

EE-382M
VLSI-II
Early Design Planning:
Front End

Spring 2017

Mark McDermott Jacob Abraham Gian Gerosa

TLAs

- EDP Early Design Planning
- FE Front End
- BE Back End
- SOC System-on-Chip
- SC Standard Cell
- SDP Structured Datapath
- PD Physical Design
- STA Static Timing Analysis
- .LIB STA Library
- ABGEN Abstract Generator
- APR Auto Place & Route
- LEF Library Exchange Format
- DEF Design Exchange Format
- TTM Time to Money

Agenda

Early Design Planning (EDP) objectives

EDP-FE Flow

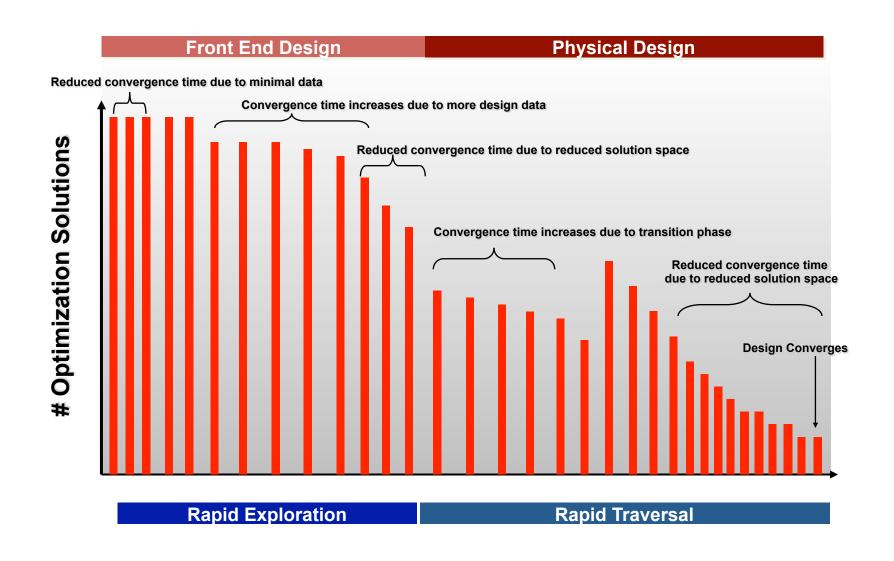
- Design partitioning
- Area estimation
- Block & Unit floorplanning
- Block & Unit route planning
- Chip level floorplanning
- Chip level route planning
- Chip & block level power estimation
- Chip & block level timing estimation

Summary

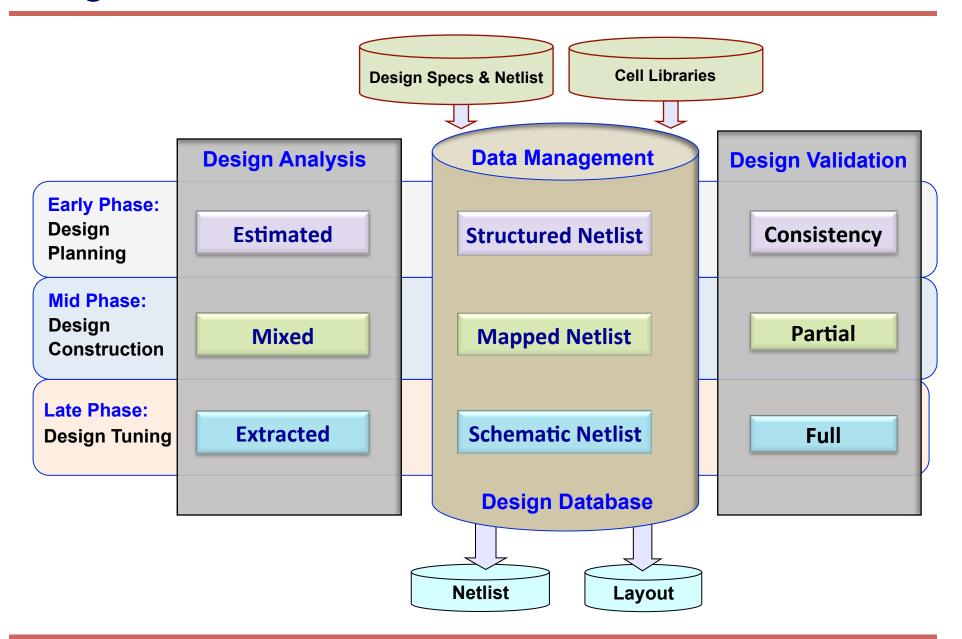
EDP-FE Objectives

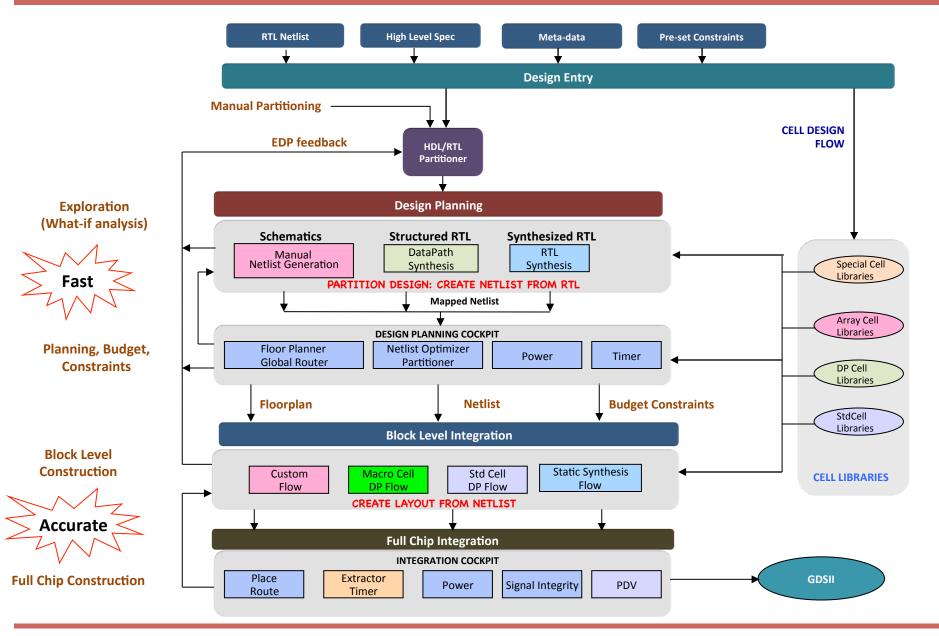
- Get designers thinking about physical implementation while doing the architecture design.
 - Avoids pitfalls that can cause die size growth, timing issues and power distribution problems.
- Give designers a procedure to floorplan high performance SOCs.
 - Becomes the starting point for the chip plan iteration.
- It is the starting point for block/unit/partition/cluster design by setting various constraints such as block size and placement, feed-through plan, power and clock distribution.

