
An Overview of Common
Benchmarks

Reinhold P. Weicker
Siemens Nixdorf Information Systems

he mdin redwn for using comput- , * . load mem (B J , reg (B)
ers is to perform ta\ks taster Thir * , load mem (C) , reg (C)
is why performance measurement

is taken so seriously by computer custom-
ers. Even though performance measurement
usually compares only one aspect of com-
puters (speed), this aspect is often dominant.
Normally, a mainframe customer can run
typical applications on anew machine before
buying it. With microprocessor-based
systems, however, original equipment man-
ufacturers must make decisions without
detailed knowledge of the end user’s code,
so performance measurements with standard
benchmarks become more important.

Performance is a broad area, and tradi-
tional benchmarks cover only part of it.
This article is restricted to benchmarks
measuring hardware speed, including
compiler code generation; it does not cover
the more general area of system benchmarks
(for example, operating system perfor-
mance). Still, manufacturers use traditional
benchmarks in their advertising, and cus-
tomers use them in making decisions, so it
is important to know as much as possible
about them. This article characterizes the
most often used benchmarks in detail and
warns users about a number of pitfalls.

The ubiquitous MIPS
numbers

For comparisons across different in-
struction-set architectures, the unit MIPS,
in its literal meaning of millions of instruc-
tions per second (native MIPS), has lost

“Fair benchmarking”
would be less of an
oxymoron if those
using benchmark
results knew what

tasks the benchmarks
really perform and
what they measure.

nearly all its significance. This became
obvious when reduced instruction-set
computer architectures appeared.’ Opera-
tions that can be performed by one CISC
(complex instruction-set computer) in-
struction sometimes require several RISC
instructions. Consider the example of a
high-level language statement

A = B + C /* Assume mem operands */

With a CISC architecture, this can be
compiled into one instruction:

add mem (B) , mem (C), mem (A)

On a typical RISC, this requires four in-
structions:

add
store reg (A), mem (A)

reg (E) , reg (C) , reg (A)

If both machines need the same time to
execute (not unrealistic in some cases),
should the RISC then be rated as a 4-MIPS
machine if the CISC (for example, a VAX
1 1) operates at 1 MIPS? The MIPS number
in its literal meaning is still interesting for
computer architects (together with the CPI
number - the average number of cycles
necessary for an instruction), but it loses its
significance for the end user.

Because of these problems, “MIPS” has
often been redefined, implicitly or explic-
itly, as “VAX MIPS.” In this case MIPS is
just a performance factor for a given ma-
chine relative to the performance of a VAX
1 1 /780. If a machine runs some program or
set of programs X times faster than a VAX
11/780, it is called an X-MIPS machine.
This is based on computer folklore saying
that for typical programs a VAX 11/780
performs one million instructions per sec-
ond. Although this is not true,* the belief is

*Some time ago I ran the Dhrystone benchmark pro-
gram on VAX I1/780s with different compilers. With
Berkeley Unix (4.2) Pascal, the benchmark was trans-
lated into 483 instructions executed in 700 microsec-
onds, yielding 0.69 (native) MIPS. With DEC VMS
Pascal (V. 2.4), 226 instructions were executed in 543
microseconds, yielding 0.42 (native) MIPS. Interest-
ingly, the version with the lower MIPS rating executed
the program faster.

widespread. When VAX MIPS are quoted,
it is important to know what programs
form the basis for the comparison and what
compilers are used for the VAX 111780.
Older Berkeley Unix compilers produced
code up to 30 percent slower than VMS
compilers, thereby inflating the MIPS rat-
ing of other machines.

The MIPS numbers that manufacturers
give for their products can be any of the
following:

MlPS numbers with noderivation. This
can mean anything, and flippant interpre-
tations such as “meaningless indication of
processor speed’ are justified.

Native MIPS, or MIPS in the literal
meaning. To interpret this you must know
what program the computation was based
on and how many instructions are generated
per average high-level language statement.

Peak MIPS. This term sometimes ap-
pears in product announcements of new
microprocessors. It is largely irrelevant,
since i t equals the clock frequency for most
processors (most can execute at least one
instruction in one clock cycle).

EDN MIPS, Dhrystone MIPS, or sim-
ilar. This could mean native MIPS, when a
particular program is running. More often
it means VAX MIPS (see below) with a
specific program as the basis for compar-
ison.

VAX MIPS. A factor relative to the
VAX 11/780, which then raises the fol-
lowing questions: What language? What
compiler (Unix or VMS) was used for the
VAX? What programs have been measured?
(Note that DEC uses the term VUP, for
VAX unit of performance, in making
comparisons relative to the VAX 111780.
These units are based on a set of DEC
internal programs, including some floating-
point programs.)

In short, Omri Serlin2 is correct i n say-
ing, “There are no accepted industry stan-
dards for computing the value of MIPS.”

Benchmarks

Any attempt to make MIPS numbers
meaningful (for example, VAX MIPS)
comes down to running a representative
program or set of programs. Therefore, we
can drop the notion of MIPS and just
compare the speed for these benchmark
programs.

It has been said that the best benchmark
is the user’s own application. But this is
often unrealistic, since it is not always

possible to run the application on each
machine in question. There are other con-
siderations, too: The program may have
been tailored to run optimally on an older
machine; original equipment manufactur-
ers must choose a microprocessor for a
whole range of applications; journalists
want to characterize machine speed inde-
pendent of a particular application program.
Therefore, the next best benchmark (1) is
written in a high-level language, making it
portable across different machines, (2) is
representative for some kind of program-
ming style (for example, systems pro-
gramming, numerical programming, or
commercial programming), (3) can be
measured easily, and (4) has wide distri-
bution.

Obviously, some of these requirements
are contradictory. The more representative
the benchmark program - in terms of
similarity to real programs - the more
complicated it will be. Thus, measurement
becomes more difficult, and results may be
available for only a few machines. This
explains the popularity of certain benchmark
programs that are not complete application
programs but still claim to be representa-
tive for a given area.

This article concentrates on the most
common “stone age” benchmarks (CPU/
memorykompiler benchmarks only) - in
particular the Whetstone, Dhrystone, and
Linpack benchmarks. These are the
benchmarks whose results are most often
cited in manufacturers’ publications and in
the trade press. They are better than
meaningless MIPS numbers, but readers
should know their properties - that is,
what they do and don’t measure.

Whetstone and Dhrystone are synthetic
benchmarks: They were written solely for
benchmarking purposes and perform no
useful computation. Linpack was distilled
out of a real, purposeful program that is
now used as a benchmark.

