2) As mentioned above, a high per- 
centage of execution time is spent in 
mathematical library functions. This  
property is derived from the statistical data 
forming the basis of Whetstone; however, 
it may not be representative for most of 
today’s numerical application programs. 
Since the speed of these functions (realized 
as software subroutines or microcode) 
dominates Whetstone performance to a high 
degree, manufacturers can be tempted to 
manipulate the runtime library for Whet- 
stone performance. 

(3) As evident from Table D in the side- 
bar, Whetstone uses very few local variables. 
When Whetstone was written, the issue of 
local versus global variables was hardly 
being discussed i n  software engineering, 
not to mention in computer architecture. 
Because of this unusual lack of local vari- 
ables, register windows (in the Sparc RISC, 
for example) or good register allocation 
algorithms for local variables (say, in the 

MIPS RISC compilers) make no differ- 
ence in Whetstone execution times. 

(4) Instead of local variables, Whetstone 
uses a handful of global data (several scalar 
variables and a four-element array of con- 
stant size) repeatedly. Therefore, a compiler 
in which the most heavily used global 
variables are allocated in registers (an op- 
timization usually considered of secondary 
importance) will boost Whetstone perfor- 
mance. 

( 5 )  Because of its construction principle 
(nine small loops), Whetstone has an ex- 
tremely high code locality. A near 100 
percent hit rate can be expected even for 
fairly small instruction caches. For the same 
reason, a simple reordering of the source 
code can significantly alter the execution 
time in some cases. For example, it has 
been reported that for the MC68020 with 
its 256-byte instruction cache, reordering 
of the source code can boost performance 
up to 15 percent. 

Linpack 
As explained by its author, Jack Don- 

garra4 from the University of Tennessee 
(previously Argonne National Laboratory), 
Linpack didn’t originate as a benchmark. 
When first published in 1976, it was just a 
collection (a package, hence the name) of 
linear algebra subroutines often used in 
Fortran programs. Dongarra, who collects 
and publishes Linpack results, has now 
distilled what was part of a “real life” 
program into a benchmark that is distrib- 
uted in various  version^.^ 

The program operates on a large matrix 
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(two-dimensional array); however, the in- 
ner subroutines manipulate the matrix as a 
one-dimensional array, an optimization 
customary for sophisticated Fortran pro- 
gramming. The matrix size in the version 
distributed by standard mail servers is 100 
x 100 (within a two-dimensional array 

declared with bounds 200), but versions 
for larger arrays also exist. 

The results are usually reported in mil- 
lions of floating-point operations per sec- 
ond (Mflops); the number of floating-point 
operations the program executes can be 
derived from the array size. This terminol- 

ogy means that the nonfloating-point op- 
erations are neglected or, stated another 
way, that their execution time is included 
in that of the floating-point operations. 
When floating-point operations become 
increasingly faster relative to integer oper- 
ations, this terminology becomes some- 

Tables covering more than one benchmark 

Table A. Statement distribution in percentages. * 

Statement Dhry stone Whetstone 

Assignment of a variable 
Assignment of a constant 
Assignment of an expression (one operator) 
Assignment of an expression (two operators) 
Assignment of an expression (three operators) 
Assignment of an expression (>three operators) 

One-sided if statement, “then” part executed 
One-sided if statement, “then” part not executed 
Two-sided if statement, “then” part executed 
Two-sided if statement, “else” part executed 

For statement (evaluation) 
Goto statement 
Whilehepeat statement (evaluation) 
Switch statement 
Break statement 

20.4 
11.7 
17.5 
1 .0 
1 .0 

2.9 
3.9 
4.9 
1.9 

6.8 

4.9 
I .0 
1 .0 

14.4 
8.2 
1.4 

24.3 
1.6 
6.8 

0.5 
0.1 
4.0 
4.0 

17.3 
0.5 

Return statement (with expression) 4.9 

Call statement (user procedure) 
Call statement (user function) 
Call statement (system procedure) 
Call statement (system function) 

9.7 11.9 
4.9 
1 .0 
1.0 4.7 
100 100 

Linpackkaxpy 

48.5 

2.2 

49.3 

- 
100 

*Because of rounding, all percentages can add up to a number slightly below or above 100. 