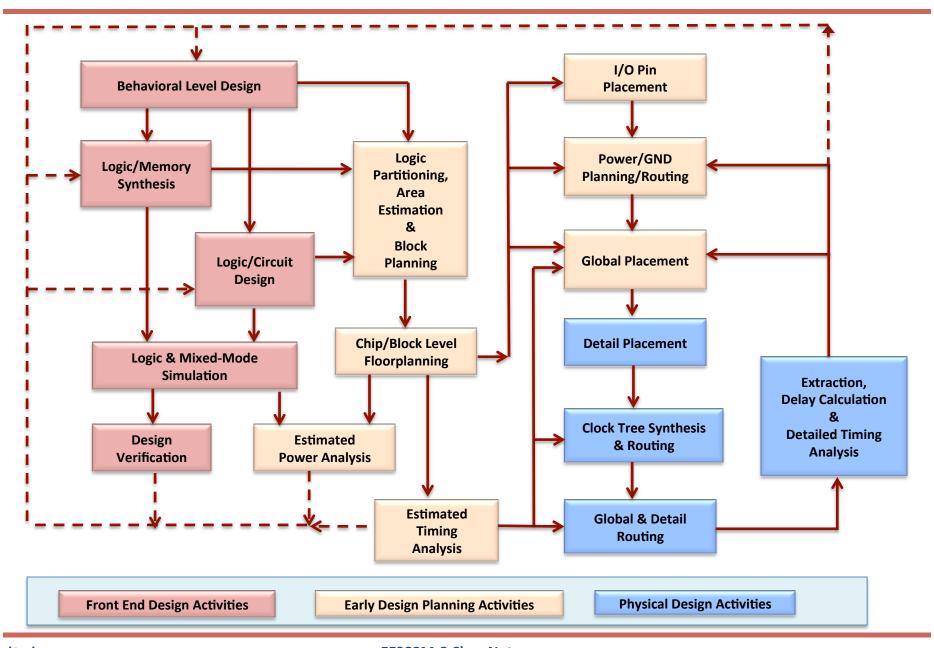
Design Flow Paradigm



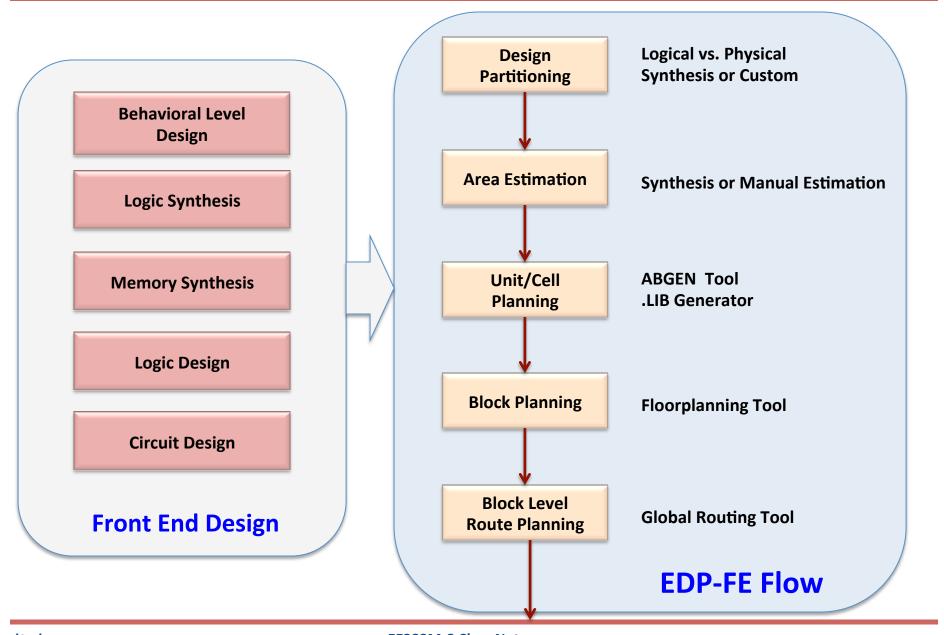
- HW/SW Architecture, μarchitecture, logic, floorplan, timing, power optimized concurrently.
- Clusters and top level chip optimized in parallel
- Top-down budgeting with bottom-up feedback
- Forward constraint-driven (timing,...) and back-annotation (parasitic, area)