Tables A-D in the sidebar on pages 68-
69 give detailed information about the high-
level language features used by these
benchmarks. Comparing these advantages
with the characteristics of the user’s own
programs shows how meaningful the results
of a particular benchmark are for the user’s
own applications. The tables contain
comparable information for all three
benchmarks, thereby revealing their dif-
ferences and similarities.

All percentages in the tables are dynam-
ic percentages, that is, percentages obtained
by profiling or, for the language-feature
distribution, by adding appropriate counters
on the source level and executing the pro-

gram with counters. Note that for all pro-
grams, even those normally used in the
Fortran version, the language-feature-re-
lated statistics refer to the C version of the
benchmarks; this was the version for which
the modification was performed. Howev-
er, since most features are similar in the
different languages, numbers for other
languages should not differ much. The
profiling data has been obtained from the
Fortran version (Whetstone, Linpack) or
the C version (Dhrystone).

Whetstone
The Whetstone benchmark was the first

program in the literature explicitly designed
for benchmarking. Its authors are H.J.
Curnow and B.A. Wichmann from the
National Physical Laboratory in Great
Britain. It was published in 1976, with
Algol 60 as the publication language. To-
day it is used almost exclusively in its
Fortran version, with either single precision
or double precision for floating-point
numbers.

The benchmark owes its name to the
Whetstone Algol compiler system. This
system was used to collect statistics about
the distribution of “Whetstone instructions,”
instructions of the intermediate language
used by this compiler, for a large number of
numerical programs. A synthetic program
was then designed. It consisted of several
modules, each containing statements of
some particular type (integer arithmetic,
floating-point arithmetic, “if‘ statements,
calls, and so forth) and ending with a
statement printing the results. Weights were
attached to the different modules (realized
as loop bounds for loops around the indi-
vidual modules’ statements) such that the
distribution of Whetstone instructions for
the synthetic benchmark matched the dis-
tribution observed in the program sample.
The weights were chosen in such a way that
the program executes a multiple of one
million of these Whetstone instructions;
thus, benchmark results are given as KWIPS
(kilo Whetstone instructions per second)
or MWIPS (mega Whetstone instructions
per second). This way the familiar term
“instructions per second” was retained but
given a machine-independent meaning.

A problem with Whetstone is that only
one officially controlled version exists -
the Pascal version issued with the Pascal
Evaluation Suite by the British Standards
Institution - Quality Assurance (BSI-
QAS). Versions in other languages can
be registered with BSA-QAS to ensure

66 COMPUTER

comparability.
Many Whetstone versions copied infor-

mally and used for benchmarking have the
print statements removed, apparently with
the intention of achieving better timing
accuracy. This is contrary to the authors’
intentions, since optimizing compilers may
then eliminate significant parts of the
program. If timing accuracy is a problem,
the loop bounds should be increased in
such a way that the time spent in the extra
statements becomes insignificant.

Users should know that since 1988 there
has been a revised (Pascal) version of the
b e n ~ h m a r k . ~ Changes were made to mod-
ules 6 and 8 to adjust the weights and to
preclude unintended optimization by
compilers. The print statements have been
replaced by statements checking the values
of the variables used in the computation.
According to Wichmann,’ performance
figures for the two versions should be very
similar; however, differences of up to 20
percent cannot be ruled out. The Fortran
version has not undergone a similar revi-
sion, since with the separate compilation
model of Fortran the danger of unintended
optimization is smaller (though it certainly
exists if all parts are compiled i n one unit).
All Whetstone data in this article is based
on the old version; the language-feature
statistics are almost identical for both
versions.

Size, procedure profile, and language-
feature distribution. The static length of
the Whetstone benchmark (C version) as
compiled by the VAX Unix 4.3 BSD C
compiler* is 2,117 bytes (measurement
loops only). However, because of the pro-
gram’s nature, the length of the individual
modules is more important. They are be-
tween40 and 527 bytes long; all except one
are less than 256 bytes long. The weights
(upper loop bounds) of the individual
modules number between 12 and 899.

Table 1 shows the distribution ofexecu-
tion time spent in the subprograms of
Whetstone (VAX 11/785, BSD 4.3 For-
tran, single precision). The most important,
and perhaps surprising, result is that Whet-
stone spends more than half its time in
library subroutines rather than in the com-
piled user code.

The distribution of language features is
shown in Tables A-D in the sidebar on

*With the Unix 4.3 BSD language systems, it was
easier to determine the code size for the C version. The
numbers for the Fortran version should be similar.

December 1990

Table 1. Procedure Drofile for Whetstone.*

Procedure Percent What is done there

Main program
P3
PO
Pa
User code

18.9
14.4 FP arithmetic
11.6 Indexing

1.9 FP arithmetic
46.8
-

Trigonometric functions 21.6 Sin, cos, atan
Other math functions - 31.7 Exp, log, sqrt
Library functions 53.3

-
Total 100

*Because of rounding, all percentages can add up to a number slightly below or above 100.

pages 68-69. Some properties of Whet-
stone are probably typical for most numer-
ic applications (for example, a high num-
ber of loop statements); other properties
belong exclusively to Whetstone (for ex-
ample, very few local variables).

Whetstone characteristics. Some im-
portant characteristics should be kept in
mind when using Whetstone numbers for
performance comparisons.

(I) Whetstone has a high percentage of
floating-point data and floating-point op-
erations. This is intentional, since the
benchmark is meant to represent numeric
programs.

(2) As mentioned above, a high per-
centage of execution time is spent in
mathematical library functions. This
property is derived from the statistical data
forming the basis of Whetstone; however,
it may not be representative for most of
today’s numerical application programs.
Since the speed of these functions (realized
as software subroutines or microcode)
dominates Whetstone performance to a high
degree, manufacturers can be tempted to
manipulate the runtime library for Whet-
stone performance.

(3) As evident from Table D in the side-
bar, Whetstone uses very few local variables.
When Whetstone was written, the issue of
local versus global variables was hardly
being discussed i n software engineering,
not to mention in computer architecture.
Because of this unusual lack of local vari-
ables, register windows (in the Sparc RISC,
for example) or good register allocation
algorithms for local variables (say, in the

MIPS RISC compilers) make no differ-
ence in Whetstone execution times.

(4) Instead of local variables, Whetstone
uses a handful of global data (several scalar
variables and a four-element array of con-
stant size) repeatedly. Therefore, a compiler
in which the most heavily used global
variables are allocated in registers (an op-
timization usually considered of secondary
importance) will boost Whetstone perfor-
mance.