Table C. Operand data-type distribution in percentages. 

Operand Data Type Dhry stone Whetstone LinpacWsaxpy 

Integer 
Char 
Float/double 
Enumeration 
Boolean 
Array 
String 
Pointer 

57.0 
19.6 

10.9 
4.2 
0.8 
2.3 
5.3 

~ 

100 

55.7 67.2 

44.3 32.8 

- ~ 

100 100 
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what misleading. point data. 
For Linpack, it is important to know 

what version is measured with respect to 
the following attribute pairs: 

Rolled/unrolled --In the unrolled ver- 
sion, loops are optimized at the source 
level by “loop unrolling”: The loop index 
(say, i) is incremented in steps of four, and 
the loop body contains four groups of 
statements, for indexes i, i + I ,  i + 2, and i 

Single/double -Fortran single preci- 
sion or double precision for the floating- 

i Operand Locality Dhrystone 

Table B. Operator distribution in percentages. 

Operator Dhrystone Whetstone Linpack/saxpy 

+ (intkhar) 
- (int) 
* (int) 
I (int) 
Integer arithmetic 

+ (float/double) 
- (floddouble) 
* (float/double) 
/ (float/double) 
Floating-point arithmetic 

<, <= (incl. loop control) 
Other relational operators 
Relational 

Logical 

Indexing (one-dimensional) 
Indexing (two-dimensional) 
Indexing 

Record selection 
Record selection via pointer 
Record selection 

Address operator (C) 
Indirection operator (C) 
C-specific operators 

21.0 
5.0 
2.5 
0.8 

29.3 

10.1 
11.7 
21.8 

3.3 

5.9 
3.4 
9.3 

7.6 

22.1 

5.0 
8.4 

13.4 

~ 

- 

15.1 

11.9 
6.0 
6.0 

23.9 

14.9 
2.1 
9.3 

4.6 
30.9 

10.7 
2.8 
13.5 

24.5 

14.1 

~ 

14.1 

14.1 

14.1 

28.2 

14.5 
0.6 
15.1 

0.2 

42.3 

~ 

24.5 42.3 

3.6 
3.6 
7.2 

~ 

Total 100 I O 0  100 

Tab% D. Operand locality distribution in percentages. 
~ 

Whetstone Linpacklsaxpy 

Local 48.7 
Global 8.3 
Parameter (value) 10.6 
Parameter (reference) 6.8 
Function result 2.3 
Constant 23.4 

IO0 

0.4 49.5 
56.3 
18.6 17.0 

1.9 24.6 
I .3 

21.6 8.8 - - 
IO0 100 

+ 3. This technique saves execution time 
for most machines and compilers; howev- 
er, more sophisticated vector machines, 
where loop unrolling is done by the com- 
piler generating code for vector hardware, 
usually execute the standard (rolled) ver- 
sion faster. 

Coded BLASIFortran BLAS - Lin- 
pack relies heavily on a subpackage of 
basic linear algebra subroutines (BLAS). 
Coded BLAS (as opposed to Fortran BLAS) 
means that these subroutines have been 
rewritten in assembly language. Dongarra 
has stopped collecting and publishing re- 
sults for the coded BLAS version and re- 
quires that only the Fortran version of these 
subroutines be used unchanged. However, 
some results for coded BLAS versions are 
still cited elsewhere. Computing the exe- 
cution-time ratio between coded BLAS and 
Fortran BLAS versions for the same ma- 
chine offers insights about the Fortran 
compiler’s code optimization quality: For 
some machines the ratio is 1.2 to I ;  for 
others it can be as high as 2 to 1 .  

Size, procedure profile, and language- 
feature distribution. The Linpack data 
reported here is for the rolled version, single 
precision, with Fortran BLAS; code sizes 
have been measured with VAX Unix BSD 
4.3 Fortran. 