Design Convergence Iteration Profile

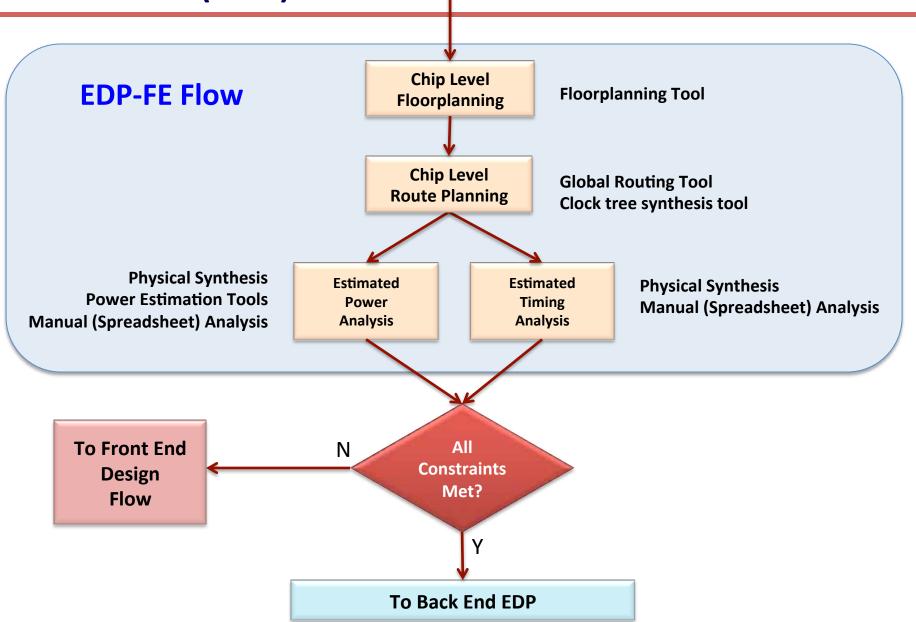

Design Phases


Ideal SOC Design Environment

EE382M Design Flow

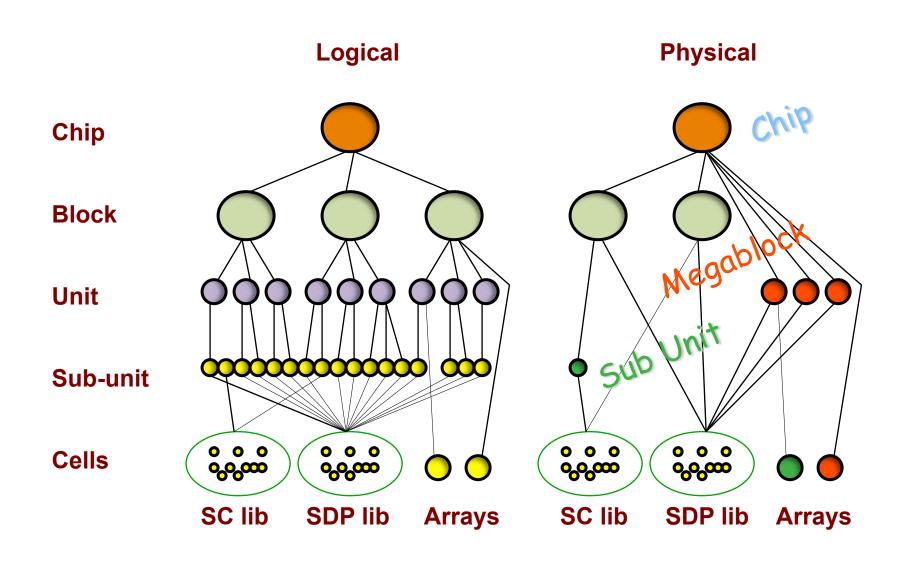

Agenda

- Early Design Planning (EDP) objectives
- EDP-FE Flow
 - Design partitioning
 - Area estimation
 - Block & Unit planning
 - Block & Unit route planning
 - Chip level floorplanning
 - Chip level route planning
 - Chip & block level power estimation
 - Chip & block level timing estimation
- Summary


EDP-FE Flow

EDP-FE Flow (cont)

1/24/17 EE382M-8 Class Notes Page 12


Partitioning: Building Blocks

- Three types of building blocks are used in a VLSI chip:
 - SC: Standard Cell Block
 - Typically synthesized using standard cell library
 - Layout is done using Automatic Place & Route (APR) tools
 - SDP: Structured Data Paths
 - Typically designed using DP libraries or the standard cell library used for SCs.
 - Layout is generated using tiling engines using relative placement constraints.
 - Routing can be done manually (for busses, clocks) or with automated routers or a mix of both.
 - Customs Macros: Memory arrays, Register Files, CAMs, PLLs, Thermal sensors, off-chip IO buffers, voltage regulators, etc.
 - Memory generators can be used; High performance arrays are typically done manually. Memory generators will produce layout. Custom designed memories will be done manually.
 - Semicustom design is also used: leaf cells are pure custom, but block can be built with AP&R tools.

Partitioning: Logical vs. Physical Mapping

Area Estimation

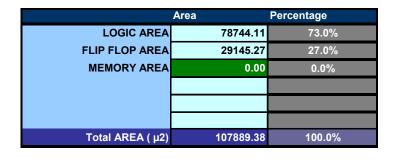
- Area estimation is accomplished using one of these three methods:
 - Scaling from previous design
 - Reasonably accurate method.
 - Modify area by direct multiplication of previous area by scaling factor
 - Scaling factor is determined by process technology group
 - Scaling factor may be be non-linear due to process scaling issues.
 - Manual estimation using spreadsheets
 - Least accurate method.
 - Requires estimating the number of logical elements that will be used.
 - Requires estimating size of hard macros
 - Synthesis of an existing design
 - Most reliable method. Not always possible during early design phase
 - Need to add "fudge" factor to accommodate future growth (or shrinkage)
 - Need to estimate SC utilization percentages.

Block Size Estimation Spreadsheet Example

- The block area estimations are done using the same spreadsheet as the power estimation; since the project will use synthesis, then results can be obtained after APR steps.
- The spreadsheet comprehends the following:
 - Area utilization factors for each gate type
 - Block utilization factors

Technology	180 nm		130nm		90nm		65nm		45nm	
Cell Type	Area μ²	Typical SC Density gates/mm ²	Area μ²	Typical SC Density gates/mm ²	Area μ²	Typical SC Density gates/mm ²	Area μ²	Typical SC Density gates/mm ²	Area μ²	Typical SC Density gates/mm ²
INV	26.8	28,006	9.7	77,160	3.5	204,082	1.3	562,266	0.5	1,549,099
2-NAND	28.6	26,247	11.9	63,131	4.9	145,773	2.1	350,619	0.9	843,326
3-NAND	26.4	28,447	16.2	46,296	10.0	72,333	6.1	117,721	3.8	191,589
4-NAND	43.9	17,068	27.0	27,778	10.0	72,333	3.7	196,201	1.4	532,190
2-NOR	28.6	26,247	11.9	63,131	4.9	145,773	2.1	350,619	0.9	843,326
3-NOR	81.0	9,259	22.7	33,069	6.4	113,379	1.8	404,924	0.5	1,446,157
4-NOR	76.7	9,780	29.2	25,720	11.1	64,935	4.2	170,771	1.6	449,105
DFFR	103.7	7,229	44.3	16,938	18.9	38,095	8.1	89,252	3.4	209,104
SDFFR	107.5	6,980	57.2	13,103	30.5	23,613	16.2	44,326	8.7	83,210
Average		17,696		40,703		97,813		254,078		683,012