(5) Because of its construction principle
(nine small loops), Whetstone has an ex-
tremely high code locality. A near 100
percent hit rate can be expected even for
fairly small instruction caches. For the same
reason, a simple reordering of the source
code can significantly alter the execution
time in some cases. For example, it has
been reported that for the MC68020 with
its 256-byte instruction cache, reordering
of the source code can boost performance
up to 15 percent.

Linpack
As explained by its author, Jack Don-

garra4 from the University of Tennessee
(previously Argonne National Laboratory),
Linpack didn’t originate as a benchmark.
When first published in 1976, it was just a
collection (a package, hence the name) of
linear algebra subroutines often used in
Fortran programs. Dongarra, who collects
and publishes Linpack results, has now
distilled what was part of a “real life”
program into a benchmark that is distrib-
uted in various version^.^

The program operates on a large matrix

67

(two-dimensional array); however, the in-
ner subroutines manipulate the matrix as a
one-dimensional array, an optimization
customary for sophisticated Fortran pro-
gramming. The matrix size in the version
distributed by standard mail servers is 100
x 100 (within a two-dimensional array

declared with bounds 200), but versions
for larger arrays also exist.

The results are usually reported in mil-
lions of floating-point operations per sec-
ond (Mflops); the number of floating-point
operations the program executes can be
derived from the array size. This terminol-

ogy means that the nonfloating-point op-
erations are neglected or, stated another
way, that their execution time is included
in that of the floating-point operations.
When floating-point operations become
increasingly faster relative to integer oper-
ations, this terminology becomes some-

Tables covering more than one benchmark

Table A. Statement distribution in percentages. *

Statement Dhry stone Whetstone

Assignment of a variable
Assignment of a constant
Assignment of an expression (one operator)
Assignment of an expression (two operators)
Assignment of an expression (three operators)
Assignment of an expression (>three operators)

One-sided if statement, “then” part executed
One-sided if statement, “then” part not executed
Two-sided if statement, “then” part executed
Two-sided if statement, “else” part executed

For statement (evaluation)
Goto statement
Whilehepeat statement (evaluation)
Switch statement
Break statement

20.4
11.7
17.5
1 .0
1 .0

2.9
3.9
4.9
1.9

6.8

4.9
I .0
1 .0

14.4
8.2
1.4

24.3
1.6
6.8

0.5
0.1
4.0
4.0

17.3
0.5

Return statement (with expression) 4.9

Call statement (user procedure)
Call statement (user function)
Call statement (system procedure)
Call statement (system function)

9.7 11.9
4.9
1 .0
1.0 4.7
100 100

Linpackkaxpy

48.5

2.2

49.3

-
100

*Because of rounding, all percentages can add up to a number slightly below or above 100.

Table C. Operand data-type distribution in percentages.

Operand Data Type Dhry stone Whetstone LinpacWsaxpy

Integer
Char
Float/double
Enumeration
Boolean
Array
String
Pointer

57.0
19.6

10.9
4.2
0.8
2.3
5.3

~

100

55.7 67.2

44.3 32.8

- ~

100 100

68 COMPUTER

what misleading. point data.
For Linpack, it is important to know

what version is measured with respect to
the following attribute pairs:

Rolled/unrolled --In the unrolled ver-
sion, loops are optimized at the source
level by “loop unrolling”: The loop index
(say, i) is incremented in steps of four, and
the loop body contains four groups of
statements, for indexes i, i + I , i + 2, and i

Single/double -Fortran single preci-
sion or double precision for the floating-

i Operand Locality Dhrystone

Table B. Operator distribution in percentages.

Operator Dhrystone Whetstone Linpack/saxpy

+ (intkhar)
- (int)
* (int)
I (int)
Integer arithmetic

+ (float/double)
- (floddouble)
* (float/double)
/ (float/double)
Floating-point arithmetic

<, <= (incl. loop control)
Other relational operators
Relational

Logical

Indexing (one-dimensional)
Indexing (two-dimensional)
Indexing

Record selection
Record selection via pointer
Record selection

Address operator (C)
Indirection operator (C)
C-specific operators

21.0
5.0
2.5
0.8

29.3

10.1
11.7
21.8

3.3

5.9
3.4
9.3

7.6

22.1

5.0
8.4

13.4

~

-

15.1

11.9
6.0
6.0

23.9

14.9
2.1
9.3

4.6
30.9

10.7
2.8
13.5

24.5

14.1

~

14.1

14.1

14.1

28.2

14.5
0.6
15.1

0.2

42.3

~

24.5 42.3

3.6
3.6
7.2

~

Total 100 I O 0 100

Tab% D. Operand locality distribution in percentages.
~

Whetstone Linpacklsaxpy

Local 48.7
Global 8.3
Parameter (value) 10.6
Parameter (reference) 6.8
Function result 2.3
Constant 23.4

IO0

0.4 49.5
56.3
18.6 17.0

1.9 24.6
I .3

21.6 8.8 - -
IO0 100

+ 3. This technique saves execution time
for most machines and compilers; howev-
er, more sophisticated vector machines,
where loop unrolling is done by the com-
piler generating code for vector hardware,
usually execute the standard (rolled) ver-
sion faster.

Coded BLASIFortran BLAS - Lin-
pack relies heavily on a subpackage of
basic linear algebra subroutines (BLAS).
Coded BLAS (as opposed to Fortran BLAS)
means that these subroutines have been
rewritten in assembly language. Dongarra
has stopped collecting and publishing re-
sults for the coded BLAS version and re-
quires that only the Fortran version of these
subroutines be used unchanged. However,
some results for coded BLAS versions are
still cited elsewhere. Computing the exe-
cution-time ratio between coded BLAS and
Fortran BLAS versions for the same ma-
chine offers insights about the Fortran
compiler’s code optimization quality: For
some machines the ratio is 1.2 to I ; for
others it can be as high as 2 to 1 .

Size, procedure profile, and language-
feature distribution. The Linpack data
reported here is for the rolled version, single
precision, with Fortran BLAS; code sizes
have been measured with VAX Unix BSD
4.3 Fortran.

The static code length for all subprograms
is 4,537 bytes. The length for individual
subprograms varies between 11 1 and 1,789
bytes; the most heavily used subprogram,
saxpy, is 234 bytes long. Data size, in the
standard version, is dominated by an array
of 100 x 100 real numbers. For 32-bit
machines, this means that with single pre-
cision, 40 Kbytes are used for data (80
Kbytes with double precision).