The static code length for all subprograms 
is 4,537 bytes. The length for individual 
subprograms varies between 11 1 and 1,789 
bytes; the most heavily used subprogram, 
saxpy, is 234 bytes long. Data size, in the 
standard version, is dominated by an array 
of 100 x 100 real numbers. For 32-bit 
machines, this means that with single pre- 
cision, 40 Kbytes are used for data (80 
Kbytes with double precision). 

Table 2 shows the distribution of execu- 
tion time in the various subroutines. The 
most important observation from the table 
is that more than 75 percent of Linpack’s 
execution time is spent in a 15-line sub- 
routine (called saxpy in the single-preci- 
sion version and daxpy in the double- 
precision version). Dongarra4 reports that 
on most machines the percentage is even 
higher (90 percent). Because of this ex- 
treme concentration of execution time in 
the saxpy subroutine, and because of the 
time-consuming instrumentation method 
for obtaining the measurements, language- 
feature distribution has been measured 
only for the saxpy subroutine (rolled 
version). 

Table A in the sidebar shows that very 
few statement types (assignment with 
multiplication and addition, and “for” 
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Table 2. Procedure profile for Linpack. 

Procedure Percent What is done there 

Main program 0.0 
matgen 13.8 
sgefa 6.2 
=xPY 77.1 
isamax 1.6 
Miscellaneous 1.2 
User code 100 

~ 

Library functions 0.0 

y[il = y [ i ]  + a*x[ i ]  

statements) make up the bulk of the 
subroutine and, therefore, of Linpack it- 
self. The data is mostly reference pa- 
rameters (array values) or local variables 
(indexes); there are hardly any global 
variables. 

Linpack characteristics. To interpret 
performance characterizations by Linpack 
Mflops, it helps to know the benchmark’s 
main characteristics: 

As expected for a numeric benchmark, 
Linpack has a high percentage of floating- 
point operations, though only a few are 
actually used. For example, the program 
has no floating-point divisions. In striking 
contrast to Whetstone, no mathematical 
functions are used at all. 

The execution time is spent almost 
exclusively in one small function. This 
means that even a small instruction cache 
will show a very high hit rate. 

Contrary to the high locality for code, 
Linpack has a low locality for data. A 
larger size for the main matrix leads - 
depending on the cache size -to signifi- 
cantly more cache misses and therefore to 
a lower Mflops rate. So, in making com- 
parisons, it is important to know whether 
Linpack Mflops for different machines have 
been computed using the same array di- 
mensions. Also, Linpack can be highly 
sensitive to the cache configuration: A 
different array alignment (201 x 200 in- 
stead of 200 x 200 for the global array 
declaration) can lead to a different mapping 
of data to cache lines and therefore to a 
considerably different execution time. The 
program, as distributed by the standard 
mail servers, delivers Mflops numbers for 
two choices of leading dimension, 200 and 
201; we can assume that manufacturers 
report the better number. 

Dhrystone 
As the name indicates, Dhrystone was 

developed much as Whetstone was; it is a 
synthetic benchmark that I published in 
1984. The original language of publication 
is Ada, although it uses only the Pascal 
subset of Ada and was intended for easy 
translation to Pascal and C. It is used mainly 
in the C version. 

The basis for Dhrystone is a literature 
survey on the distribution of source language 
features in nonnumeric, system-type pro- 
gramming (operating systems, compilers, 
editors, and so forth). In addition to the 
obvious difference in data types (integral 
versus floating-point), numeric and system- 
type programs have other differences, too: 
System programs contain fewer loops, 
simpler computational statements, and more 
“if’  statements and procedure calls. 

Dhrystone consists of 12 procedures 
included in one measurement loop with 94 
statements. During one loop (one Dhrys- 
tone), 101 statements (103 in the C version) 
are executed dynamically. The results are 
usually given in Dhrystones per second. 
The program (currently Version 2.1) has 
been distributed mainly through Usenet, 
the Unix network; I also make it available 
on a floppy disk. Rick Richardson has 
collected and posted results for the Dhry- 
stone benchmark regularly to Usenet (the 
latest list of results is dated April 29,1990). 

Size, procedure profile, and language- 
feature distribution. The static length of 
the Dhrystone measurement loop, as com- 
piled by the VAX Unix (BSD 4.3) C 
compiler, is 1,039 bytes. Table 3 shows the 
distribution of execution time spent in its 
subprograms. 