Block Size Estimation Spreadsheet Example



UNIT: PUT YOUR BLOCK NAME										
GA	TES		AREA CALCULATION							
Gate	Min Sized Transistors	Actual Gate Count (USER SPECIFIED)	Area per Logic Gate (μ2)	Utilization Factor	Total Area with Utilization Factor (μ2)	Transistor Density (Transistors/ μ2)				
inv	3	2812	1.2	80.0%	4218	2.00				
buf	8	1868	2.4	80.0%	5604	2.67				
triinv	15	1	4.2	80.0%	79	2.86				
clk_buf	22	487	5.9	80.0%	3592	2.98				
and2	11	676	3.2	75.0%	2884	2.58				
and3	18	35	4.7	70.0%	235	2.68				
and4	26	89	6.1	65.0%	835	2.77				
nand2	8	2285	2.9	75.0%	8835	2.07				
nand3	15	365	4.1	70.0%	2138	2.56				
nand4	24	21	6.8	65.0%	220	2.29				
nor2	10	1	2.9	75.0%	12	2.59				
nor3	21	73	4.1	70.0%	428	3.59				
nor4	36	57	6.8	65.0%	596	3.44				
xor2	30	264	6.9	75.0%	2429	3.26				
xnor2	30	169	7.2	75.0%	1622	3.13				
aoi3	16	1640	9.0	70.0%	21086	1.24				
aoi4	20	0	11.0	65.0%	17	1.18				
oai3	16	888	13.0	70.0%	16491	0.86				
oai4	20	12	17.0	65.0%	314	0.76				
or2	15	220	3.4	75.0%	997	3.31				
or3	23	23	4.7	70.0%	154	3.43				
or4	23	23	6.2	65.0%	219	2.41				
mux2	9	360	4.2	70.0%	2160	1.50				
imux2	15	360	6.6	70.0%	3394	1.59				
mux4	27	12	8.3	60.0%	166	1.95				
imux4	39	0	11.0	60.0%	18	2.13				
DFFR	36	1339	8.1	55.0%	19720	2.44				
SDFFR	56	320	16.2	55.0%	9425	1.90				

Estimated area calculation

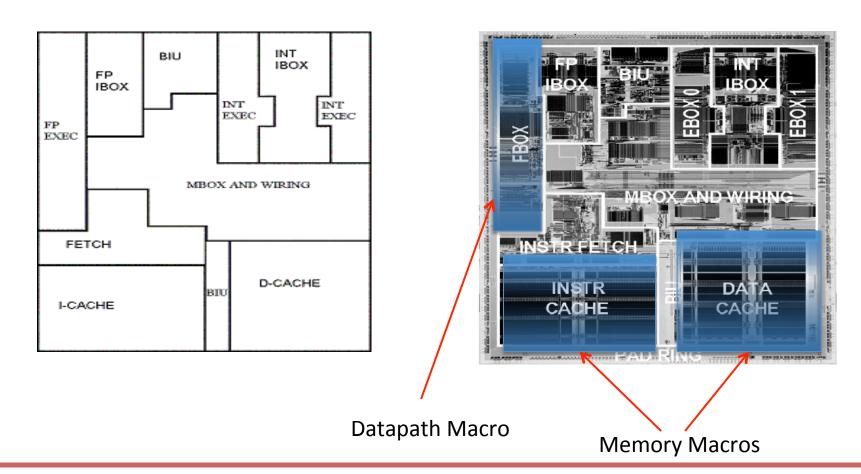
■ The block area estimates are determined by summing up the SC/SDP area calculations with the Memory area calculation.

AVERAGE TRANSISTOR DENSITY 1.91

Block & Unit planning

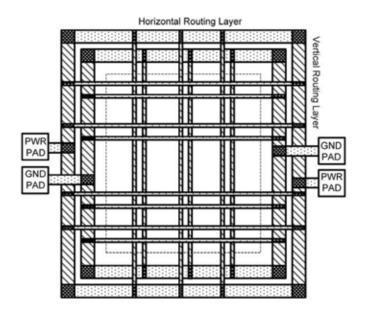
- Block planning is used to determine:
 - Block pin placement
 - Including through cell routes
 - Hard macro placement
 - Aspect ratio of the block(s)

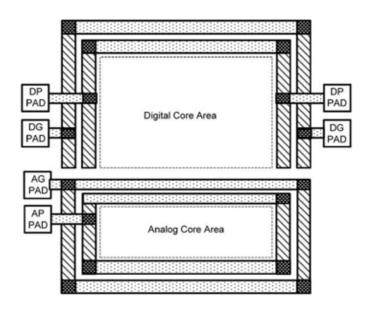
Block & Unit route planning



- Block level route planning is used to:
 - Determine critical paths within a block
 - Determine the key pre-routes that need to be fed to the global router
 - Determine preliminary power grid routing

Chip Level floorplanning


- Chip level floorplanning
 - Determine starting point(s) for block placement options
 - Determine aspect ratio option(s) for the chip

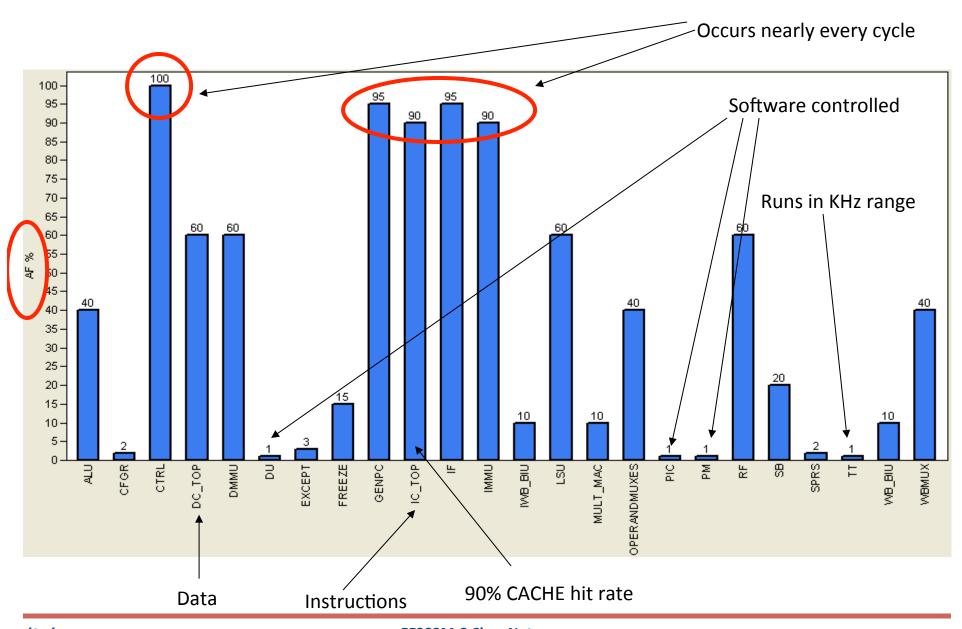


Chip Level route planning

- Chip level route planning is used to:
 - Determine critical paths at the chip level
 - Determine the key pre-routes that need to be fed to the global router
 - Determine preliminary power grid routing at the top level of the chip:

