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Preface

This OpenSPARC T1 Microarchitecture Specification includes detailed functional 
descriptions of the core OpenSPARC™ T1 processor components. This manual also 
provides the I/O signal list for each component. This processor is the first chip 
multiprocessor that fully implements the Sun™ Throughput Computing initiative.

How This Document Is Organized
Chapter 1 introduces the processor and provides a brief overview of each processor 
component.

Chapter 2 provides a detailed description of the functional units of a SPARC® Core.

Chapter 3 describes the CPU-cache crossbar (CCX) unit and includes detailed CCX 
block and timing diagrams.

Chapter 4 provides a functional description of the L2-cache and describes the 
L2-cache pipeline and instructions.

Chapter 5 describes the processor’s input/output bridge (IOB).

Chapter 6 gives a functional description of the J-Bus interface (JBI) block.

Chapter 7 provides a functional description of the floating-point unit (FPU).

Chapter 8 describes the dynamic random access memory (DRAM) controller.

Chapter 9 provides a detailed overview of the processor’s error handling 
mechanisms.

Chapter 10 gives a functional description of the processor’s clock and test unit 
(CTU).
  xix



Using UNIX Commands
This document might not contain information about basic UNIX® commands and 
procedures such as shutting down the system, booting the system, and configuring 
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com

Shell Prompts

Typographic Conventions

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface1

1 The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files, 
and directories; on-screen 
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted 
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms, 
words to be emphasized. 
Replace command-line variables 
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
xx OpenSPARC T1 Microarchitecture Specification • August 2006

http://docs.sun.com


Related Documentation
The documents listed as online or download are available at: 
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OpenSPARC T1 instruction set UltraSPARC® Architecture 2005 
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950-4895 PDF Online

OpenSPARC T1 processor’s internal 
registers
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819-3404 PDF Online

OpenSPARC T1 megacells OpenSPARC T1 Processor Megacell 
Specification
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Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this 
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advertising, products, or other materials that are available on or through such sites 
or resources. Sun will not be responsible or liable for any actual or alleged damage 
or loss caused by or in connection with the use of or reliance on any such content, 
goods, or services that are available on or through such sites or resources.
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CHAPTER 1

OpenSPARC T1 Overview

This chapter contains the following topics:

■ Section 1.1, “Introducing the OpenSPARC T1 Processor” on page 1-1
■ Section 1.2, “Functional Description” on page 1-2
■ Section 1.3, “OpenSPARC T1 Components” on page 1-4

1.1 Introducing the OpenSPARC T1 
Processor
The OpenSPARC T1 processor is the first chip multiprocessor that fully implements 
the Sun Throughput Computing Initiative. The OpenSPARC T1 processor is a highly 
integrated processor that implements the 64-bit SPARC V9 architecture. This 
processor targets commercial applications such as application servers and database 
servers.

The OpenSPARC T1 processor contains eight SPARC® processor cores, which each 
have full hardware support for four threads. Each SPARC core has an instruction 
cache, a data cache, and a fully associative instruction and data translation lookaside 
buffers (TLB). The eight SPARC cores are connected through a crossbar to an on-chip 
unified level 2 cache (L2-cache).

The four on-chip dynamic random access memory (DRAM) controllers directly 
interface to the double data rate-synchronous DRAM (DDR2 SDRAM). Additionally, 
there is an on-chip J-Bus controller that provides an interconnect between the 
OpenSPARC T1 processor and the I/O subsystem.
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1.2 Functional Description
The features of the OpenSPARC T1 processor include:

■ 8 SPARC V9 CPU cores, with 4 threads per core, for a total of 32 threads

■ 132 Gbytes/sec crossbar interconnect for on-chip communication

■ 16 Kbytes of primary (Level 1) instruction cache per CPU core

■ 8 Kbytes of primary (Level 1) data cache per CPU core

■ 3 Mbytes of secondary (Level 2) cache – 4 way banked, 12 way associative shared 
by all CPU cores

■ 4 DDR-II DRAM controllers – 144-bit interface per channel, 25 GBytes/sec peak 
total bandwidth

■ IEEE 754 compliant floating-point unit (FPU), shared by all CPU cores

■ External interfaces: 

■ J-Bus interface (JBI) for I/O – 2.56 Gbytes/sec peak bandwidth, 128-bit 
multiplexed address/data bus

■ Serial system interface (SSI) for boot PROM

FIGURE 1-1 shows a block diagram of the OpenSPARC T1 processor illustrating the 
various interfaces and integrated components of the chip.
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FIGURE 1-1 OpenSPARC T1 Processor Block Diagram
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1.3 OpenSPARC T1 Components
This section provides further details about the OpenSPARC T1 components.

1.3.1 SPARC Core
Each SPARC core has hardware support for four threads. This support consists of a 
full register file (with eight register windows) per thread, with most of the address 
space identifiers (ASI), ancillary state registers (ASR), and privileged registers 
replicated per thread. The four threads share the instruction, the data caches, and the 
TLBs. Each instruction cache is 16 Kbytes with a 32-byte line size. The data caches 
are write through, 8 Kbytes, and have a 16-byte line size. The TLBs include an 
autodemap feature which enables the multiple threads to update the TLB without 
locking.