Table 2 shows the distribution of execu-
tion time in the various subroutines. The
most important observation from the table
is that more than 75 percent of Linpack’s
execution time is spent in a 15-line sub-
routine (called saxpy in the single-preci-
sion version and daxpy in the double-
precision version). Dongarra4 reports that
on most machines the percentage is even
higher (90 percent). Because of this ex-
treme concentration of execution time in
the saxpy subroutine, and because of the
time-consuming instrumentation method
for obtaining the measurements, language-
feature distribution has been measured
only for the saxpy subroutine (rolled
version).

Table A in the sidebar shows that very
few statement types (assignment with
multiplication and addition, and “for”

December 1990

- __

69

Table 2. Procedure profile for Linpack.

Procedure Percent What is done there

Main program 0.0
matgen 13.8
sgefa 6.2
=xPY 77.1
isamax 1.6
Miscellaneous 1.2
User code 100

~

Library functions 0.0

y[il = y [i] + a*x[i]

statements) make up the bulk of the
subroutine and, therefore, of Linpack it-
self. The data is mostly reference pa-
rameters (array values) or local variables
(indexes); there are hardly any global
variables.

Linpack characteristics. To interpret
performance characterizations by Linpack
Mflops, it helps to know the benchmark’s
main characteristics:

As expected for a numeric benchmark,
Linpack has a high percentage of floating-
point operations, though only a few are
actually used. For example, the program
has no floating-point divisions. In striking
contrast to Whetstone, no mathematical
functions are used at all.

The execution time is spent almost
exclusively in one small function. This
means that even a small instruction cache
will show a very high hit rate.

Contrary to the high locality for code,
Linpack has a low locality for data. A
larger size for the main matrix leads -
depending on the cache size -to signifi-
cantly more cache misses and therefore to
a lower Mflops rate. So, in making com-
parisons, it is important to know whether
Linpack Mflops for different machines have
been computed using the same array di-
mensions. Also, Linpack can be highly
sensitive to the cache configuration: A
different array alignment (201 x 200 in-
stead of 200 x 200 for the global array
declaration) can lead to a different mapping
of data to cache lines and therefore to a
considerably different execution time. The
program, as distributed by the standard
mail servers, delivers Mflops numbers for
two choices of leading dimension, 200 and
201; we can assume that manufacturers
report the better number.

Dhrystone
As the name indicates, Dhrystone was

developed much as Whetstone was; it is a
synthetic benchmark that I published in
1984. The original language of publication
is Ada, although it uses only the Pascal
subset of Ada and was intended for easy
translation to Pascal and C. It is used mainly
in the C version.

The basis for Dhrystone is a literature
survey on the distribution of source language
features in nonnumeric, system-type pro-
gramming (operating systems, compilers,
editors, and so forth). In addition to the
obvious difference in data types (integral
versus floating-point), numeric and system-
type programs have other differences, too:
System programs contain fewer loops,
simpler computational statements, and more
“if’ statements and procedure calls.

Dhrystone consists of 12 procedures
included in one measurement loop with 94
statements. During one loop (one Dhrys-
tone), 101 statements (103 in the C version)
are executed dynamically. The results are
usually given in Dhrystones per second.
The program (currently Version 2.1) has
been distributed mainly through Usenet,
the Unix network; I also make it available
on a floppy disk. Rick Richardson has
collected and posted results for the Dhry-
stone benchmark regularly to Usenet (the
latest list of results is dated April 29,1990).

Size, procedure profile, and language-
feature distribution. The static length of
the Dhrystone measurement loop, as com-
piled by the VAX Unix (BSD 4.3) C
compiler, is 1,039 bytes. Table 3 shows the
distribution of execution time spent in its
subprograms.

The percentage of time spent in string
operations is highly language dependent; it

drops to 10 percent instead of 16 percent if
the Pascal (or Ada) version is used (mea-
surement for Berkeley Unix 4.3 Pascal).
On the other hand, the number is higher for
newer RISC machines with optimizing
compilers, mainly because they spend much
less time in procedure calls than the VAX.

Consistent with usage in system-type
programming, arithmetic expressions are
simpler than in the other benchmarks; there
are more “if’ statements and fewer loops.

Dhrystone was the first benchmark to
explicitly consider the locality of operands:
Local variables and parameters are used
more often than global variables. This is
not only consistent with good software
engineering practices but also important
for modern CPU architectures (RISC ar-
chitectures). On older machines with few
registers, local variables and parameters
are allocated in memory in the same way as
global variables; on RISC machines they
typically reside in registers. The resulting
difference in access time is one of the
most important advantages of RISC ar-
chitectures.

Dhrystone characteristics. Familiarity
with the benchmark’s main characteristics,
described below, is important when inter-
preting Dhrystone performance character-
izations.

As intended, Dhrystone contains no
floating-point operations in its measurement

A considerable percentage of execution
time is spent in string functions; this number
should have been lower. In extreme cases
(MIPS architecture and C compiler), this
number goes up to 40 percent.

Unlike Whetstone, Dhrystonecontains
hardly any loops within the main mea-
surement loop. Therefore, for micropro-
cessors with small instruction caches (be-
low 1,000 bytes), almost all instruction
accesses are cache misses. But as soon as
the cache becomes larger than the mea-
surement loop, all instruction accesses are
cache hits.

Only a small amount of global data is
manipulated, and the data size cannot be
scaled as in Linpack.

No attempt has been made to thwart
optimizing compilers. The goal was for the
program to reflect typical programming
style; it should be just as optimizable as
normal programs. An exception is the
optimization of dead-code removal. Since
in Version 1 the computation results were
not printed or used, optimizing compilers
were able to recognize many statements as

loop.

70 COMPUTER

dead code and suppress code generation
for these statements. In Version 2, this has
been corrected.

Table 3. Dhrystone procedure profile.

Procedure Percent What is done there

Ground rules for Dhrystone number
comparisons. Because of Dhrystone’s
peculiarities, users should be sure to observe
certain ground rules when comparing
Dhrystone results. First, the version used
should be 2.1 ; the earlier version, 1.1, leaves
too much room for distortion of results by
dead-code elimination.

Second, the two modules must be com-
piled separately, and procedure merging
(in-lining) is not allowed for user proce-
dures. ANSI C, however, allows in-lining
of library routines (relevant for string
routines in the C version of Dhrystone).