The percentage of time spent in string 
operations is highly language dependent; it 

drops to 10 percent instead of 16 percent if 
the Pascal (or Ada) version is used (mea- 
surement for Berkeley Unix 4.3 Pascal). 
On the other hand, the number is higher for 
newer RISC machines with optimizing 
compilers, mainly because they spend much 
less time in procedure calls than the VAX. 

Consistent with usage in system-type 
programming, arithmetic expressions are 
simpler than in the other benchmarks; there 
are more “if’ statements and fewer loops. 

Dhrystone was the first benchmark to 
explicitly consider the locality of operands: 
Local variables and parameters are used 
more often than global variables. This is 
not only consistent with good software 
engineering practices but also important 
for modern CPU architectures (RISC ar- 
chitectures). On older machines with few 
registers, local variables and parameters 
are allocated in memory in the same way as 
global variables; on RISC machines they 
typically reside in registers. The resulting 
difference in access time is one of the 
most important advantages of RISC ar- 
chitectures. 

Dhrystone characteristics. Familiarity 
with the benchmark’s main characteristics, 
described below, is important when inter- 
preting Dhrystone performance character- 
izations. 

As intended, Dhrystone contains no 
floating-point operations in its measurement 

A considerable percentage of execution 
time is spent in string functions; this number 
should have been lower. In extreme cases 
(MIPS architecture and C compiler), this 
number goes up to 40 percent. 

Unlike Whetstone, Dhrystonecontains 
hardly any loops within the main mea- 
surement loop. Therefore, for micropro- 
cessors with small instruction caches (be- 
low 1,000 bytes), almost all instruction 
accesses are cache misses. But as soon as 
the cache becomes larger than the mea- 
surement loop, all instruction accesses are 
cache hits. 

Only a small amount of global data is 
manipulated, and the data size cannot be 
scaled as in Linpack. 

No attempt has been made to thwart 
optimizing compilers. The goal was for the 
program to reflect typical programming 
style; it should be just as optimizable as 
normal programs. An exception is the 
optimization of dead-code removal. Since 
in Version 1 the computation results were 
not printed or used, optimizing compilers 
were able to recognize many statements as 

loop. 
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dead code and suppress code generation 
for these statements. In Version 2, this has 
been corrected. 

Table 3. Dhrystone procedure profile. 

Procedure Percent What is done there 

Ground rules for Dhrystone number 
comparisons. Because of Dhrystone’s 
peculiarities, users should be sure to observe 
certain ground rules when comparing 
Dhrystone results. First, the version used 
should be 2.1 ; the earlier version, 1.1, leaves 
too much room for distortion of results by 
dead-code elimination. 

Second, the two modules must be com- 
piled separately, and procedure merging 
(in-lining) is not allowed for user proce- 
dures. ANSI C, however, allows in-lining 
of library routines (relevant for string 
routines in the C version of Dhrystone). 

Third, when processors are compared, 
the same programming language must be 
usedon both. For compilers of equal quality, 
Pascal and Ada numbers can be about 10 
percent better because of the string se- 
mantics. In c ,  the length of a string is 
normally not known at compile time, and 
the compiler needs - at least for the string 
comparison statement in Dhrystone - to 
generate code that checks each byte for the 
string terminator byte (null byte). With 
Pascal and Ada the compiler can generate 
word instructions (usually in-line code) for 
the string operations. 

Therefore, for a meaningful comparison 
of C-version results, it helps to be able to 
answer certain questions: 

(1) Are the string routines written in 
machine code? 

(2) Are the string routines implemented 
as in-line code? 

(3) Does the compiler use the fact that 
in the “strcpy” statement the source oper- 
and has a fixed length? If it does (legal 
according to ANSI C), this statement can 
be compiled in the same way as a record 
assignment, which can result in consider- 
able savings. 

(4) Is a word alignment assumed for the 
string routines? This is acceptable for the 
strcpy statement only, not for the “strcmp” 
statement. 