Each SPARC core has single issue, six stage pipeline. These six stages are:

1. Fetch

2. Thread Selection

3. Decode

4. Execute

5. Memory

6. Write Back

FIGURE 1-2 shows the SPARC core pipeline used in the OpenSPARC T1 Processor.
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FIGURE 1-2 SPARC Core Pipeline

Each SPARC core has the following units:

1. Instruction fetch unit (IFU) includes the following pipeline stages – fetch, thread 
selection, and decode. The IFU also includes an instruction cache complex.

2. Execution unit (EXU) includes the execute stage of the pipeline.

3. Load/store unit (LSU) includes memory and writeback stages, and a data cache 
complex.

4. Trap logic unit (TLU) includes trap logic and trap program counters.

5. Stream processing unit (SPU) is used for modular arithmetic functions for crypto.

6. Memory management unit (MMU).

7. Floating-point frontend unit (FFU) interfaces to the FPU. 
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1.3.1.1 Instruction Fetch Unit

The thread selection policy is as follows – a switch between the available threads 
every cycle giving priority to the least recently executed thread. The threads become 
unavailable due to the long latency operations like loads, branch, MUL, and DIV, as 
well as to the pipeline stalls like cache misses, traps, and resource conflicts. The 
loads are speculated as cache hits, and the thread is switched-in with lower priority.

Instruction cache complex has a 16-Kbyte data, 4-way, 32-byte line size with a single 
ported instruction tag. It also has dual ported (1R/1W) valid bit array to hold cache 
line state of valid/invalid. Invalidates access the V-bit array, not the instruction tag. 
A pseudo-random replacement algorithm is used to replace the cache line.

There is a fully associative instruction TLB with 64 entries. The buffer supports the 
following page sizes: 8 Kbytes, 64 Kbytes, 4 Mbytes, and 256 Mbytes. The TLB uses 
a pseudo least recently used (LRU) algorithm for replacement. Multiple hits in the 
TLB are prevented by doing an autodemap on a fill.

Two instructions are fetched each cycle, though only one instruction is issued per 
clock, which reduces the instruction cache activity and allows for an opportunistic 
line fill. There is only one outstanding miss per thread, and only four per core. 
Duplicate misses do not issue requests to the L2-cache.

The integer register file (IRF) of the SPARC core has 5 Kbytes with 3 read/2 write/1 
transport ports. There are 640 64-bit registers with error correction code (ECC). Only 
32 registers from the current window are visible to the thread. Window changing in 
background occurs under the thread switch. Other threads continue to access the IRF 
(the IRF provides a single-cycle read/write access).

1.3.1.2 Execution Unit

The execution unit (EXU) has a single arithmetic logic unit (ALU) and shifter. The 
ALU is reused for branch address and virtual address calculation. The integer 
multiplier has a 5 clock latency, and a throughput of half-per-cycle for area saving. 
One integer multiplication is allowed outstanding per core. The integer multiplier is 
shared between the core pipe (EXU) and the modular arithmetic (SPU) unit on a 
round-robin basis. There is a simple non-restoring divider, which allows for one 
divide outstanding per SPARC core. Thread issuing a MUL/DIV will be rolled back 
and switched out if another thread is occupying the MUL/DIV units.

1.3.1.3 Load/Store Unit

The data cache complex has an 8-Kbyte data, 4-way, 16-byte line size. It also has 
single ported data tag. There is a dual-ported (1R/1W) valid bit array to hold cache 
line state of valid or invalid. Invalidates access the V-bit array but not the data tag. A 
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pseudo-random replacement algorithm is used to replace the data cache line. The 
loads are allocating, and the stores are non-allocating. The data TLB operates 
similarly to the instruction TLB. 

The load/store unit (LSU) has an 8 entry store buffer per thread, which is unified 
into a single 32 entry array, with RAW bypassing. Only a single load per thread 
outstanding is allowed. Duplicate requests for the same line are not sent to the L2-
cache. The LSU has interface logic to interface to the CPU-cache crossbar (CCX). This 
interface performs the following operations:

■ Prioritizes the requests to the crossbar for floating-point operation (Fpops), 
streaming operations, I$ and D$ misses, stores and interrupts, and so on. 

■ Request priority: imiss>ldmiss>stores,{fpu,stream,interrupt}. 

■ Assembles packets for the processor-cache crossbar (PCX). 

The LSU handles returns from the CPX crossbar and maintains the order for cache 
updates and invalidates.

1.3.1.4 Floating-Point Frontend Unit

The floating-point frontend unit (FFU) decodes floating-point instructions and it also 
includes the floating-point register file (FRF). Some of the floating-point instructions 
like move, absolute value, and negate are implemented in the FFU, while the others 
are implemented in the FPU. The following steps are taken when the FFU detects a 
floating-point operation (Fpop):

■ The thread switches out.

■ The Fpop is further decoded and the FRF is read.

■ Fpops with operands are packetized and shipped over the crossbar to the FPU.

■ The computation is done in the FPU and the results are returned by way of the 
crossbar.

■ Writeback completed to the FRF and the thread restarts.