Third, when processors are compared,
the same programming language must be
usedon both. For compilers of equal quality,
Pascal and Ada numbers can be about 10
percent better because of the string se-
mantics. In c , the length of a string is
normally not known at compile time, and
the compiler needs - at least for the string
comparison statement in Dhrystone - to
generate code that checks each byte for the
string terminator byte (null byte). With
Pascal and Ada the compiler can generate
word instructions (usually in-line code) for
the string operations.

Therefore, for a meaningful comparison
of C-version results, it helps to be able to
answer certain questions:

(1) Are the string routines written in
machine code?

(2) Are the string routines implemented
as in-line code?

(3) Does the compiler use the fact that
in the “strcpy” statement the source oper-
and has a fixed length? If it does (legal
according to ANSI C), this statement can
be compiled in the same way as a record
assignment, which can result in consider-
able savings.

(4) Is a word alignment assumed for the
string routines? This is acceptable for the
strcpy statement only, not for the “strcmp”
statement.

Language systems are allowed to opti-
mize for cases 1 through 3 above, just as
they can for programs in general. For pro-
cessor comparisons, however, it is impor-
tant that the compilers used apply the same
amount of optimization; otherwise, opti-
mization differences may overshadow CPU
speed differences. This usually requires an
inspection of the generated machine code
and the C library routines.

Main program
User procedures
User code

strcpy

strcmp

Library functions

18.3
65.7
84.0
-

8.0

8.1

16.1
~

- I Total 100

String copy
(string constant)

String comparison
(string variables)

Other benchmarks
In addition to the most often quoted

benchmarks explained above, several other
programs are used as benchmarks, including

Livermore Fortran Kernels,
Stanford Small Programs Benchmark

EDN benchmarks,
Sieve of Eratosthenes,
Rhealstone, and
SPEC benchmarks.

Set,

These range from small, randomly chosen
programs such as Sieve, to elaborate
benchmark suites such as Livermore For-
tran Kernels and SPEC benchmarks.

Livermore Fortran Kernels. The Liv-
ermore Fortran Kernels, also called the
Lawrence Livermore Loops, consist of 24
kernels, or inner loops, of numeric com-
putations from different areas of the physical
sciences. The author, F.H. McMahon of
Lawrence Livermore National Laboratory,
has collected them into a benchmark suite
and has added statements for time mea-
surement. The individual loops range from
a few lines to about one page of source
code. The program is self-measuring and
computes Mflops rates for each kernel, for
three different vector lengths.

As we might expect, these kernels con-
tain many floating-point computations and
a high percentage of array accesses. Sev-
eral kernels contain vectorizable code; some
contain code that is vectorizable if rewritten.
(Feo6 provides a detailed discussion of the
Livermore Loops.) McMahon characterizes
the representativity of the Livermore Loops
as follows:

The net Mflops rate of many Fortran programs
and work loads will be in the subrange between
the equi-weighted harmonic and arithmetic
means, depending on the degree of code
parallelism and optimization. The Mflops
metric provides aquick measure of the average
efficiency of a computer system, since its
peak computing rate is well known.

Stanford Small Programs Benchmark
Set. Concurrent with development of the
first RISC systems at Stanford University
and the University of California, Berkeley,
John Hennessy and Peter Nye at Stanford’s
Computer Systems Laboratory collected a
set of small programs (one page or less of
source code for each program). These
programs became popular mainly because
they were the basis for the first comparisons
of RISC and CISC processors. They have
now been packed into one C program
containing eight integer programs - Per-
mutations, Towers of Hanoi, Eight Queens,
Integer Matrix Multiplication, Puzzle,
Quicksort, Bubble Sort, and Tree Sort -
and two floating-point programs - Float-
ing-point Matrix Multiplication and Fast
Fourier Transformation.

Characteristics of the individual programs
vary; most contain a high percentage of
array accesses. There seems to be no offi-
cial publication of the source code. The
only place I have seen the C code in print is
in a manufacturer’s performance report.

There is no standardized method for
generating an overall figure of merit from
the individual execution times. In one
version, a driver program assigns weights
between 0.5 and 4.44 to the individual
execution times. Perhaps a better alterna-
tive, used by Sun and MIPS, is to compute
the geometric mean of the individual pro-
grams’ execution times.

December 1990 71

Table 4. SPEC benchmark Droerams.
~~ ~~ ~~~~ ~ ~ ~ ~ ~~~~~~~

Acronym Short Characterization Language Main Data Types

gcc GNU C compiler C Integer
espresso PLA simulator C Integer
spice 2g6 Analog circuit simulation Fortran Floating point
doduc Monte Carlo simulation Fortran Floating point
nasa7 Collection of several numerical “kernels” Fortran Floating point
li Lisp interpreter C Integer
eqntott Switching-function minimization, mostly sorting C Integer
matrix300 Various matrix multiplication algorithms Fortran Floating point
fPPPP Maxwell equations Fortran Floating point
tomcatv Mesh generation, highly vectorizable Fortran Floating point

EDN benchmarks. The program col-
lection now known as the EDN bench-
marks was developed by a group at Carn-
egie Mellon University for the Military
Computer Family project. EDN published
it in 1981. Originally, the programs were
written in several assembly languages (LSI-
11/23, 8086, 68000, and ZSOOO); the in-
tention was to measure the speed of mi-
croprocessors without also measuring the
compiler’s quality.

A subset of the original benchmarks is
often used in a C version:

Benchmark E: String search
Benchmark F: Bit testhetheset
Benchmark H: Linked list insertion
Benchmark I: Quicksort
Benchmark K: Bit matrix transforma-
tion

This subset of the EDN benchmarks has
been used in Bud Funk’s comparison of
RISC and CISC processor^.^ There seems
to be no standard C version of the EDN
benchmarks; the programs are disseminated
informally.

Sieve of Eratosthenes. One of the most
popular programs for benchmarking small
PCs is the Sieve of Eratosthenes, some-
times called “Primes.” It computes all prime
numbers up to a given limit (usually 8,192).
The program has some unusual character-
istics. For example, 33 percent of the dy-
namically executed statements are assign-
ments of a constant; only S percent are
assignments with an expression at the right-
hand side. There are no “while” statements
and no procedure calls; S O percent of the
statements are loop control evaluations.

All operands are integer operands, and 58
percent of them are local variables.

The program is mentioned here not be-
cause it can be considered a good bench-
mark but because, as one author put it,
“Sieve performance of one compiler over
another has probably sold more compilers
for some companies than any other
benchmark in history.”

