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Abstract-Fuzzy logic techniques have become popular to ad- 
dress various processes for multisensor data fusion. Examples 
include: (1) fuzzy membership functions for data association, 
(2) evaluation of alternative hypotheses in multiple hypothesis 
trackers, (3) fuzzy-logic-based pattern recognition (e.g., for 
featurebased object identification), and (4) fuzzy inference 
schemes for sensor resource allocation. These approaches have 
been individually successful but are limited to only a single 
subprocess within a data fusion system. At The Pennsylvania 
State University, Applied Research Laboratory, a general-pur- 
pose fuzzy logic architecture has been developed that provides 
for control of sensing resources, fusion of data for tracking, 
automatic object recognition, control of system resources and 
elements, and automated situation assessment. This general 
architecture has been applied to implement an autonomous 
vehicle capable of self-direction, obstacle avoidance, and mission 
completion. The fuzzy logic architecture provides interpretation 
and fusion of multisensor data (i.e., perception) as well as logic 
for process control (action). This paper provides an overview of 
the fuzzy logic architecture and a discussion of its application to 
data fusion in the context of the Department of Defense @OD) 
Joint Directors of Laboratories (JDL) Data Fusion Process Mod- 
el. A new, robust, fuzzy calculus is introduced. An example is 
provided by modeling a component of the perception processing 
of a bat. 

I. INTRODUCTION 

In recent years, multisensor data fusion technology has 
rapidly evolved. Numerous prototype systems have been 
developed for Department of Defense (DoD) applications [ 13 
such as ocean surveillance, air-to-air and surface-to-air de- 
fense, battlefield intelligence, surveillance and object acquisi- 
tion, and strategic warning and defense. In addition, data 
fusion techniques have been applied to non-DoD applications 
[2] [3]. The DoD Joint Directors of Laboratories (JDL) Data 
Fusion Group has acted as a "technology gatekeeper," plan- 
ning and organizing the annual Data Fusion Systems confer- 
ence held at Johns Hopkins University since 1987, codifying 
data fusion terminology via a lexicon [4], establishmg a pro- 
cess model [5], and creating a taxonomy which relates 

algorithms and techniques to elements of the process 
model [6]. 

The JDL fusion process model, shown in Fig. 1, and the 
associated algorithm taxonomy provides a basis for under- 
standing how a particular algorithm or technique may be 
applied to multisensor data fusion. The JDL model specifies 
four fusion processes: 

Level one processing (object refinement) transforms 
sensor data into a consistent reference frame, refines 
and extends estimates of an object's positionkinematics 
(i.e., tracking), estimates an object's attributes, and 
refines the estimate of an object's identity. Level one 
techniques include data association, estimation, pattern 
recognition, decision level fusion (e.g., Bayesian, 
Dempster Shafer methods), and approximate reasoning 
techniques. An object in this context is application 
specific (i.e., military unit, weapon, object, equipment 
fault, etc.) 

Level two processing (situation refinement) develops 
descriptions of current relationships among objects and 
events in the context of the environment. 

Level three processing (threat refinement) projects the 
current "situation" into the future and draws inferences 
about threats, vulnerability, and opportunity for opera- 
tions. 

Finally, level four processing (process refinement) 
monitors process performance to provide information 
for real-time control and long-term improvement. 

The JDL process model is (admittedly) a pedagogical arti- 
fice but has been useful for communication among data fusion 
researchers involved in diverse applications. A detailed 
taxonomy ([5] and [6]) maps specific algorithms to the pro- 
cessing levels and to functions within each processing level. 
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DATA NSlON DOMAIN 

Fig. 1 .  JDL Data Fusion Process Model. 

Many of these algorithms are described in [7] and [8]. The 
specific techniques applicable to a particular data fusion 
process depend upon the details of the fusion process, the 
nature of the sensor data, the types of inferences sought, and 
system constraints (e.g., computing resources, available a 
prior data; etc.) [9]. 

Recently, the application of fuzzy logic techniques to data 
fusion processes has become popular. Fuzzy logic [lo] in- 
volves extension of Boolean set theory and Boolean logic 
(i.e., two-valued logic) to a continuous-valued logic via the 
concept of membership functions. Membership functions are 
ad hoc continuous functions defined on the interval [0,1] 
which may be used to quantify "fuzziness" or imprecise 
concepts. Thus, fuzzy membership quantifies the extent to 
which a concept or attribute is inherently imprecise (e.g., the 
human attribute "tall" or "short" vice the precise measure of 
height). By contrast, other techniques, such as probability, 
quantify the extent to which a precise concept (e.g., height) 
is unknown [ll].  