Language systems are allowed to opti- 
mize for cases 1 through 3 above, just as 
they can for programs in general. For pro- 
cessor comparisons, however, it is impor- 
tant that the compilers used apply the same 
amount of optimization; otherwise, opti- 
mization differences may overshadow CPU 
speed differences. This usually requires an 
inspection of the generated machine code 
and the C library routines. 

Main program 
User procedures 
User code 

strcpy 

strcmp 

Library functions 

18.3 
65.7 
84.0 
- 

8.0 

8.1 

16.1 
~ 

- I Total 100 

String copy 
(string constant) 

String comparison 
(string variables) 

Other benchmarks 
In addition to the most often quoted 

benchmarks explained above, several other 
programs are used as benchmarks, including 

Livermore Fortran Kernels, 
Stanford Small Programs Benchmark 

EDN benchmarks, 
Sieve of Eratosthenes, 
Rhealstone, and 
SPEC benchmarks. 

Set, 

These range from small, randomly chosen 
programs such as Sieve, to elaborate 
benchmark suites such as Livermore For- 
tran Kernels and SPEC benchmarks. 

Livermore Fortran Kernels. The Liv- 
ermore Fortran Kernels, also called the 
Lawrence Livermore Loops, consist of 24 
kernels, or inner loops, of numeric com- 
putations from different areas of the physical 
sciences. The author, F.H. McMahon of 
Lawrence Livermore National Laboratory, 
has collected them into a benchmark suite 
and has added statements for time mea- 
surement. The individual loops range from 
a few lines to about one page of source 
code. The program is self-measuring and 
computes Mflops rates for each kernel, for 
three different vector lengths. 

As we might expect, these kernels con- 
tain many floating-point computations and 
a high percentage of array accesses. Sev- 
eral kernels contain vectorizable code; some 
contain code that is vectorizable if rewritten. 
(Feo6 provides a detailed discussion of the 
Livermore Loops.) McMahon characterizes 
the representativity of the Livermore Loops 
as follows: 

The net Mflops rate of many Fortran programs 
and work loads will be in the subrange between 
the equi-weighted harmonic and arithmetic 
means, depending on the degree of code 
parallelism and optimization. The Mflops 
metric provides aquick measure of the average 
efficiency of a computer system, since its 
peak computing rate is well known. 

Stanford Small Programs Benchmark 
Set. Concurrent with development of the 
first RISC systems at Stanford University 
and the University of California, Berkeley, 
John Hennessy and Peter Nye at Stanford’s 
Computer Systems Laboratory collected a 
set of small programs (one page or less of 
source code for each program). These 
programs became popular mainly because 
they were the basis for the first comparisons 
of RISC and CISC processors. They have 
now been packed into one C program 
containing eight integer programs - Per- 
mutations, Towers of Hanoi, Eight Queens, 
Integer Matrix Multiplication, Puzzle, 
Quicksort, Bubble Sort, and Tree Sort - 
and two floating-point programs - Float- 
ing-point Matrix Multiplication and Fast 
Fourier Transformation. 

Characteristics of the individual programs 
vary; most contain a high percentage of 
array accesses. There seems to be no offi- 
cial publication of the source code. The 
only place I have seen the C code in print is 
in a manufacturer’s performance report. 

There is no standardized method for 
generating an overall figure of merit from 
the individual execution times. In one 
version, a driver program assigns weights 
between 0.5 and 4.44 to the individual 
execution times. Perhaps a better alterna- 
tive, used by Sun and MIPS, is to compute 
the geometric mean of the individual pro- 
grams’ execution times. 
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Table 4. SPEC benchmark Droerams. 
~~ ~~ ~~~~ ~ ~ ~ ~ ~~~~~~~ 

Acronym Short Characterization Language Main Data Types 

gcc GNU C compiler C Integer 
espresso PLA simulator C Integer 
spice 2g6 Analog circuit simulation Fortran Floating point 
doduc Monte Carlo simulation Fortran Floating point 
nasa7 Collection of several numerical “kernels” Fortran Floating point 
li Lisp interpreter C Integer 
eqntott Switching-function minimization, mostly sorting C Integer 
matrix300 Various matrix multiplication algorithms Fortran Floating point 
fPPPP Maxwell equations Fortran Floating point 
tomcatv Mesh generation, highly vectorizable Fortran Floating point 