SPEC benchmarks. Probably the most
important current benchmarking effort is
SPEC - the systems performance evalu-
ation cooperative effort. It started because
benchmarking experts at various companies
felt that most previously existing bench-
marks (usually small programs) were in-
adequate. Small benchmarks can no longer
be representative for real programs when it
comes to testing the memory system, be-
cause with the growing size of cache
memories and the introduction of on-chip
caches for high-end microprocessors, the
cache hit ratio comes close to 100 percent
for these benchmarks. Furthermore, once a
small program becomes popular as a
benchmark, compiler writers are inclined
(or forced) to “tweak” their compilers into
optimizations particularly beneficial to this
benchmark - for example, the string op-
timizations for Dhrystone.

SPEC’S goal is to collect, standardize,
and distribute large application programs
that can be used as benchmarks. This is a
nontrivial task, since realistic programs
previously used in benchmarking (for ex-
ample, the Unix utilities “yacc” or “nroff’)
often require a license and are therefore not
freely distributable.

The founding members of SPEC were
Apollo, Hewlett-Packard, MIPS, and Sun;

subsequently, AT&T, Bull, CDC, Com-
paq, Data General, DEC, Dupont, Fujitsu,
IBM, Intel, Intergraph, Motorola, NCR,
Siemens Nixdorf, Silicon Graphics, Sol-
bourne, Stardent, and Unisys became
members.

In October 1989, SPEC released its first
set of 10 benchmark programs. Table 4
contains only a rough characterization of
the programs; J. Uniejewski* provides a
more detailed discussion. Because a license
must be signed, and because of its size
(lS0,OOO lines of source code), the SPEC
benchmark suite is distributed via magnetic
tape only.

Results are given as performance relative
to a VAX 1 U780 using VMS compilers.
Results for several computers of SPEC
member companies are contained in the
regular SPEC Newsletter (see Additional
reading and address information). A com-
prehensive number, the “SPECmark,” is
defined as the geometric mean of the rel-
ative performance of the 10 programs.
However, SPEC requires a reporting form
that gives, in addition to the raw data, the
relative performance for each benchmark
program separately. Thus, users can select
the subset of performance numbers for
which the programming language and/or
the application area best matches their
applications.

Non-CPU influences in
benchmark
performance

In trade journals and advertisements,
manufacturers usually credit good bench-

72 COMPUTER

mark numbers only to the hardware sys-
tem’s speed. With microprocessors, this is
reduced even more to the CPU speed.
However, the preceding discussion makes
it clear that other factors also have an
influence - for example, the programming
language, the compiler, the runtime library
functions, and the memory and cache size.

Programming-language influence.
Table 5 (numbers from Levy and Clark9
and my own collection of Dhrystone results)
shows the execution time of several pro-
grams on the same machine (VAX, 1982
and 1985). Properties of the languages
(calling sequence, pointer semantics, and
string semantics) obviously influence ex-
ecution time even if the source programs
look similar and produce the same results.

Compiler influence. Table 6, taken from
the MIPS Performance Brief,lo gives
Dhrystone results (as of January 1990) for
the MIPS M/2000 with the MIPS C com-
piler cc2.0. The table shows how the dif-
ferent levels of optimization influence ex-
ecution time.

Note that optimization “04” performs
procedure in-lining, an optimization not
consistent with the ground rules and in-
cluded in the report for comparison only.
On the other hand, the “strcpy” optimiza-
tion for Dhrystone is not included in any of
the optimization levels for the MIPS C
compiler. If it is used, the Dhrystone rate
increases considerably.

Runtime library system. The role of
the runtime library system is often over-
looked when benchmark results are com-
pared. As apparent fromTable 1, Whetstone
spends 40 to 50 percent of the execution
time in functions of the mathematical
subroutines library. The C version of
Dhrystone spends 16 percent of the exe-
cution time in the string functions (VAX,
Berkeley Unix 4.3 C); with other systems,
the percentage can be higher.

Some systems have two flavors of the
mathematical floating-point library: The
first is guaranteed to comply with the IEEE
floating-point standard; the second is faster
and may give less accurate results under
some circumstances. Customers who must
rely on the accuracy of floating-point
computations should know which library
was used for benchmark measurements.

Cache size. It is important to look for the
built-in performance boost when the cache
size reaches the relevant benchmark size.
Depending on the difference between ac-

Table 5. Performance ratio for different languages (larger is better, C = 1): Stan-
ford programs.

I Proeram Bliss C Pascal Ada I
Search 1.24 1 .o 0.70
Sieve 0.63 1 .o 0.80
Puzzle 0.77 1 .o 0.73
Ac kermann 1.20 1 .o 0.80

Dhrystone (1.1) 1 .o 1.32 1.02

Table 6. Compiler optimization levels in Dhrystonedsec.

I Optimization Level v. 1.1 v . 2.1 I
No opt., no “register” attribute 30,700 3 1,000
No opt., with “register” attribute 32,600 32,400
Optimization “0,” no “register” attribute 39,700 36,700
Optimization “0,” with “register” attribute 39,700 36,700
Optimization “03” 43,100 39,400
Optimization “04” 46,700 43,200

cess times for the cache and the main mem-
ory, cache size can have a considerable
effect.

Table 7 summarizes the code sizes (size
of the relevant procedureshnner loops) and
data sizes (of the main array) for some
popular benchmarks. All sizes have been
measured for the VAX 11 with the Unix
BSD 4.3 C compiler, with optimization
“-0” (code compaction). Of course, the
sizes will differ for other architectures and
compilers. Typically, RISC architectures
lead to larger code sizes, whereas the data
size remains the same.

If the cache is smaller than the relevant
benchmark, reordering the code can, for
some benchmarks and cache configurations,
lead to considerable savings in execution
time. Such savings have been reported for
Whetstone on MC 68020 systems (reor-
dering the source program) as well as for
Dhrystone on NS 32532, where just a dif-
ferent linkage order can lead to a difference
of up to 5 percent in execution time. It is
debatable whether the “good case” or the
“bad case” better represents the system’s
true characteristics. In any event, custom-
ers should be aware of these effects and
know when the standard order of the code
hasbeenchanged.

Table 7. Size in bytes for some popular
benchmarks.