Fuzzy logic has been applied to data fusion processing in 
a number of ways. Son, Kim, Song, and Jhee [12] describe 
the use of fuzzy logic for detection of known signals. 
Kewley [13] provides an example of fuzzy logic for identify 
declaration (i.e., for level one processing) based on Elec- 
tronic Support Measures (ESM) data. Hall [7] discusses the 
use of fuzzy logic for expert systems. These, in tum, are 
applicable to situation assessment (level two processing), 
threat assessment (level three processing), and process refine- 
ment (level four). Finally, several developers have used 
fuzzy logic for processing control (e.g., [14] and [IS]). 

At The Pennsylvania State University, Applied Research 
Laboratory, Stover and Gibson have developed a general- 
purpose fuzzy logic architecture. The architecture provides 

for fusion of data for tracking (level one positional fusion), 
automatic object recognition (level one identity declaration), 
automated threat assessment (level three processing), and 
control of system resources (level four processing). The 
fuzzy logic architecture provides interpretation and fusion of 
multisensor data (i.e., perception) as well as logic for process 
control (action). Thus, the fuzzy logic architecture spans all 
four levels of data fusion processing and provides both inter- 
pretive data analysis as well as proactive planning for system 
control. In this paper, we describe the general architecture 
and summarize the fuzzy logic calculus. 

11. INTELLIGENT CONTROLLER PROCESSING ARCHITECTURE 

A diagram of the architectural layout of the controller 
system is shown in Fig. 2. Sensor data are processed using 
algorithms such as AID conversion, filtering, weighting, 
beamforming, and discrete Fourier transforms to prepare for 
detection processing. Single-sensor detection processing 
includes background noise estimation, thresholding, cluster- 
ing, etc. The output of detection processing is detection 
reports which contain a set of variables such as range, SNR, 
azimuth, signal amplitude, etc., that characterize the physical 
attributes of detected objects. In the Prototype Intelligent 
Controller (PIC) architecture, these sensor reports are pro- 
cessed to fuse the new information into previously formed 
representations of the extemal-world objects. Object proper- 
ties are divided into two classes, "physical" and "inferred," 
the former representing measurable extrinsic physical con- 
cepts such as range, position, velocity, etc., and the latter 
representing intrinsic properties that are not directly measur- 
able, but must be inferred (e.g., the inference that an object 
is a "prey"). Values of physical properties are, in general, 
computed by adaptive estimators, such as predictor-corrector 
filters. For example, velocity may not be observed directly 
but may be estimated by a recursive filter that computes 
velocity estimates from noisy position measurements over 
time. 

PERCEPTION 

Fig. 2. Prototype Intelligent Controller (PIC) Architecture. 
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Inferred properties are established in the PIC architecture 
by a pattern recognition/classification structure called "Con- 
tinuous Inference Network" (CINET). The CINET is an 
intelligent multinode fuzzy pattern classifier (Fig. 2). Each 
node in the network generates a confidence factor for the 
existence of some property in the sensory data. Node inputs 
are usually a set of subproperties with varying confidences of 
existence and varying degrees of significance to the output 
property. Typical node transfer functions are mathematical 
models of the "and" and "or" of ordinary language, "and" 
representing a necessity condition (all input properties must 
exist with high confidence to produce a high confidence in the 
output properties' existence) and "or" representing a suffi- 
ciency condition (any one input property existing with high 
confidence can produce a high confidence in the existence of 
the output property). Thus, each node performs a fuzzy 
pattern recognition based on fuzzy input properties and appli- 
cation of fuzzy logic connectives (viz. fuzzy "AND," fuzzy 
"OR," etc.) This is in contrast to Boolean (binary) mathe- 
matical logic in which properties are assumed to either exist 
or not, and each node generates only one of two values, 0 
(false) or 1 (true). 

The CINET classifier retains the continuity of physical 
variables and their information content rather than mapping 
them down to a binary decision. Moreover, the CINET 
transfer functions allow explicit formulation of fuzzy logic 
conditions. In addition, the CINET nodes also may use 
transfer functions (other than those of "and" and "or,") such 
as a weighted average. For situations in which the relation- 
ship between the input subproperties and the output property 
is not well known, a neural network may be used to represent 
the node (after its training is completed), provided it maps 
continuously to the closed unit interval [0,1]. 