Chip & Block Level power estimation

- Power estimates for SC and SDP blocks are based on data from Design Compiler.
 - PTPX (Synopsys power analysis tool) will be used.
- Final block/unit power should include the following:
 - Block activity factors
 - Clock power
 - Memory power
 - Logic gate intrinsic power
 - Transistor gate leakage power
 - Transistor gate capacitance power
 - Interconnect wiring capacitance power
 - Source-drain leakage power
 - Signal switching factors
 - Glitching or spurious activity power


Activity Factor vs. Switching Factor

- Activity Factor represents how often a specific block is active
 - Represented as percentage of time
 - For example an instruction fetch unit is active 80-90% of the time where a debug unit would be active 1% of the time
- Switching factor is also represented as a percentage and indicates how often the internal nodes of a specific block toggle
 - A function of the type of gate.
 - For example Inverters switch all the time
 - 4-input NAND gates switch considerably less
 - Complex gates have even lower switching factors.
 - Typical SC blocks have switching factors of about 15-25% depending on the mix of logic
- Activity Factor is driven by the architecture
- Switching Factor is driven by circuit topology

Activity Factors (%)

Clock Power Estimation

 Clock Power involves determining gate capacitance for dynamic power and determining amount of tracks for a given floorplan area

$$P_{Clock} = P_{static} + P_{diss}$$
 $P_{diss} = (AF) (C_{total}) (V^2) (freq)$
 $P_{static} = I_{leakage} * V_{DD}$

Memory Power Estimation

- Most power dissipation for an array occurs in bit-lines and sense amplifiers
- Calculate total bitline capacitance {Metal2 bitline cap} + {junction cap} X {number of bitcells}
- Calculate sense node capacitive load to include in power dissipation
- For power dissipation, we use the approximation:

Pdyn =
$$\alpha$$
 * Ctotal * VDD * VDD * frequency

Where alpha is the "Activity Factor" $0 < \alpha < 1$

• Memory cells can contribute significant D.C. power due to leakage from many cells in standby; be sure to take into account

Logic Gate Intrinsic Power

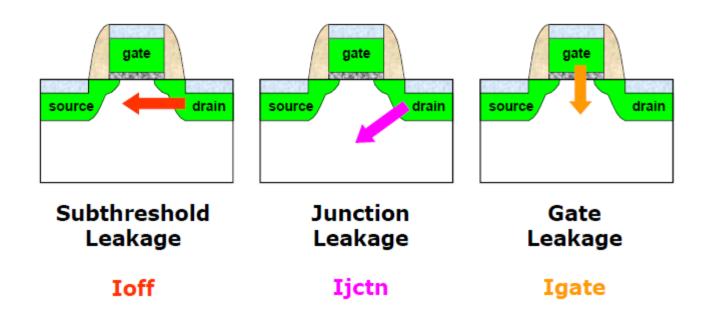

```
P_{gate-intrinsic} = (T_{count}) (AF) (SF_{avg}) (C_{j-den}) (A) (V^2) (f)
```

 T_{count} = Total Min Size Transistors

AF = Activity Factor

 SF_{avq} = Average Switching Factor for whole block

 C_{j-den} = Junction Capacitance for 65nm = 4.1 fF/um²

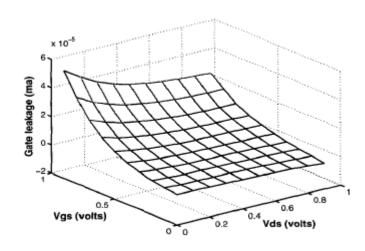

A = Area of junction

 $V = V_{dd}$

f = Frequency

Sources of Leakage Power





Transistor Gate Leakage Power

- Gate oxide thickness < 2nm
- Direct tunneling of charge carriers through gate oxide, causing gate leakage to increase
- Was expected to grow by 500X / technology
- Was dominant leakage component
- Was expected to contribute more than 15% - 20% of total power
- High-K gate dielectrics have alleviated this problem

Gate leakage current as a function of gate and drain bias for an NMOS device.

Transistor Gate Leakage Power

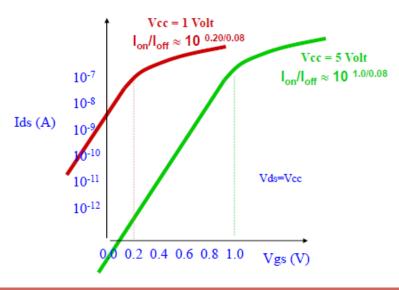

```
P_{\text{gate-leakage}} = (T_{\text{count}}) (W_{\text{min}}) (L) (On_{\%}) (G_{\text{leakage}}) (V)
```

 T_{count} = Total Min Size Transistors

 $W_{min} = Minimum Width$

L = Minimum Length

On_% = Percent On = 50% (all blocks)


 $G_{leakage}$ = Gate Leakage for 65nm = 15.6 nA / um²

 $V = V_{dd}$

S-D Leakage Power

- Technology scaling causing 30% smaller dimensions, causing higher energy consumption, power dissipation
- Voltage and Vt must both be scaled to contain power increase and maintain 30% gate delay reduction
- Leakage increases with scaled Vdd and Vt

S-D Leakage Power


```
P_{S-D-leakage} = (T_{count}) (W_{min})(S-D_{leakage}) (SE) (V)
```

```
T_{count} = Total Min Size Transistors
```

 $W_{min} = Minimum Width$

L = Minimum Length

 $S-D_{leakage} = Source-Drain Leakage = x.xx nA / um^2$

SE = Stack Effect

 $V = V_{dd}$

Interconnect Power

Becoming large portion of power consumption given smaller technologies

Up to 40% of total power

Depends on physical info of layout / packing

 Assuming square model for block, interconnect length is estimated at Length / 5

Interconnect Power


```
P_{Intercon} = (Gate)(AF) (SF) (C_{avg wire-den}) (IL) (V^2) (f)
```

```
Gate = Total Gate Count
```