1.3.1.5 Trap Logic Unit

The trap logic unit (TLU) has support for six trap levels. Traps cause pipeline flush 
and thread switch until trap program counter (PC) becomes available. The TLU also 
has support for up to 64 pending interrupts per thread.
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1.3.1.6 Stream Processing Unit

The stream processing unit (SPU) includes a modular arithmetic unit (MAU) for 
crypto (one per core), and it supports asymmetric crypto (public key RSA) for up to 
a 2048-byte size key. It shares an integer multiplier for modular arithmetic 
operations. MAU can be used by one thread at a time. The MAU operation is set up 
by the store to control register, and the thread returns to normal processing. The 
MAU unit initiates streaming load/store operations to the L2-cache through the 
crossbar, and compute operations to the multiplier. Completion of the MAU can be 
checked by polling or issuing an interrupt.

1.3.2 CPU-Cache Crossbar
The eight SPARC cores, the four L2-cache banks, the I/O Bridge, and the FPU all 
interface with the crossbar. FIGURE 1-3 displays the crossbar block diagram. The CPU-
cache crossbar (CCX) features include:

■ Each requester queues up to two packets per destination.

■ Three stage pipeline – request, arbitrate, and transmit.

■ Centralized arbitration with oldest requester getting priority.

■ Core-to-cache bus optimized for address plus doubleword store.

■ Cache-to-core bus optimized for 16-byte line fill. 32-byte I$ line fill delivered in 
two back-to-back clocks.
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FIGURE 1-3 CCX Block Diagram

1.3.3 Floating-Point Unit
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1.3.4 L2-Cache
The L2-cache is banked four ways, with the bank selection based on the physical 
address bits 7:6. The cache is 3-Mbyte, 12-way set-associative with pseudo-least 
recently used (LRU) replacement (the replacement is based on a used bit scheme). 
The line size is 64 bytes. Unloaded access time is 23 cycles for an L1 data cache miss 
and 22 cycles for an L1 instruction cache miss.

L2-cache has a 64-byte line size, with 64 bytes interleaved between banks. Pipeline 
latency in the L2-cache is 8 clocks for a load, 9 clocks for an I-miss, with the critical 
chunk returned first. 16 outstanding misses per bank are supported for a 64 total 
misses. Coherence is maintained by shadowing the L1 tags in an L2-cache directory 
structure (the L2-cache is a point of global visibility). DMA from the I/O is serialized 
with respect to the traffic from the cores in the L2-cache.

The L2-cache directory shadows the L1 tags. The L1 set index and the L2-cache bank 
interleaving is such that one forth of the L1 entries come from an L2-cache bank. On 
an L1 miss, the L1 replacement way and set index identifies the physical location of 
the tag which will be updated by the miss address. On a store, the directory will be 
cammed. The directory entries are collated by set, so only 64 entries need to be 
cammed. This scheme is quite power efficient. Invalidates are a pointer to the 
physical location in the L1-cache, eliminating the need for a tag lookup in the L1-
cache.

Coherency and ordering in the L2-cache are described as:

■ Loads update directory and fill the L1-cache on return

■ Stores are non-allocating in the L1-cache

■ There are two flavors of stores: total store order (TSO) and read memory order 
(RMO). 

Only one outstanding TSO store to the L2-cache per thread is permitted in 
order to preserve the store ordering. There is no such limitation on RMO 
stores.

■ No tag check is done at a store buffer insert

■ Stores check directory and determines an L1-cache hit

■ Directory sends store acknowledgements or invalidates to the SPARC core

■ Store updates happens to D$ on a store acknowledge

■ Crossbar orders the responses across cache banks.
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1.3.5 DRAM Controller
The OpenSPARC T1 processor DRAM controller is banked four ways, with each L2 
bank interacting with exactly one DRAM controller bank (a two-bank option is 
available for cost-constrained minimal memory configurations). The DRAM 
controller is interleaved based on physical address bits 7:6, so each DRAM controller 
bank must have identical dual in-line memory modules (DIMM) installed and 
enabled.

The OpenSPARC T1 processor uses DDR2 DIMMs and can support one or two ranks 
of stacked or unstacked DIMMs. Each DRAM bank/port is two-DIMMs wide (128-
bit + 16-bit ECC). All installed DIMMs must be identical, and the same number of 
DIMMs (that is, ranks) must be installed on each DRAM controller port. The DRAM 
controller frequency is an exact ratio of the core frequency, where the core frequency 
must be at least three times the DRAM controller frequency. The double data rate 
(DDR) data buses transfer data at twice the frequency of the DRAM controller 
frequency.

The OpenSPARC T1 processor can support memory sizes of up to 128 Gbytes with a 
25 Gbytes/sec peak bandwidth limit. Memory access is scheduled across 8 reads 
plus 8 writes, and the processor can be programmed into a two-channel mode for a 
reduced configuration. Each DRAM channel has 128 bits of data and 16 bytes of ECC 
interface, with chipkill support, nibble error correction, and byte error detection.

1.3.6 I/O Bridge
The I/O bridge (IOB) performs an address decode on I/O-addressable transactions 
and directs them to the appropriate internal block or to the appropriate external 
interface (J-Bus or the serial system interface). Additionally, the IOB maintains the 
register status for external interrupts.