Both the "adaptive estimator" and CINET levels are com- 
ponents of a data fusion process performing level one posi- 
tionkinematic/attribute fusion as well as higher level infer- 
ences related to object identity declaration, situation assess- 
ment, and threat assessment. These representations define the 
perceived world for the system and serve as the basis for 
generation of behavioral response. 

In addition to reactive interpretation of data (viz. automat- 
ed inferences), the PIC architecture provides proactive re- 
sponses to guide the system, control sensors, etc. A response 
is implemented as a collection of independent operations, re- 
ferred to as behavior modes, each responsible for some class 
of behavior such as Search or Avoid. Each operation exam- 
ines representational objects for relevance; e.g., an Avoid 
operation may look for objects of the class "Obstacle" that 

have positive confidence factors for the property "Threat." 
When such conditions exist, an operation will inform the top 
level Mission Manager that it wants to respond. If allowed 
to proceed, it will generate and execute a plan to carry out its 
response. For organizational simplicity, each behavior and 
the Mission Manager is constructed with the same internal 
structure. The output of the plan processor is a set of com- 
mands to effector subsystems. 

111. FUZZY LQGICAL OPERATORS 

The basis for the intelligent fuzzy logic pattern recognition 
within the PIC architecture involves the definition of fuzzy 
membership functions and fuzzy logic operators. A brief 
summary is provided here. The fuzzy pattern recognition 
processing transforms sensor observations into updates of the 
representational models. Multiple sensors may be involved 
to gather information of a particular class. The outputs of 
these sensors (and associated detectors and estimators) are 
variables that represent extrinsic physical attributes, such as 
distance, length, azimuth, SNR, speed, etc., for each object 
detected. These form the set of physical and dynamical 
properties of the representational objects. Physical properties 
of an object are assumed to be precise (i.e., nonfuzzy) once 
a detection decision has been made, although estimation error 
variances may be included to quantify the uncertainty of the 
variable. By contrast, "fuzzy" properties are inferred from 
the values of physical properties since they cannot be de- 
tected directly by sensors. Consider, for example, the decla- 
ration that an object should be labeled as a "Prey. " Sensors 
do not output "Prey" directly; however, physical variables 
may allow the existence of "Prey" to be inferred. In general, 
"Prey" will be defined in terms of a collection of 
subproperties, each with its own confidence of existence and 
degree of significance with respect to establishing the output 
property. We model this hierarchical structure in terms of 
fuzzy logical operators or truth functions. 

A physical variable is a real- or complex-valued variable 
derived from the sensor data stream, representing a physical 
quantity as discussed above. A fuzzy logical operator (truth 
function, existence function) is a continuous function from a 
subspace of R" onto the closed unit interval [0,1]. Of partic- 
ular interest are truth functions defined on RI. These effect 
the inference of the existence of a fuzzy property from a 
single physical variable; for example, the property "large" 
from the physical variable "length. " (We adopt the conven- 
tion that a property exists only if the truth value of its defm- 
ing statement is positive.) Truth functions defined on RI 
transform physical variables to fuzzy properties. 
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A connective C is a fuzzy logical operator defined on the 
n-dimensional unit cube [O,l]D such that: 

(1)  C (0) = 0 (Connectives do not create existence 
from nothing), and 

(2) C ( l )  = 1 (Connectives do not dissipate certainty). 

(1) 

A connective is discriminatory if it is strictly monotonically 
increasing; i.e., 

ci > c; * C(c , ,  ... ci ... cn) > 
~ ( c , ,  ... c; ... cn) ,  i = 1, ... n. (2) 

We are interested in modeling the "and" and "or" connectives 
of natural language in a way that preserves the intuitive 
meanings of these connectives while at the same time meeting 
the needs of designers of autonomous system controllers. 
Since autonomous system technology is in its infancy, 
designers' needs are not yet fully understood. The following 
is a preliminary list of requirements for "and" that we have 
found to be useful. 

1. The mathematical model, AND, should match the 
intuitive meaning of the "and" of ordinary language 
so that ordinary knowledge can be implemented di- 
rectly. The connective AND models a necessity con- 
dition; i.e., the output property, P, exists only if 
each of a collection {Q,, Q2, ...QJ of subproperties 
exist. The truth value or confidence factor for the 
existence of P, Cf(P), is computed by 

following is a set of functional models that we have used for 
a number of years in classifier designs apparently having no 
pathological behavior. 