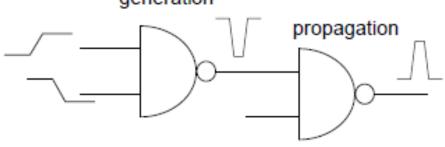
AF = Activity Factor

SF = Switching Factor

C_{avg wire-den} = Average Wire Capacitance for M1-M4 = 0.21 fF/um

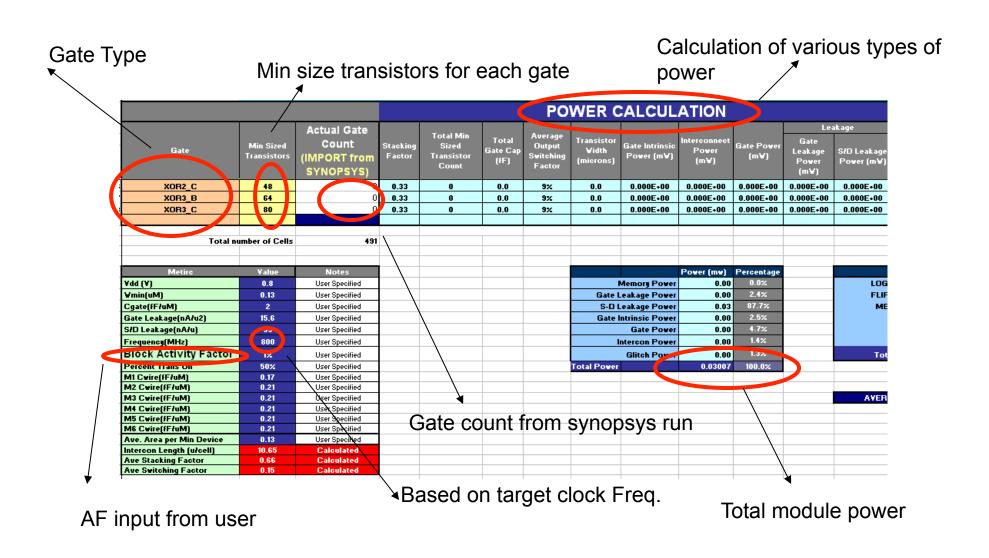
IL = Interconnect Length (Assume square block, divide by 5

 $V = V_{dd}$


f = Frequency

Glitch Power

$$P_{glitch} = (15\%) (P_{gate} + P_{Intercon} + P_{gate-intrinsic})$$


- Spurious transitions before output approaches steady-state
- Unequal propagation delays of input signals to gate
- Can multiply as they propagate through combinational logic blocks
 generation

- Smaller technology nodes make intercon delays more dominant, so delays are more uneven
- False switching can account for 10%-60% of total power (arithmetic modules)