1.3.7 J-Bus Interface
The J-Bus interface (JBI) is the interconnect between the OpenSPARC T1 processor 
and the I/O subsystem. The J-Bus is a 200 MHz, 128-bit wide, multiplexed address 
or data bus, used predominantly for direct memory access (DMA) traffic, plus the 
programmable input/output (PIO) traffic used to control it.

The J-Bus interface is the functional block that interfaces to the J-Bus, receiving and 
responding to DMA requests, routing them to the appropriate L2 banks, and also 
issuing PIO transactions on behalf of the processor threads and forwarding 
responses back.
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1.3.8 Serial System Interface
The OpenSPARC T1 processor has a 50 Mbyte/sec serial system interface (SSI) that 
connects to an external application-specific integrated circuit (ASIC), which in turn 
interfaces to the boot read-only memory (ROM). In addition, the SSI supports PIO 
accesses across the SSI, thus supporting optional control status registers (CSR) or 
other interfaces within the ASIC.

1.3.9 Electronic Fuse
The electronic fuse (e-Fuse) block contains configuration information that is 
electronically burned-in as part of manufacturing, including part serial number and 
core available information.
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CHAPTER 2

SPARC Core

An OpenSPARC T1 processor contains eight SPARC cores, and each SPARC core has 
several function units. These SPARC core units are described in the following 
sections:

■ Section 2.1, “SPARC Core Overview and Terminology” on page 2-2

■ Section 2.2, “SPARC Core I/O Signal List” on page 2-5

■ Section 2.3, “Instruction Fetch Unit” on page 2-6

■ Section 2.4, “Load Store Unit” on page 2-21

■ Section 2.5, “Execution Unit” on page 2-33

■ Section 2.6, “Floating-Point Frontend Unit” on page 2-35

■ Section 2.7, “Multiplier Unit” on page 2-37

■ Section 2.8, “Stream Processing Unit” on page 2-38

■ Section 2.9, “Memory Management Unit” on page 2-43

■ Section 2.10, “Trap Logic Unit” on page 2-50
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2.1 SPARC Core Overview and Terminology
FIGURE 2-1 presents a high-level block diagram of a SPARC core, and FIGURE 2-2 
shows the general physical location of these units on an example core.

FIGURE 2-1 SPARC Core Block Diagram
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FIGURE 2-2 Physical Location of Functional Units on an OpenSPARC T1 SPARC Core
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TABLE 2-1 defines acronyms and terms that are used throughout this chapter.

FIGURE 2-3 shows the view from virtualization, which illustrates the relative 
privileges of the various software layers.

FIGURE 2-3 Virtualization of Software Layers

TABLE 2-1 SPARC Core Terminology 

Term Description

Thread A thread is a hardware strand (thread and strand will be used 
interchangeably in this chapter). Each thread, or strand, enjoys a 
unique set of resources in support of its execution while multiple 
threads, or strands, within the same SPARC core will share a set of 
common resources in support of their execution. 
The per-thread resources include registers, a portion of I-fetch data-
path, store buffer, and miss buffer. The shared resources include the 
pipeline registers and data-path, caches, translation lookaside 
buffers (TLB), and execution unit of the SPARC Core pipeline. 

ST Single threaded.

MT Multi-threaded.

Hypervisor (HV) The hypervisor is the layer of system software that interfaces with 
the hardware. 

Supervisor (SV) The supervisor is the layer of system software such as operation 
system (OS) that executes with privilege.

Long latency 
instruction (LLI)

LLI represents an instruction that would take more than one SPARC 
core clock cycle to make its results visible to the next instruction.

OS instance 1

Applications

Hypervisor

OpenSPARC T1

OS instance 2
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2.2 SPARC Core I/O Signal List
TABLE 2-2 lists and describes the SPARC Core I/O signals.