I Program Code Data I
Whetstone - 256 16
Dhrystone 1,039
Linpack (saxpy) 234 40,000

Sieve 160 8,192

Quicksort 174 20,000

Puzzle 1,642 511
Ac kermann 52

(1 OOx 100 version)

(standard version)

(standard version)

Small, synthetic
benchmarks versus
real-life programs

It should be apparent by now that with
the advent of on-chip caches and sophisti-
cated optimizing compilers, small bench-
marks gradually lose their predictive val-
ue. This is why current efforts like SPEC’S

December 1990 73

Obtaining benchmark sources via e-mail
Most of the benchmarks discussed in this article can be obtained via electronic

mail from several mail servers established at large research institute^.^ The ma-
jor mail servers and their electronic mail addresses are shown below. Users can
get information about the use of these mail servers by sending electronic mail
consisting of the line “send index” to any of the mail servers.

The SPEC benchmarks are available only via magnetic tape.

North America
uucp: uunet!research!netlib Murray Hill, New Jersey
Internet: netlib@ research.att.com
Internet: netlibOornl.gov Oak Ridge, Tennessee

Europe
EUNEThucp: nac!netlib Oslo, Norway
Internet: netlib @ nac.no
EARN/Bitnet: netlib%nac.no@norunix.bitnet
X.400: s=netlib; o=nac; c=no;

Pacific
Internet: netlib@draci.cs.uow.edu.au Univ. of Wollongong,

NSW. Australia

activities concentrate on collecting large,
real-life programs. Why, then, should this
article bother to characterize in detail these
“stone age” benchmarks? There are several
reasons:

(1) Manufacturers will continue to use
them for some time, so the trade press will
keep quoting them.

(2) Manufacturers sometimes base their
MIPS rating on them. An example is IBM’s
(unfortunate) decision to base the pub-
lished (VAX-relative) MIPS numbers for
the IBM 6000 workstation on the old 1 . I
version of Dhrystone. Subsequently, DEC
and Motorola changed the MIPS compu-
tation rules for their competing products,
also basing their MIPS numbers on Dhry-
stone 1.1.

(3) For investigating new architectural
designs - via simulations, for example -
the benchmarks can provide a useful first
approximation.

(4) For embedded microprocessors with
no standard system software (the SPEC
suite requires Unix or an equivalent oper-
ating system), nothing else may be avail-
able.

(5) We can expect that larger bench-
marks will not be completely free of distor-
tions from unforeseen effects either. Ex-
perience gained with smaller benchmarks
can help us be aware of such effects. For

example, it won’t be as easy to tweak
compilers for the SPEC benchmarks as it is
for the small benchmarks; but if it happens,
it also will be harder to detect.

dvice for users looking at bench-
mark numbers to characterize
machine performance should be-

gin with a warning not to trust MIPS num-
bers unless their derivation is clearly ex-
plained. Here are some other things to
watch for:

Check whether Mflops numbers relate
to a standard benchmark. Does this
benchmark match your applications?

Know the properties of the benchmarks
whose results are advertised.

Be sure you know all the relevant facts
about your system and the manufacturer’s
benchmarking system. For hardware this
includes clock frequency, memory laten-
cy, and cache size; for software it includes
programming language, code size, data size,
compiler version, compiler options, and
runtime library.

Check benchmark code listings to make
sure apples are compared with apples and
that no illegal optimizations are applied.

Ask for a well-written performance
report. Good companies provide all rele-
vant details. W

References

1. D.A. Patterson, “Reduced Instruction-Set
Computers,” Comm. ACM, Vol. 28, No. I ,
Jan. 1985, pp. 8-21.

2. 0. Serlin, “MIPS, Dhrystones, and Other
Tales,” Daramarion, June 1986, pp. 112-
118.

3. B.A. Wichmann, “Validation Code for the
Whetstone Benchmark,” Tech. Report NPL-
DITC 107/88, National Physical Laborato-
ry, Teddington, UK, Mar. 1988.

4. J.J. Dongarra, “The Linpack Benchmark:
An Explanation,” in Evaluating Supercom-
puters, Aad J. Van der Steen, ed., Chapman
and Hall, London, 1990, pp. 1-21.

5. J. Dongama and E. Grosse, “Distribution of
Mathematical Software viaElectronic Mail,”
Comm. ACM, Vol. 30, No. 5, May 1987, pp.
403-407.

6. J.T. Feo, “An Analysis of the Computational
and Parallel Complexity of the Livermore
Loops,” Parallel Computing, Vol. 7, No. 2,
June 1988, pp. 163-185.

7. B. Funk, “RISC and CISC Benchmarks and
Insights,” Unisys World, Jan. 1989, pp. 11-
14.

8. J. Uniejewski, “Characterizing System
Performance Using Application-Level
Benchmarks,”Proc. Buscon,Sept. 1989, pp.
159-167. Partial publication in SPEC
Newsletter, Vol. 2, No. 3, Summer 1990, pp.
3-4.

9. H. Levy and D.W. Clark, “On the Use of
Benchmarks for Measuring System Perfor-
mance,” Computer Architecture News, Vol.
10, No. 6 , Dec. 1982, pp. 5-8.

10. MIPS Computer Systems, Inc., Performance
Brief; CPUBenchmarks, Issue 3.9, Jan. 1990,
p. 35.

Additional reading and
address information

Following are the main reference sources
for each of the benchmarks discussed in
this article, together with a short charac-
terization. A contact person is identified
for each of the major benchmarks so that
readers can get additional information. For
information about access to the benchmark
sources via electronic mail, see the sidebar
“Obtaining benchmark sources via e-mail.”

74 COMPUTER

http://research.att.com
http://netlibOornl.gov

Whetstone

Curnow, H.J., and B.A. Wichmann, “A Synthel-
icBenchmark,”TheComputerJ.,Vol. 19,No. 1,
1976, pp. 43-49. Original publication, explana-
tion of the benchmark design, program (Algol
60) in the appendix.

Wichmann, B.A., “Validation Code for the
Whetstone Benchmark,” see Reference 3. Dis-
cussion of comments made to the original pro-
gram, explanation of the revised version. Paper
contains a program listing of the revised ver-
sion, in Pascal, including checks for correct
execution.

Contact: Brian A. Wichmann, National Physical
Laboratory, Teddington, Middlesex, England
TWl1 OLW; phone 44 (81) 943-6976, fax 44
(8 1) 977-7091, Internet baw@seg.npl.co.uk.

Registration of other versions: J.B. Souter,
BenchmarkRegistration, BSI-QAS, PO Box 375,
Milton Keynes, Great Britain MK14 6LL.