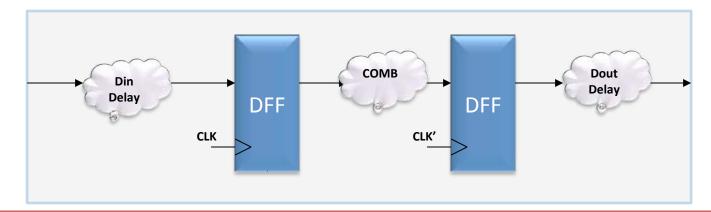
Power Estimation Spreadsheet Example

SC and SDP Power Estimation Spreadsheet

						Р	POWER CALCULATION									AREA CALCULATION			
Actual Gate		Actual Gate									Leakage		7.11.271.07		Total Area				
Gate	Min Sized Transistors	Count (IMPORT from SYNOPSYS)	Stacking Factor	Total Min Sized Transistor Count	Total Gate Cap (fF)	Average Output Switching Factor	Transistor Width (microns)	Gate Intrinsic Power (mW)	Interconnect Power (mW)	Gate Power (mW)	Gate Leakage Power (mW)	S/D Leakage Power (mW)	Area per Logic Gate (μ2)	Utilization Factor	with Utilization Factor (µ2)	Transistor Den (Transistors/ p			
ADDF_B	47	1	0.75	47	12.2	12%	6.1	1.725E-04	2.693E-05	3.197E-04	2.478E-06	1.210E-04	6.1	75.0%	8.1	5.77			
ADDF_C	64	1	0.75	64	16.6	12%	8.3	2.349E-04	2.693E-05	4.354E-04	3.375E-06	1.647E-04	8.3	75.0%	11.1	5.77			
AND2_B	14	1	0.75	14	3.6	12%	1.8	5.138E-05	2.693E-05	9.524E-05	7.382E-07	3.604E-05	1.8	75.0%	2.4	5.77			
AND2_C	18	1	0.75	18	4.7	12%	2.3	6.606E-05	2.693E-05	1.225E-04	9.491E-07	4.633E-05	2.3	75.0%	3.1	5.77			
AND2_D	28	1	0.75	28	7.3	12%	3.6	1.028E-04	2.693E-05	1.905E-04	1.476E-06	7.207E-05	3.6	75.0%	4.9	5.77			
AND3_B	18	1	0.67	18	4.7	9%	2.3	6.606E-05	2.020E-05	1.225E-04	9.491E-07	4.139E-05	2.3	70.0%	3.3	5.38			
AND3_C	22	1	0.67	22	5.7	9%	2.9	8.074E-05	2.020E-05	1.497E-04	1.160E-06	5.059E-05	2.9	70.0%	4.1	5.38			
AND3_D	26	1	0.67	26	6.8	9%	3.4	9.542E-05	2.020E-05	1.769E-04	1.371E-06	5.979E-05	3.4	70.0%	4.8	5.38			
A021_B	24	1	0.50	24	6.2	6%	3.1	8.808E-05	1.347E-05	1.633E-04	1.265E-06	4.118E-05	3.1	70.0%	4.5	5.38			
A021_C	26	1	0.50	26	6.8	6%	3.4	9.542E-05	1.347E-05	1.769E-04	1.371E-06	4.462E-05	3.4	70.0%	4.8	5.38			
A021_D	32	1	0.50	32	8.3	6%	4.2	1.174E-04	1.347E-05	2.177E-04	1.687E-06	5.491E-05	4.2	70.0%	5.9	5.38			
A022_B	28	1	0.50	28	7.3	6%	3.6	1.028E-04	1.347E-05	1.905E-04	1.476E-06	4.805E-05	3.6	70.0%	5.2	5.38			
A022_C	32	1	0.50	32	8.3	6%	4.2	1.174E-04	1.347E-05	2.177E-04	1.687E-06	5.491E-05	4.2	70.0%	5.9	5.38			
AOI21_A	20	1	0.50	20	5.2	6%	2.6	7.340E-05	1.347E-05	1.361E-04	1.055E-06	3.432E-05	2.6	60.0%	4.3	4.62			
AOI21 B	24	1	0.50	24	6.2	6%	3.1	8.808E-05	1.347E-05	1.633E-04	1.265E-06	4.118E-05	3.1	70.0%	4.5	5.38			
AOI21 C	30	1	0.50	30	7.8	6%	3.9	1.101E-04	1.347E-05	2.041E-04	1.582E-06	5.148E-05	3.9	70.0%	5.6	5.38			
AOI22 A	24	1	0.33	24	6.2	6%	3.1	8.808E-05	1.347E-05	1.633E-04	1.265E-06	2.718E-05	3.1	65.0%	4.8	5.00			
AOI22 B	28	1	0.33	28	7.3	6%	3.6	1.028E-04	1.347E-05	1.905E-04	1.476E-06	3.171E-05	3.6	65.0%	5.6	5.00			
AOI22 C	34	1	0.33	34	8.8	6%	4.4	1.248E-04	1.347E-05	2.313E-04	1.793E-06	3.851E-05	4.4	65.0%	6.8	5.00			
DFFR E	80	1	0.64	80	20.8	12%	10.4	2.936E-04	2.693E-05	5.442E-04	4.218E-06	1.757E-04	10.4	55.0%	18.9	4.23			
DFFSR E	92	1	0.64	92	23.9	12%	12.0	3.377E-04	2.693E-05	6.259E-04	4.851E-06	2.021E-04	12.0	55.0%	21.7	4.23			
DFFS E	80	1	0.64	80	20.8	12%	10.4	2.936E-04	2.693E-05	5.442E-04	4.218E-06	1.757E-04	10.4	55.0%	18.9	4.23			
INVERT A	2	1	1.00	2	0.5	28%	0.3	7.340E-06	6.284E-05	1.361E-05	1.055E-07	6.864E-06	0.3	50.0%	0.5	3.85			
INVERT B	4	1	1.00	4	1.0	28%	0.5	1.468E-05	6.284E-05	2.721E-05	2.109E-07	1.373E-05	0.5	80.0%	0.7	6.15			
INVERT C	6	1	1.00	6	1.6	28%	0.8	2.202E-05	6.284E-05	4.082E-05	3.164E-07	2.059E-05	0.8	80.0%	1.0	6.15			
INVERT D	8	1	1.00	8	2.1	28%	1.0	2.936E-05	6.284E-05	5.442E-05	4.218E-07	2.746E-05	1.0	80.0%	1.3	6.15			
INVERT E	10	1	1.00	10	2.6	28%	1.3	3.670E-05	6.284E-05	6.803E-05	5.273E-07	3.432E-05	1.3	80.0%	1.6	6.15			
INVERT F	12	1	1.00	12	3.1	28%	1.6	4.404E-05	6.284E-05	8.163E-05	6.327E-07	4.118E-05	1.6	80.0%	2.0	6.15			
INVERT_H	14	1	1.00	14	3.6	28%	1.8	5.138E-05	6.284E-05	9.524E-05	7.382E-07	4.805E-05	1.8	80.0%	2.3	6.15			
LATSR E	40	1	0.60	40	10.4	28%	5.2	1.468E-04	6.284E-05	2.721E-04	2.109E-06	8.237E-05	5.2	80.0%	6.5	6.15			
MUX21 C	32	1	0.63	32	8.3	3%	4.2	1.174E-04	6.733E-06	2.177E-04	1.687E-06	6.864E-05	4.2	70.0%	5.9	5.38			
MUX21_C	40	1	0.63	40	10.4	3%	5.2	1.468E-04	6.733E-06	2.721E-04	2.109E-06	8.580E-05	5.2	70.0%	7.4	5.38			
MUX41 D	64	1	0.50	64	16.6	3%	8.3	2.349E-04	6.733E-06	4.354E-04	3.375E-06	1.098E-04	8.3	60.0%	13.9	4.62			
NAND2 A	8	1	0.50	8	2.1	12%	1.0	2.936E-05	2.693E-05	5.442E-05	4.218E-07	1.373E-05	1.0	75.0%	1.4	5.77			
NAND2_A NAND2_B	16	1	0.50	16	4.2	12%	2.1	5.872E-05	2.693E-05	1.088E-04	4.218E-07 8.436E-07	2.746E-05	2.1	75.0%	2.8	5.77			
NAND2_B NAND2_C	24	1	0.50	24	6.2	12%	3.1	8.808E-05	2.693E-05	1.633E-04	1.265E-06	4.118E-05	3.1	75.0%	4.2	5.77			
NAND2_C NAND3 A	15	1	0.33	15	3.9	8%	2.0	5.505E-05	1.795E-05	1.033E-04 1.020E-04	7.909E-07	4.118E-05 1.699E-05	2.0	75.0% 50.0%	3.9	3.85			
	30	1	0.33	30	7.8	8%	3.9	1.101E-04	1.795E-05 1.795E-05	2.041E-04	7.909E-07 1.582E-06	3.398E-05	3.9	70.0%	5.6	5.38			
NAND3_B		_			7.8 11.7		5.9								8.4				
NAND3_C	45	1	0.33	45		8%		1.652E-04	1.795E-05	3.061E-04	2.373E-06	5.097E-05	5.9	70.0%		5.38			
NOR2_A	10	1	0.50	10	2.6	9%	1.3	3.670E-05	2.020E-05	6.803E-05	5.273E-07	1.716E-05	1.3	75.0%	1.7	5.77			
NOR2_B	20	1	0.50	20	5.2	9%	2.6	7.340E-05	2.020E-05	1.361E-04	1.055E-06	3.432E-05	2.6	75.0%	3.5	5.77			
NOR2_C	30	1	0.50	30	7.8	9%	3.9	1.101E-04	2.020E-05	2.041E-04	1.582E-06	5.148E-05	3.9	75.0%	5.2	5.77			
NOR3_A	21	1	0.33	21	5.5	7%	2.7	7.707E-05	1.571E-05	1.429E-04	1.107E-06	2.378E-05	2.7	70.0%	3.9	5.38			