TABLE 2-2 SPARC Core I/O Signal List 

Signal Name I/O
Source/
Destination Description

pcx_spc_grant_px[4:0] In CCX:PCX PCX to processor grant info

cpx_spc_data_rdy_cx2 In CCX:CPX CPX data in-flight to SPARC

cpx_spc_data_cx2[144:0] In CCX:CPX CPX to SPARC data packet

const_cpuid[3:0] In Hard wired CPU ID

const_maskid[7:0] In CTU Mask ID

ctu_tck In CTU To IFU of sparc_ifu.v

ctu_sscan_se In CTU To IFU of sparc_ifu.v

ctu_sscan_snap In CTU To IFU of sparc_ifu.v

ctu_sscan_tid[3:0] In CTU To IFU of sparc_ifu.v

ctu_tst_mbist_enable In CTU To test_stub of test_stub_bist.v

efc_spc_fuse_clk1 In EFC 

efc_spc_fuse_clk2 In EFC 

efc_spc_ifuse_ashift In EFC 

efc_spc_ifuse_dshift In EFC 

efc_spc_ifuse_data In EFC 

efc_spc_dfuse_ashift In EFC 

efc_spc_dfuse_dshift In EFC 

efc_spc_dfuse_data In EFC 

ctu_tst_macrotest In CTU To test_stub of test_stub_bist.v

ctu_tst_scan_disable In CTU To test_stub of test_stub_bist.v

ctu_tst_short_chain In CTU To test_stub of test_stub_bist.v

global_shift_enable In CTU To test_stub of test_stub_two_bist.v

ctu_tst_scanmode In CTU To test_stub of test_stub_two_bist.v

spc_scanin0 In DFT Scan in

spc_scanin1 In DFT Scan in
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2.3 Instruction Fetch Unit
The instruction fetch unit (IFU) is responsible for maintaining the program counters 
(PC) of different threads and fetching the corresponding instructions. The IFU also 
manages the level 1 I-cache (L1I) and the instruction translation lookaside buffer 
(ITLB), as well as managing and scheduling the four threads in a SPARC core. The 
SPARC core pipeline resides in the IFU, which controls instruction issue and 
instruction flow in the pipeline. The IFU decodes the instructions flowing through 
the pipeline, schedules interrupts, and it implements the idle/resume states of the 
pipeline. The IFU also logs the errors and manages the error registers.

cluster_cken In CTU To spc_hdr of cluster_header.v

gclk In CTU To spc_hdr of cluster_header.v

cmp_grst_l In CTU Synchronous reset

cmp_arst_l In CTU Asynchronous reset

ctu_tst_pre_grst_l In CTU To test_stub of test_stub_bist.v

adbginit_l In CTU Asynchronous reset

gdbginit_l In CTU Synchronous reset

spc_pcx_req_pq[4:0] Out CCX:PCX processor to pcx request

spc_pcx_atom_pq Out CCX:PCX processor to pcx atomic request

spc_pcx_data_pa[123:0] Out CCX:PCX processor to pcx packet

spc_sscan_so Out DFT Shadow scan out

spc_scanout0 Out DFT Scan out

spc_scanout1 Out DFT Scan out

tst_ctu_mbist_done Out CTU MBIST done

tst_ctu_mbist_fail Out CTU MBIST fail

spc_efc_ifuse_data Out EFC From IFU of sparc_ifu.v

spc_efc_dfuse_data Out EFC From IFU of sparc_ifu.v

TABLE 2-2 SPARC Core I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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2.3.1 SPARC Core Pipeline
There are six stages in a SPARC core pipeline:

■ Fetch – F-stage
■ Thread selection – S-stage
■ Decode – D-stage
■ Execute – E-stage
■ Memory – M-stage
■ Writeback – W-stage

The I-cache access and the ITLB access take place in fetch stage. A selected thread 
(hardware strand) will be picked in the thread selection stage. The instruction 
decoding and register file access occur in the decode stage. The branch evaluation 
takes place in the execution stage. The access to memory and the actual writeback 
will be done in the memory and writeback stages. FIGURE 2-4 illustrates the SPARC 
core pipeline and support structures.

FIGURE 2-4 SPARC Core Pipeline and Support Structures
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The instruction fill queue (IFQ) feeds into the I-cache. The missed instruction list 
(MIL) stores the addresses that missed the I-cache and the ITLB, and the MIL feeds 
into the load store unit (LSU) for further processing. The instruction buffer is two 
levels deep, and it includes the thread instruction (TIR) and next instruction (NIR) 
unit. Thread selection and scheduler (S-stage) resolves the arbitration among the 
TIR, NIR, branch-PC, and trap-PC to pick one thread send it to the decode stage 
(D-stage). FIGURE 2-5 shows the support structure for this portion of the thread 
pipeline.

FIGURE 2-5 Frontend of the SPARC Core Pipeline
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2.3.3 Instruction Registers and Program Counter 
Registers
In the instruction buffer, there are two instruction registers per thread – the thread 
instruction register (TIR) and the next instruction register (NIR). The TIR contains 
the current thread instruction in the thread selection stage (S-stage), and the NIR 
contains the next instruction. An I-cache miss fill bypasses the I-cache and writes 
directly to the TIR, but it never writes to the NIR.

The thread scheduler selects a valid instruction from the TIR. After selecting the 
instruction, the valid instruction will be moved from the NIR to the TIR. If no valid 
instruction exists in the TIR, a no operation (NOP) instruction will be inserted.

There is one program counter (PC) register per thread. The next-program counter 
(NPC) could come from one of these sources:

1. Branch

2. TrapPC

3. Trap NPC

4. Rollback (a thread rolled back due to a load miss)

5. PC + 4

The IFU tracks the PC and NPC through W-stage. The last retired PC will be saved 
in the trap logic unit (TLU), and, if a trap occurs, it will also be saved in the trap 
stack.

2.3.4 Level 1 Instruction Cache
The instruction cache is commonly referred to as the level 1 instruction cache (L1I). 
The L1I is physically indexed and tagged and is 4-way set associative with 16 Kbytes 
of data. The cache-line size is 32 bytes. The L1I data array has a single port, and the 
I-cache fill size is 16 bytes per access. The characteristics of cached data include – 
32-bit instructions, 1-bit parity, and 1-bit predecode. The tag array also has a single 
port.

There is a separate array for valid bit (V-bit). This V-bit array holds the cache line 
state of either valid or invalid, and the array has one read port and one write port 
(1R1W). The cache line invalidation only accesses the V-bit array, and the cache line 
replacement policy is pseudo-random.
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The read access to the I-cache has a higher priority over the write access. The ASI 
read and write accesses to the I-cache are set to lower priorities. The completion of 
the ASI accesses are opportunistic, and there is fairness mechanism built in to 
prevent the starvation of service to ASI accesses.