EDN benchmarks. The program col- 
lection now known as the EDN bench- 
marks was developed by a group at Carn- 
egie Mellon University for the Military 
Computer Family project. EDN published 
it in 1981. Originally, the programs were 
written in several assembly languages (LSI- 
11/23, 8086, 68000, and ZSOOO); the in- 
tention was to measure the speed of mi- 
croprocessors without also measuring the 
compiler’s quality. 

A subset of the original benchmarks is 
often used in a C version: 

Benchmark E: String search 
Benchmark F: Bit testhetheset 
Benchmark H: Linked list insertion 
Benchmark I: Quicksort 
Benchmark K: Bit matrix transforma- 
tion 

This subset of the EDN benchmarks has 
been used in Bud Funk’s comparison of 
RISC and CISC  processor^.^ There seems 
to be no standard C version of the EDN 
benchmarks; the programs are disseminated 
informally. 

Sieve of Eratosthenes. One of the most 
popular programs for benchmarking small 
PCs is the Sieve of Eratosthenes, some- 
times called “Primes.” It computes all prime 
numbers up to a given limit (usually 8,192). 
The program has some unusual character- 
istics. For example, 33 percent of the dy- 
namically executed statements are assign- 
ments of a constant; only S percent are 
assignments with an expression at the right- 
hand side. There are no “while” statements 
and no procedure calls; S O  percent of the 
statements are loop control evaluations. 

All operands are integer operands, and 58 
percent of them are local variables. 

The program is mentioned here not be- 
cause it can be considered a good bench- 
mark but because, as one author put it, 
“Sieve performance of one compiler over 
another has probably sold more compilers 
for some companies  than any other 
benchmark in history.” 

SPEC benchmarks. Probably the most 
important current benchmarking effort is 
SPEC - the systems performance evalu- 
ation cooperative effort. It started because 
benchmarking experts at various companies 
felt that most previously existing bench- 
marks (usually small programs) were in- 
adequate. Small benchmarks can no longer 
be representative for real programs when it 
comes to testing the memory system, be- 
cause with the growing size of cache 
memories and the introduction of on-chip 
caches for high-end microprocessors, the 
cache hit ratio comes close to 100 percent 
for these benchmarks. Furthermore, once a 
small program becomes popular as a 
benchmark, compiler writers are inclined 
(or forced) to “tweak” their compilers into 
optimizations particularly beneficial to this 
benchmark - for example, the string op- 
timizations for Dhrystone. 

SPEC’S goal is to collect, standardize, 
and distribute large application programs 
that can be used as benchmarks. This is a 
nontrivial task, since realistic programs 
previously used in benchmarking (for ex- 
ample, the Unix utilities “yacc” or “nroff’) 
often require a license and are therefore not 
freely distributable. 

The founding members of SPEC were 
Apollo, Hewlett-Packard, MIPS, and Sun; 

subsequently, AT&T, Bull, CDC, Com- 
paq, Data General, DEC, Dupont, Fujitsu, 
IBM, Intel, Intergraph, Motorola, NCR, 
Siemens Nixdorf, Silicon Graphics, Sol- 
bourne, Stardent, and Unisys became 
members. 

In October 1989, SPEC released its first 
set of 10 benchmark programs. Table 4 
contains only a rough characterization of 
the programs; J. Uniejewski* provides a 
more detailed discussion. Because a license 
must be signed, and because of its size 
(lS0,OOO lines of source code), the SPEC 
benchmark suite is distributed via magnetic 
tape only. 

Results are given as performance relative 
to a VAX 1 U780 using VMS compilers. 
Results for several computers of SPEC 
member companies are contained in the 
regular SPEC Newsletter (see Additional 
reading and address information). A com- 
prehensive number, the “SPECmark,” is 
defined as the geometric mean of the rel- 
ative performance of the 10 programs. 
However, SPEC requires a reporting form 
that gives, in addition to the raw data, the 
relative performance for each benchmark 
program separately. Thus, users can select 
the subset of performance numbers for 
which the programming language and/or 
the application area best matches their 
applications. 