Prior to defining models for AND and OR, the issue of 
making the initial transition from physical variable to fuzzy 
property must be addressed. Instead of choosing a linear 
function for this, we define a utility function, referred to as 
BLEND, that produces a smooth transition between any two 
points in the plane, (a,b) and (c,d), by use of a sine curve: 

BLEND (a ,b ,c ,d ,x)  = b, x S a, 
= d, x 2 C, 
= .5 [ d + b + ( d-b ) sin ( ?r (( x-a ) /(c-a)-S)))], 
a <  x < c .  

(4) 

BLEND has the graph BLEND 

For example, we may specify the existence of the fuzzy 
property "Tall" by 

( 5 )  Cf (Tall) = BLEND (66, 0, 74, 1, Height). 

Combinations of BLENDS may be used to produce various 
truth function shapes such as "bandpass," "bandstop," etc., 
as application needs dictate. 

The functional model used for AND is the product: 
2. AND should be discriminatory. 

3. The function AND should also have the capability of 
combining information of varying degrees of signifi- 
cance as well as of varying degrees of existence. 
This implies the use of n additional weight parame- 
ters, one for each input property. 

A similar set of requirements can be established for the mod- 
el OR of "or," differing only in the intuitive meaning; i.e., 
OR models a sufficiency condition. 

In accordance with these specifications, models for AND 
and OR are families of fuzzy logical operators parameterized 
by the number of input properties n. While there is an infi- 
nite number of functional definitions satisfying the three 
conditions that could be used to model "and" and "or," the 

n 
AND (C, W, n) = [ I1 ( 1  - wi + wi c i )  I", where 

C = (c,, c2, ... cn), the input confidence vector, 
W = (wl, w2, ... wn), the weight vector, 
n = number of inputs ( subproperties), 
U = a + b exp ( -c (  z w i - l ) ) ,  and parameters 

i-1 

a, b, c being 0.1, 0.9, and 0.3 respectively. (6) 

The weights, wi, control the relative significance of 
subproperties. A value of 1.0 far wi specifies that pi is a 
required subproperty since, if it does not exist (ci = 0), then 
it produces a zero multiplier, driving the output to zero; i.e., 
the output property does not exist, regardless of the existence 
of the other subproperties. Conversely, if wi < 1, the multi- 
plying factor is positive even if ci = 0; i.e., the nonexistence 
of pi does not imply nonexistence of the output property but 
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Fuuy Connecavcs (n=2) C=(c,.c,) 

merely lowers its existence confidence factor by an amount 
controlled by wi. Thus, "supportive" properties are specified 
by using a weight less than 1.0. The exponent U is used to 
control the tendency of a product of numbers less than one to 
converge to zero. Alternative versions of U, such as the nth 
root, were tried but judged to be incapable of providing 
adequate control under all variations of the parameters. 

The functional model used for OR is defined using the 
Euclidean norm of the weighted input vector: 

OR(C, W, n)  = BLEND (a, b, 6, 1, E), where 

C(Wi 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 8  0.9 1 

E =  J- 
U = Max{w, c i ,  i = 1, 2, ... n} 
a = 2 1 1 - 6  C l  

b = 2 ~ - 1  , and 
W and C are defined as for AND. (7) Fig. 3.  Comparison of Formulations of AND and OR along the cut c ,  = c2. 

The Euclidean norm, E, was chosen to model OR since its 
value is at least as large as the largest vector component, 
which corresponds to the intuitive meaning of "or. " Howev- 
er, the norm does not map onto the unit interval [0,1] but 

onto [o,G]. Consequently, BLEND is used to compress 
the Euclidean norm smoothly to [0,1] with compression be- 
ginning at the maximum weighted input confidence factor. 

The definitions given above for AND and OR do not satisfy 
a strict DeMorgan's Law; i.e.: - 

OR (c, W, n) z AND (C, W, n), 
where < = 1 -ci  denotes negation. (8) 

Nevertheless, using these definitions, a "fuzzy" DeMorgan's 
law holds in the sense that the terms on each side of the 
equation are "close" and can, in general, be interchanged in 
applications. An alternative approach is to force a 
DeMorgan's law by defining one connective in terms of the 
other through it. For example, we may define OR by: - -  

OR (C, W, n) = AND (C ,W, n). (9) 

Fig. 3 shows a comparison of the product and Euclidean 
norm definitions previously given for AND and OR respec- 
tively, and the MIN-MAX definitions defined by 

AND-Z(C) = MIN(c,, c ~ ,  ... c,) 
OR-Z(C) = MAX(c,, c2, ... c.). 