The maximum wait period for a write access to the I-cache is 25 SPARC core clock 
cycles. A wait longer than 25 clock cycles will stall the SPARC core pipeline in order 
to allow the I-cache write access completion. 

2.3.5 I-Cache Fill Path
I-cache fill packets come from the level 2 cache to processor interface (CPX) by way 
of the load store unit (LSU). Parity and predecode bits will be calculated before the 
I-cache fills up. CPX packets include invalidations (invalidation packets are non-
blocking), test access point (TAP) reads and writes, and error notifications. The valid 
bit array in the I-cache has a dedicated port for servicing the invalidation packets.

FIGURE 2-6 illustrates the I-cache fill path.

FIGURE 2-6 I-Cache Fill Path

The I-cache line size is 32 bytes, and a normal I-cache fill takes two CPX packets of 
16 bytes each. The instruction fill queue (IFQ) has a depth of two. An I-cache line 
will be invalidated when the first CPX packet is delivered and filled in the I-cache. 
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That cache line will be marked as valid when the second CPX packet is delivered 
and filled. I-cache control guarantees the atomicity of the I-cache line fill action 
between the two halves of the cache line being filled.

An instruction fetch from the boot PROM, by way of the system serial interface (SSI), 
is a very slow transaction. The boot prom is a part of the I/O address space. All 
instruction fetches from the I/O space are non-cacheable. The boot PROM fetches 
only one 4-byte instruction at a time. This 4-byte instruction is replicated four times 
during the formation of the CPX packet. Only one CPX packet of non-cacheable 
instructions will be forwarded to the IFQ. The non-cacheable instructions fetched 
from the boot PROM will not be filled in the I-cache. They will be sent to (or, 
bypassed to) the thread instruction register (TIR) directly.

2.3.6 Alternate Space Identifier Accesses, I-Cache Line 
Invalidations, and Built-In Self-Test Accesses to 
the I-Cache
Alternate space identifiers (ASI) accesses to the I-cache, and the built-in self-test 
(BIST) accesses to the I-cache, go through the IFQ data-path to the I-cache. All ASI 
accesses and BIST accesses will cause the SPARC core pipeline to stall, so these 
accesses are serviced almost immediately. 

The load store unit (LSU) initiates all ASI accesses. The LSU serializes all ASI 
accesses so that the second access will not be launched until the first access has been 
acknowledged. ASI accesses tend to be slow, and data for an ASI read will be sent 
back later.

A BIST operation requires atomicity, and it assumes and accommodates no 
interruptions until it completes.

Level 2 cache invalidations will always undergo a CPU-ID check in order to ensure 
that this invalidation packet is indeed meant for the specified SPARC core. In the 
following cases, an invalidation could be addressing anyone:

■ A single I-cache line invalidation due to store acknowledgements, or due to a 
load exclusivity requiring that the invalidation of the other level 1 I-caches 
resulted from the self-modifying code.

■ Invalidating two I-cache lines because of a cache-line eviction in the level 2 cache 
(L2-cache).

■ Invalidating all ways in a given set due to error conditions, such as encountering 
a tag ECC error in a level 2 cache line.
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2.3.7 I-Cache Miss Path
A missed instruction list (MIL) is responsible for sending the I-cache miss request to 
the level 2 cache (L2-cache) in order to get an I-cache fill. The MIL has one entry per 
thread, which supports a total of four outstanding I-cache misses for all four threads 
in the same SPARC core at the same time. Each entry in the MIL contains the 
physical address (PA) of an instruction that missed the I-cache, the replacement way 
information, the MIL state information, the cacheability, the error information, and 
so on. The PA tracks the I-fetch progress from the indication of an I-cache miss until 
the I-cache has been filled. The dispatch of I-cache miss requests from different 
threads follow a fairness mechanism based on a round-robin algorithm.

FIGURE 2-7 illustrates the I-cache miss path.

FIGURE 2-7 I-Cache Miss Path

The MIL keeps track of the physical address (PA) of an instruction that missed the 
I-cache. A second PA that matches the PA of an already pending I-cache miss will 
cause the second request to be put on hold and marked as a child of the pending 
I-cache miss request. The child request will be serviced when the pending I-cache 
miss receives its response. The MIL uses a linked list to track and service the 
duplicated I-cache miss request. The depth for such a linked list is four.
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The MIL cycles through the following states:

1. Make request.

2. Wait for an I-cache fill.

3. Fill the first 16 bytes of data. The MIL sends a speculative completion notification 
to the thread scheduler at the completion of filling the first 16 bytes.

4. Fill the second 16 bytes of data. The MIL sends a completion notification to the 
thread scheduler at the completion of filling the second 16 bytes.

5. Done.

An I-cache miss request could be canceled because of, for example, a trap. The MIL 
still goes through the motions of filling a cache line but it does not bypass it to the 
thread instruction register (TIR). A pending child request must be serviced even if 
the original parent I-cache miss request was cancelled. 