Non-CPU influences in 
benchmark 
performance 

In trade journals and advertisements, 
manufacturers usually credit good bench- 
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mark numbers only to the hardware sys- 
tem’s speed. With microprocessors, this is 
reduced even more to the CPU speed. 
However, the preceding discussion makes 
it clear that other factors also have an 
influence - for example, the programming 
language, the compiler, the runtime library 
functions, and the memory and cache size. 

Programming-language influence. 
Table 5 (numbers from Levy and Clark9 
and my own collection of Dhrystone results) 
shows the execution time of several pro- 
grams on the same machine (VAX, 1982 
and 1985). Properties of the languages 
(calling sequence, pointer semantics, and 
string semantics) obviously influence ex- 
ecution time even if the source programs 
look similar and produce the same results. 

Compiler influence. Table 6, taken from 
the MIPS Performance Brief,lo gives 
Dhrystone results (as of January 1990) for 
the MIPS M/2000 with the MIPS C com- 
piler cc2.0. The table shows how the dif- 
ferent levels of optimization influence ex- 
ecution time. 

Note that optimization “04”  performs 
procedure in-lining, an optimization not 
consistent with the ground rules and in- 
cluded in the report for comparison only. 
On the other hand, the “strcpy” optimiza- 
tion for Dhrystone is not included in any of 
the optimization levels for the MIPS C 
compiler. If it is used, the Dhrystone rate 
increases considerably. 

Runtime library system. The role of 
the runtime library system is often over- 
looked when benchmark results are com- 
pared. As apparent fromTable 1, Whetstone 
spends 40 to 50 percent of the execution 
time in functions of the mathematical 
subroutines library. The C version of 
Dhrystone spends 16 percent of the exe- 
cution time in the string functions (VAX, 
Berkeley Unix 4.3 C); with other systems, 
the percentage can be higher. 

Some systems have two flavors of the 
mathematical floating-point library: The 
first is guaranteed to comply with the IEEE 
floating-point standard; the second is faster 
and may give less accurate results under 
some circumstances. Customers who must 
rely on the accuracy of floating-point 
computations should know which library 
was used for benchmark measurements. 

Cache size. It is important to look for the 
built-in performance boost when the cache 
size reaches the relevant benchmark size. 
Depending on the difference between ac- 

Table 5. Performance ratio for different languages (larger is better, C = 1): Stan- 
ford programs. 

I Proeram Bliss C Pascal Ada I 
Search 1.24 1 .o 0.70 
Sieve 0.63 1 .o 0.80 
Puzzle 0.77 1 .o 0.73 
Ac kermann 1.20 1 .o 0.80 

Dhrystone (1.1) 1 .o 1.32 1.02 

Table 6. Compiler optimization levels in Dhrystonedsec. 

I Optimization Level v. 1.1 v .  2.1 I 
No opt., no “register” attribute 30,700 3 1,000 
No opt., with “register” attribute 32,600 32,400 
Optimization “0,” no “register” attribute 39,700 36,700 
Optimization “0,” with “register” attribute 39,700 36,700 
Optimization “03”  43,100 39,400 
Optimization “04”  46,700 43,200 

cess times for the cache and the main mem- 
ory, cache size can have a considerable 
effect. 

Table 7 summarizes the code sizes (size 
of the relevant procedureshnner loops) and 
data sizes (of the main array) for some 
popular benchmarks. All sizes have been 
measured for the VAX 11 with the Unix 
BSD 4.3 C compiler, with optimization 
“-0” (code compaction). Of course, the 
sizes will differ for other architectures and 
compilers. Typically, RISC architectures 
lead to larger code sizes, whereas the data 
size remains the same. 