The circular points plot the connective counterparts of AND 
and OR defined through DeMorgan's Law. These points can 
also be interpreted as showing how far the AND and OR 
functions deviate from DeMorgan's Law (for this case). It 
may appear that the best approach would be to define OR 
from the AND product definition via DeMorgan's law (i.e., 
forcing satisfaction of DeMorgan's law by definition). How- 
ever, there is another factor that makes an insistence on a 
strict DeMorgan's law questionable for autonomous system 
applications. This is discussed next. 

IV. NEGATION 

The meaning of the word "not" as used in ordinary lan- 
guage is more complex than provided for by the logical defi- 
nition 

CF (not P) = 1 - CF (P). (11) 

A statement such as "That is not a rat" can be accepted on 
the basis of observation of only one property, say "It has 
wings. " Use of the formula would require that the complete 
set of characterizing properties of "rat" be identified to gener- 
ate a confidence factor for the property "rat" for an object 
being observed. For autonomous systems, this is generally 
not possible because at any given time, information about an 
external-world object will be incomplete. Furthermore, the 
validity of the formula at any time depends on the degree of 
completeness of the information about P. The confidence in 
P may be low because insufficient sensory information is 
available. In low light or from a distance, it may be difficult 
to confidently identify the property "wings" on a rat-like 
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object sitting on the ground. For example, if the pattern 
recognition processor generates a confidence factor of 0.01 
for "wings" for an object, this does not imply that one can 
conclude the object does not have wings with a confidence of 
0.99. Based on the sensory information available, the confi- 
dence that the object does not have wings may properly also 
be low. The key requirement here is that autonomous sys- 
tems must be able to operate and make decisions with incom- 
plete information. If the knowledge being programmed into 
the classifying structure involves the use of "not, " then some 
estimation of the degree of completeness of information with 
respect to a property P needs to be factored into the formula 
above. We introduce the following model for NOT, illustrat- 
ed in Fig. 4. 

I I 

CFICK-PI I 

I 
I 
I 

Fig. 4. Conceptual Model of NOT. 

The dashed block defines NOT, which can be explained as 
"The confidence factor for 'NOT-P' is the complement of the 
confidence factor for P and complete knowledge about P 
exists. " The property "complete knowledge about P," 
(CK- P) is a fuzzy concept; i.e., it has infinite degrees of 
truth. 

Estimation of the current degree of completeness of infor- 
mation with respect to a property is useful to autonomous 
system processing, not only for computing negation, but also 
as a measure of classification reliability. No general ap- 
proach to computing CK-P is known, since it is property- 
dependent. However, if the physical variables that provide 
input to the Classifier nodes are outputs of adaptive estimators 
such as Kalman filters, then the degree of convergence of the 
filters can be used to compute confidence factors for CK-P. 
If adaptive filters are used to estimate dynamics of moving 
objects, then a confidence factor CK-Dynamics can be gener- 
ated from estimates of the degree of convergence of the 
filters. For example, if we define "Mobile" by the statement 
"An object is Mobile if it is Not-stationary and has a Believ- 
able-speed-estimate, " the property "Believable-speed-esti- 
mate" can be identified with CK-Dynamics. 

Since for autonomous system applications (operation with 
incomplete knowledge), negation must be modeled as a prop- 

ertydependent function, a strict DeMorgan's law is, in gener- 
al, unrealizable. Consequently, the only motivation for mod- 
eling one of AND or OR through DeMorgan's law operating 
on the other is for reasons of simplicity or esthetics. The 
propertydependence of negation seems to constitute a barrier 
to the development of a (quasi) Boolean algebra for fuzzy set 
theory applicable to autonomous systems. 

V. AN EXAMPLE 

Fuzzy logical operators can be used in a variety of data 
fusion modules, such as detection decisions, fuzzy correla- 
tion, multilevel @erarchical-property-based) classification, 
and introspective analysis (e.g., confusion modeling, [16]). 

An example is provided of a relatively simple, multilevel 
classifier roughly based on a bat's sonar processing described 
in [17]. The knowledge underlying the definition of "Prey" 
is expressed by the statements: 

An object is (has the property) "Prey" if it is "Prey-size" 
and "Moving" and has "Insect-like-buz. " 

An object is "Moving" if it is "Not-stationary" and has a 
"Believable-speed-estimate"; and 

An object has "Insect-buzz" if it has"Dopp1er-flutter" and 
"Insect-like-period. " 

The logical form of the statements defining "Prey" generates 
the processing structure directly. Fig. 5 shows the resulting 
CINET segment. Blend functions map the physical variables 
SIZE, DS (Doppler shift), PERIOD, and SPEED into confi- 
dence factors for subproperties that are involved in the defi- 
nition of "Prey. " The property "Believability" for various 
dynamical properties is identified with CK-Dynamics. 