When a child I-cache miss request crosses with a parent I-cache miss request, the 
child request might not be serviced before the I-cache fill for the parent request 
occurs. The child instruction fetch shall be retired (rolled back) to the F-stage to 
allow it to access the I-cache. This kind of case is referred to as miss-fill crossover.

2.3.8 Windowed Integer Register File
The integer register file (IRF) contains 5 Kbytes of storage, and has three read ports, 
2 write ports, and one transfer port (3R/2W/1T). The IRF houses 640 64-bit registers 
that are protected by error correcting code (ECC). All read or write accesses can be 
completed in one SPARC core clock cycle. 

FIGURE 2-8 illustrates the structure of an integer architectural register file (IARF) and 
an integer working register file (IWRF). 
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FIGURE 2-8 IARF and IWRF File Structure

Each thread requires 128 registers for the eight windows (with 16 registers per 
window), and four sets of global registers with eight global registers per set. There 
are 160 registers per thread, and there are four threads per SPARC core. There are a 
total of 640 registers per SPARC core.

Only 32 registers from the current window are visible to the thread. A window 
change occurs in the background under thread switching while the other threads 
continue to access integer register file.

Please refer to OpenSPARC T1 Processor Megacell Specification for additional details on 
the IRF.
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2.3.9 Instruction Table Lookaside Buffer
The instruction table lookaside butter (ITLB) is responsible for address translation 
and tag comparison. The ITLB is always turned-on for non-hypervisor mode 
operations, and the ITLB is always turned-off for hypervisor mode operations.

The ITLB contains 64 entries. The replacement policy is a pseudo least recently used 
(pseudo-LRU) policy, which is the same policy as that for the I-cache.

The ITLB supports page sizes of 8 Kbytes, 64 Kbytes, 4 Mbytes, and 256 Mbytes. 
Multiple hits in the ITLB are prevented by the autodemap feature in an ITLB fill.

2.3.10 Thread Selection Policy
Thread switching takes place during every SPARC core clock cycle. At the time of a 
thread selection, the priority is given to the least recently executed yet available 
thread. Load instructions will be speculated as cache hits and the thread executing a 
load instruction will be deemed as available and allowed to be switched-in with a 
low priority.

A thread could become unavailable due to one of these reasons:

1. The thread is executing one of the long latency instructions, such as load, branch, 
multiplication, division, and so on.

2. The SPARC core pipeline has been stalled due to one of the long latency 
operations, such as encountering a cache miss, taking a trap, or experiencing a 
resource conflict.
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2.3.11 Thread States
A thread cycles through these three different states – idle, active, and halt. FIGURE 2-9 
illustrates the basic transition of non-active states.

FIGURE 2-9 Basic Transition of Non-Active States

A thread is in an idle state at power-on. An active thread will only be transitioned to 
an idle state after a wait mask for an I-cache fill has been cleared.

A thread in the idle state should not receive the resume command without a previous 
reset. When a thread is violated, the integrity of the hardware behavior cannot be 
guaranteed.

FIGURE 2-10 illustrates the thread state transition of an active thread.
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FIGURE 2-10 Thread State Transition of an Active Thread

An active thread could be placed in the wait state because of any of the following 
reasons:

1. Wait for an I-cache fill.

2. Wait due to store buffer full.

3. Wait due to long latency, or a resource conflict where all resource conflicts arise 
because of long latency.

4. Wait due to any combination of the preceding reasons.

The current wait state is tracked in the IFU wait masks.

FIGURE 2-11 illustrates the state transition for a thread in speculative states.
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FIGURE 2-11 State Transition for a Thread in Speculative States

2.3.12 Thread Scheduling
A thread can be scheduled when it is in one of the following five states – idle (which 
happens infrequently, and generally results from a reset or resume interrupt), Rdy, 
SpecRdy, Run, and SpecRun. The thread priority in each state is different at the time 
for scheduling. The priority scheme can be characterized as follows:

Idle > Rdy > SpecRdy > (Run = SpecRun)

The fairness scheme for threads in the Run state or the SpecRun state is a round-
robin algorithm with the least recently executed thread winning the selection. 

Within Idle threads, the priority scheme is as follows:

T0 (thread 0) > T1 (thread 1) > T2 (thread 2) > T3 (thread 3)

Rdy Run

SpecRdy SpecRun

Wait

R
e
a
lly

d
o
ne

Wrong spec W
ro

ng spec

R
ea

lly
d

o
n
e

schedule

schedule

S

peculate done
long lat/rsrc conflic

t

switched out
2-18  OpenSPARC T1 Microarchitecture Specification • August 2006



2.3.13 Rollback Mechanism
The rollback mechanism provides a way of recovering from a scheduling error. The 
two reasons for performing a rollback include:

1. All of the stall conditions, or switch conditions, were not known at the time of the 
scheduling.

2. The scheduling was done speculatively on purpose.

For example, after issuing a load, the scheduler will speculate a level 1 D-cache 
hit performance reasons. If the speculation was incorrect (because of encountering 
a load miss), all of the instructions after the speculative load instruction must be 
rolled back. Otherwise, the performance gain would be a substantial.

Rolled back instructions must be restarted from the S-stage or F-stage of the SPARC 
core pipeline. FIGURE 2-12 illustrates the pipeline graph for the rollback mechanism.