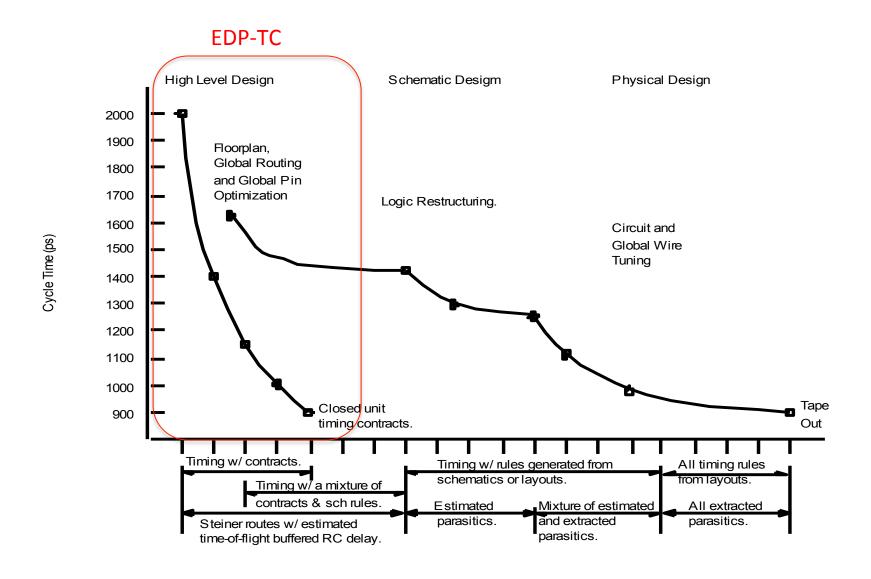
Total Power Calculations

	Power (mw)	Percentage
Memory Power	0.00	0.0%
Gate Leakage Power	0.01	0.3%
S-D Leakage Power	0.50	12.5%
Gate Intrinsic Power	0.84	20.8%
Gate Power	0.46	11.4%
Intercon Power	1.77	43.7%
Glitch Power	0.46	11.4%
Total Power	4.05	100.0%


	Area	Percentage
LOGIC AREA	78744.11	73.0%
FLIP FLOP AREA	29145.27	27.0%
MEMORY AREA	0.00	0.0%
Total AREA (μ2)	107889.38	100.0%

Memory Power Calculation										
	Memory Activity			Standby Power						
# Arrays	Factor (%)	(mw)	Power	(mw)	(mw)					
1	25%	0	0	0	0					

Chip & Block Level timing estimation



- The frequency of any given processor will be determined by the slowest speed path.
- In synchronous (i.e., clocked) processors, this is defined as the time necessary to complete the logic in each pipe stage.
- Speed path components
 - State element launch time
 - Logic delay
 - Wire (RC) delay
 - State element setup time
 - Clock Uncertainty

Typical Timing Closure Progression

Critical-Path Analysis (cont)

The frequency of any given processor will be determined by the slowest speed path. This is a simple example of the same micro-architecture over 3 CMOS generations:

CMOS TECHNOLOGY		45nm		32nm		22nm	
NAND2 FO3 delay (ps)		17.5	35.0	13.1	23.6	10.5	16.8
relative scaling		NA	2.00	0.75	1.80	0.80	1.6
VDD (volts)		1.20	0.75	1.10	0.75	1.00	0.75
average gates/pipe stage	22.0	385	770	289	520	231	370
sequentials	3.0	53	105	39	71	32	50
RC	1.0	18	35	13	24	11	17
skew + jitter	3.0	53	105	39	71	32	50
design margin	10.0%	51	102	38	69	30	49
total cycle time (ps)		558	1117	419	754	335	536
Fmax (GHz)		1.79	0.90	2.39	1.33	2.99	1.87

Determining Critical Speed Paths in Macro Blocks

Standard Cell Blocks:

- The primary mechanism for determining the speed paths in synthesized logic will be using the timing tool in Design Compiler from Synopsys.
- You still have to manually inspect the synthesis results to confirm that speed paths are real and not an artifact of poor synthesis scripts.

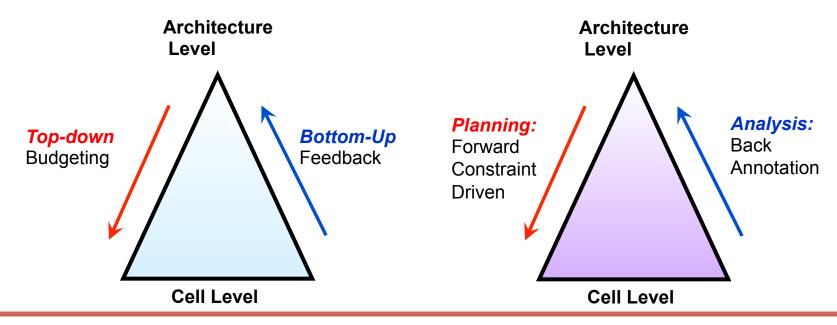
Structured Data Paths

 These paths are determined by a combination of HSPICE and a standard timing tool like PRIMETIME (PT) from Synopsys.

Custom Design: Memory & Hard Macros

- Speed paths in custom design is done entirely with HSPICE.
- For the class project we will be estimating the Memory delays using the Synopsys memory compiler.

Critical Speed-Path Analysis in Verilog



- Look for State Elements in Verilog as endpoints to each speed path
 - Flops
 - Latches
 - Memory Arrays
- Easiest thing is to follow the clock signal
 - always @(posedge clk or posedge rst) begin
 - Note that logic can be imbedded in the always@ statement
 - Beware of implicit flip-flops in memory arrays.
- Note that speed-paths can traverse many levels of hierarchy and/ or many different modules
- Different Verilog constructs will translate into different types of logic gates.

Summary

- Early design planning during the FE design phase can have a significant impact on Schedule and Time-to MONEY
- Making early architectural decisions is cheaper than making changes during the implementation phase
 - Can cause the cancellation of the project because of missed market windows
- Easier to "converge" the design when constraints are fed forward and feedback is returned.