W \ 
A \ 

Fig. 5 .  CMET Classifier for "Prey." 
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The example shows that the transformation from knowl- 
edge representing relationships among properties and 
subproperties to the processing structure that performs pattem 
recognition for the autonomous system is almost trivial. 
Parameters such as weights that designate relative significance 
among properties and BLEND parameters that map from 
physical variable values to confidence factors are set to reflect 
the intricacies of the relationships that are understood but not 
contained explicitly in the defining statements. These param- 
eters may actually be variables that are computed by on-board 
functions as appropriate to dynamically changing situations. 
This provides a capability for interpretation within context or, 
in other words, a capability for autonomous adaptation of 
interpretation of sensory data appropriate to the interpretation 
of the current situation from the top level (via the "Reentry 
Signalling" lines shown in Fig. 2). 

The resulting processing structure has a functional power 
that may be obscured by its ease of generation and pictorial 
simplicity. Equation (12) below is a partial expansion of the 
fuzzy logical operator that generates the confidence factor for 
the property "Prey" from the four physical variables SIZE, 
DS, PERIOD, and SPEED. It is a highly nonlinear function 
with 23 adaptation parameters that may be dynamically 

intuitive, at least to a first approximation. Fine tuning can be 
accomplished by observing the classifier performance to a 
variety of inputs which is, in effect, fine tuning the designer's 
knowledge. 

The "CK-Dynamics" property would be, in general, the 
output of a multistaged CINET segment; if the complete 
expansion of that property were included in the equation 
below, it would increase in size considerably. In practice, 
the designer never needs to be concemed with expanded 
forms of fuzzy logical operators but can think and design in 
t e m  of property relationships. 

For comparison, Fig. 6 shows an implementation of the 
same classifier using the Min-Max definitions of fuzzy "and" 
and "or." Linear truth functions are used rather than 
BLENDS to do the initial mapping from physical variable to 
confidence factor. The resulting fuzzy logical operator is the 
minimum of five terms, four of them linear functions of the 
input variables SIZE, DS, PERIOD, and SPEED. It can be 
seen that the minimum of these terms is completely specifying 
the output confidence factor for "Prey," producing the same 
value on output for any values of the other terms so long as 

CF(PREY) = F(SIZE, DS. PERIOD. SPEED) 

* "' 1 ,. . . . I , . .. \.. 

adjusted as discussed above. The number of parameters is a 
measure of the degree to which the processing structure of 
Fig. 5 can be adapted to specifics of an application. If the 
designer were forced to work with just the functional form of 
F(SIZE, DS, PERIOD, SPEED), it would be a difficult task 
to determine values for the 23 parameters that would tune the 
function to the application. However, since the network is a 
direct representation of the knowledge, parameter settings are 

they stay above the minimum; i.e., the operator is nondis- 
criminatory. A bat operating with this classifier could not 
distinguish between two insects, one of which had, say 0.1 
confidence in each of the subproperties of "Prey" and the 
other having 0.1 confidence in the "Moving" subproperty but 
0.9 confidence in the "Prey-size" and "Insect-buzz" 
subproperties. Such inability to discriminate is considered 
unacceptable for autonomous system perception processing. 
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v. SUMMARY 

In this paper, we have described a general-purpose fuzzy 
logic architecture that provides the capability for fusion of 
multisensor data to achieve high-level (i.e., abstract) infer- 
ences about objects and situations. A new fuzzy logic calcu- 
lus is introduced with connectives (AND, OR) that mimic the 
intuitive meaning of those of natural language. In addition, 
a new operator is introduced for logical negation that ac- 
counts for both the confidence in a property as well as the 
extent to which the property is observable or known (in a 
current environment). Finally, we have introduced a continu- 
ous transformation that maps physical parameters into fuzzy 
membership functions (the BLEND function). The architec- 
ture introduced here provides for both data fusion as well as 
proactive control based on the dynamic data fusion infer- 
ences. This architecture and fuzzy logic calculus have been 
successfully used for control of an autonomous vehicle and 
have application in many other areas, such as process control- 
lers or advisory systems. 
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