Linpack

Dongarra, J.J.,etal., LinpackUsers’Guide, SIAM
Publications, Philadelphia, Pa., 1976. Original
publication (not yet as a benchmark), contains
the benchmark program as an appendix.

Dongarra, J.J., “Performance of Various Com-
puters Using Standard Equations Software in a
Fortran Environment,” Computer Archirecrure
News, Vol. 18, No. 1 , Mar. 1990, pp. 17-31.
Latest published version of the regularly main-
tained list of Linpack results, rules for Linpack
measurements.

Dongarra, J.J., “The Linpack Benchmark: An
Explanation,” see Reference 4. Explanation of
Linpack, guide to interpretation of Linpack re-
sults.

Contact: Jack J. Dongarra, Computer Science
Dept., Univ. of Tennessee, Knoxville, TN 37996-
1301; phone (615) 974-8295, fax (615) 974-
8296, Internet dongarra@cs.utk.edu.

Dhrystone

Weicker, R.P., “Dhrystone: A Synthetic Sys-
tems Programming Benchmark,” Comm. ACM,
Vol. 27, No. I O , Oct. 1984, pp. 1,013-1,030.
Original publication, literature survey on the
use of programming language features, base
statistics and benchmark program in Ada.

Weicker, R.P., “Dhrystone Benchmark: Ratio-
nale for Version 2 and Measurement Rules,”
SIGPlan Notices, Vol. 23, No. 8, Aug. 1988, pp.
49-62. Version 2.0 of Dhrystone (in C), mea-
surement rules. For the Ada version, a similar
article appeared in Ada Letters, Vol. 9, No. 5,
July 1989, pp. 60-82.

Weicker, R.P., “Understanding Variations in
Dhrystone Performance,” Microprocessor Re-
porr, Vol. 3, No. 5, May 1989, pp. 16-17. What
customers should know when C-version results

of Dhrystone are compared; reiteration of mea-
surement rules.

Contact: Reinhold P. Weicker, Siemens Nixdorf
Information Systems, STM OS 32 , Otto-Hahn-
Ring 6, W-8000 Munchen 83, Germany; phone
49 (89) 636-42436, fax 49 (89) 636-48008, In-
ternet: weicker@ztivax.siemens.com; Eunet:
weicker%ztivax.uucp @unido.uucp.

Collection of results: Rick Richardson, PC Re-
search, Inc., 94 Apple Orchard Dr., Tinton Falls,
NJ07724;phone(201) 389-8963.e-mail (UUCP)
... !uunet!pcrat!rick.

Livermore Fortran Kernels

Feo, J.T., “An Analysis of the Computational
and Parallel Complexity of the Livermore Loops,”
see Reference 6. Analysis of the Livermore
Fortran Kernels with respect to the achievable
parallelism.

McMahon, F.H., “The Livermore Fortran Ker-
nels: A Computer Test of the Numerical Per-
formance Range,” Tech. Report UCRL-53745,
Lawrence Livermore National Laboratory,
Livermore, Calif., Dec. 1986, p. 179. Original
publication ofthe benchmark with sampleresults.

McMahon, F.H., “The Livermore Fortran Ker-
nels Test of the Numerical Performance Range,”
in Performance Evaluarion of Supercomputers,
J.L. Martin, ed., North Holland, Amsterdam,
1988, pp. 143.186. Reprint of main part of the
original publication.

Contact: Frank H. McMahon, Lawrence Liver-
more National Laboratory, L-35, PO Box 808,
Livermore, CA 94550; phone (415) 422-1647,
Internet mcmahon@ ocfmail.ocf .Ilnl.gov,

Stanford Small Programs Benchmark Set

Appendix 2 - Stanfordcomposite Sourcecode,
Appendix to “Performance Report 68020/68030
32-bit Microprocessors,” Motorola, Inc., BR705/
D, 1988, pp. A2-1 - A2-IS. This is the only
place I have seen this benchmark in print; it is
normally distributed via informal channels.

EDN benchmarks

Grappel, R.D., and J.E. Hemenway, “A Tale of
Four pPs: Benchmarks Quantify Performance,”
EDN, Apr. 1 , 198 I , pp. 179-265. Original pub-
lication with benchmarks described in assembler
(code listings for LSI-11/23, 8086, 68000, and
28000).

Patstone, W., “16-bit-yP Benchmarks - An
Update withExplanations,”EDN, Sept. 16,1981,
pp. 169.203. Discussionof results, updatedcode
listings (assembler).

Sieve

Gilbreath, J., and G. Gilbreat’l, “Eratosthenes
Revisited,” B y t e , Jan. 1983, pp. 283-326. Pro-

gram listings in Pascal, C, Forth, Fortran IV,
Basic, Cobol, Ada, and Modula-2.

SPEC benchmarks

“Benchmark Results,”SPECNewsletrer, Vol. I ,
No. 1, Fall 1989, pp. 1-15. First published list of
results, in the report form required by SPEC.

Uniejewski, J., “Characterizing System Perfor-
mance Using Application-Level Benchmarks,”
see Reference 8. This paper includes a short
characterization of each SPEC benchmark pro-
gram.

Contact: SPEC -System Performance Evalua-
tion Cooperative (Kim Shanley, Secretary), c/o
Waterside Associates, 39 150Paseo Padre Pkwy.,
Suite 350, Fremont, CA 94538; phone (415)
792-2901, fax (41 5) 792-4748, Internet
shanley @cup.portal.com.

Reinhold P. Weicker is a senior staff engineer
with Siemens Nixdorf Information Systems AG
in Munich, Germany. His research interests in-
clude performance evaluation with benchmarks
and its relation toCPU architecture and compiler
code generation. He wrote the often-used
Dhrystone benchmark while working on the
CPU architecture team for the i80960 micro-
processor. Previously, he performed research in
theoretical computer science at the University
of Hamburg, Germany, and was a visiting as-
sistant professor at Pennsylvania State Univer-
sity.

Weicker received a diploma degree in mathe-
matics and a PhD in computer science from the
University of Erlangen-Numberg. He is a member
of the IEEE Computer Society, the ACM, and
the Gesellschaft fur Informatik.

The author can be contacted at Siemens
Nixdorf Information Systems AG, Otto-Hahn-
Ring 6, W-8000 Munchen 83, Germany; Inter-
net: weicker@ztivax.siemens.com; Eunet:
weicker%ztivax.uucp@unido.uucp.

December 1990 15

mailto:baw@seg.npl.co.uk
mailto:dongarra@cs.utk.edu
http://Ilnl.gov
mailto:cup.portal.com