If the cache is smaller than the relevant 
benchmark, reordering the code can, for 
some benchmarks and cache configurations, 
lead to considerable savings in execution 
time. Such savings have been reported for 
Whetstone on MC 68020 systems (reor- 
dering the source program) as well as for 
Dhrystone on NS 32532, where just a dif- 
ferent linkage order can lead to a difference 
of up to 5 percent in execution time. It is 
debatable whether the “good case” or the 
“bad case” better represents the system’s 
true characteristics. In any event, custom- 
ers should be aware of these effects and 
know when the standard order of the code 
hasbeenchanged. 

Table 7. Size in bytes for some popular 
benchmarks. 

I Program Code Data I 
Whetstone - 256 16 
Dhrystone 1,039 
Linpack (saxpy) 234 40,000 

Sieve 160 8,192 

Quicksort 174 20,000 

Puzzle 1,642 511 
Ac kermann 52 

( 1 OOx 100 version) 

(standard version) 

(standard version) 

Small, synthetic 
benchmarks versus 
real-life programs 

It should be apparent by now that with 
the advent of on-chip caches and sophisti- 
cated optimizing compilers, small bench- 
marks gradually lose their predictive val- 
ue. This is why current efforts like SPEC’S 
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Obtaining benchmark sources via e-mail 
Most of the benchmarks discussed in this article can be obtained via electronic 

mail from several mail servers established at large research  institute^.^ The ma- 
jor mail servers and their electronic mail addresses are shown below. Users can 
get information about the use of these mail servers by sending electronic mail 
consisting of the line “send index” to any of the mail servers. 

The SPEC benchmarks are available only via magnetic tape. 

North America 
uucp: uunet!research!netlib Murray Hill, New Jersey 
Internet: netlib@ research.att.com 
Internet: netlibOornl.gov Oak Ridge, Tennessee 

Europe 
EUNEThucp: nac!netlib Oslo, Norway 
Internet: netlib @ nac.no 
EARN/Bitnet: netlib%nac.no@norunix.bitnet 
X.400: s=netlib; o=nac; c=no; 

Pacific 
Internet: netlib@draci.cs.uow.edu.au Univ. of Wollongong, 

NSW. Australia 

activities concentrate on collecting large, 
real-life programs. Why, then, should this 
article bother to characterize in detail these 
“stone age” benchmarks? There are several 
reasons: 

( 1 )  Manufacturers will continue to use 
them for some time, so the trade press will 
keep quoting them. 

(2) Manufacturers sometimes base their 
MIPS rating on them. An example is IBM’s 
(unfortunate) decision to base the pub- 
lished (VAX-relative) MIPS numbers for 
the IBM 6000 workstation on the old 1 . I  
version of Dhrystone. Subsequently, DEC 
and Motorola changed the MIPS compu- 
tation rules for their competing products, 
also basing their MIPS numbers on Dhry- 
stone 1.1. 

(3) For investigating new architectural 
designs - via simulations, for example - 
the benchmarks can provide a useful first 
approximation. 

(4) For embedded microprocessors with 
no standard system software (the SPEC 
suite requires Unix or an equivalent oper- 
ating system), nothing else may be avail- 
able. 

( 5 )  We can expect that larger bench- 
marks will not be completely free of distor- 
tions from unforeseen effects either. Ex- 
perience gained with smaller benchmarks 
can help us be aware of such effects. For 

example, it won’t be as easy to tweak 
compilers for the SPEC benchmarks as it is 
for the small benchmarks; but if it happens, 
it also will be harder to detect. 

dvice for users looking at bench- 
mark numbers to characterize 
machine performance should be- 

gin with a warning not to trust MIPS num- 
bers unless their derivation is clearly ex- 
plained. Here are some other things to 
watch for: 

Check whether Mflops numbers relate 
to a standard benchmark. Does this 
benchmark match your applications? 

Know the properties of the benchmarks 
whose results are advertised. 

Be sure you know all the relevant facts 
about your system and the manufacturer’s 
benchmarking system. For hardware this 
includes clock frequency, memory laten- 
cy, and cache size; for software it includes 
programming language, code size, data size, 
compiler version, compiler options, and 
runtime library. 

Check benchmark code listings to make 
sure apples are compared with apples and 
that no illegal optimizations are applied. 

Ask for a well-written performance 
report. Good companies provide all rele- 
vant details. W 
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