FIGURE 2-12 Rollback Mechanism Pipeline Graph

The three rollback cases include:

1. E to S and D to F

2. D to S and S to F

3. W to F

The possible conditions causing a rollback case 1 or a case 2 include:

■ Instruction(s) following a load miss

■ Resource conflict due to long latency

■ Store buffer full

■ I-cache instruction parity error

■ I-fetch retry

F S D E M W
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The possible conditions causing rollback case 3 include:

■ Encountering an ECC error during the instruction register file access.

■ The floating-point store instruction encountering an ECC error during the 
floating-point register file access.

■ Instruction(s) following a load hits the store buffer and the level 1 D-cache, where 
the data has not been bypassed from the store buffer to the level 1 D-cache.

■ Encountering D-cache parity errors.

■ Launching an idle or resume interrupt where the machine states must be restored.

■ An interrupt has been scheduled but not yet taken.

2.3.14 Instruction Decode
The IFU decodes the SPARC V9 instructions, and the floating-point frontend unit 
(FFU) decodes the floating-point instructions. Unimplemented floating-point 
instructions will cause an fp_exception_other trap with a FSR.ftt=3 
(unimplemented_FPop). These operations will be emulated by the software.

The privilege is checked in D-stage of the SPARC core pipeline. Some instructions 
can only be executed with hypervisor privilege or with supervisor privilege.

The branch condition is also evaluated in the D-stage, and the decision for annulling 
a delay slot is made in this stage as well.

2.3.15 Instruction Fetch Unit Interrupt Handling
All interrupts are delivered to the instruction fetch unit (IFU). For each received 
interrupt, the IFU shall check the bit’s pstate.ie (the interrupt enable bit in the 
processor state register) and hpstate (the hypervisor state) before scheduling the 
interrupt. All interrupts will be prioritized (refer to the Programmer’s Reference 
Manual for these priority assignments). Once prioritized, the interrupts will be 
scheduled just like the instructions.

When executing in the hypervisor (HV) state, an interrupt with a supervisor (SV) 
privilege will not be serviced at all. An hypervisor state execution shall not be 
blocked by anything with supervisor privilege. 

Nothing could block the scheduling of a reset, idle, or resume interrupt.

Some interrupts are asserted by a level while others are asserted by a pulse. The IFU 
remembers the form the interrupts were originated in order to preserve the integrity 
of the scheduling.
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2.3.16 Error Checking and Logging
Parity protects the I-cache data and the tag arrays. The error correction action is to 
re-fetch the instruction from the level 2 cache. 

The instruction translation lookaside buffer (ITLB) array is parity decoded without 
an error-correction mechanism, so all errors are fatal.

All on-core errors, and some of the off-core errors, are logged in the per-thread error 
registers. Refer to the Programmer’s Reference Manual for details.

The instruction fetch unit (IFU) maintains the error injection and the error enabling 
registers, which are accessible by way of ASI operations.

Critical states (such as program counter (PC), thread state, missed instruction list 
(MIL), and so on) can be snapped and scanned out on-line. This process is referred 
to as a shadow scan.

2.4 Load Store Unit
The load store unit (LSU) processes memory referencing operation codes (opcodes) 
such as various types of loads, various types of stores, cas, swap, ldstub, flush, 
prefetch, and membar. The LSU interfaces with all of the SPARC core functional 
units, and acts as the gateway between the SPARC core units and the CCX. Through 
the CCX, data transfer paths can be established with the memory subsystem and the 
I/O subsystem (the data transfers are done with packets). 

The threaded architecture of the LSU can process four loads, four stores, one fetch, 
one FP operation, one stream operation, one interrupt, and one forward packet. 
Therefore, thirteen sources supply data to the LSU.

The LSU implements the ordering for memory references, whether locally or not. 
The LSU also enforces the ordering for all the outbound and inbound packets.
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2.4.1 LSU Pipeline
There are four stages in the LSU pipeline. FIGURE 2-13 shows the different stages of 
the LSU pipeline.

FIGURE 2-13 LSU Pipeline Graph

The cache access set-up and the translation lookaside buffer (TLB) access set-up are 
done during the pipeline’s E-stage (execution). The cache/tag/TLB read operations 
are done in the M-stage (memory access). The W-stage (writeback) supports the 
look-up of the store buffer, the detection of traps, and the execution of the data 
bypass. The W2-stage (writeback-2) is for generating PCX requests and writebacks to 
the cache.

2.4.2 Data Flow
The LSU includes an 8-Kbyte D-cache, which is a part of the level 1 cache shared by 
four threads. There is one store buffer (STB) per thread. Stores are total store 
ordering (TSO) ordered, that is to say that no membar #sync is required after each 
store operation in order to maintain the program order among the stores. Non-TSO 
compliant stores include – blk-store and blk-init. Bypass data are reported 
asynchronously, and they are supported by the bypass queue.

Load misses are kept in the load miss (LSM) queue, which is shared by other 
opcodes such as atomics and prefetch. The LSM queue supports one outstanding 
load miss per thread. Load misses with duplicated physical addresses (PA) will not 
be sent to the level 2 (L2) cache.

Inbound packets from the CCX are queued and ordered for distribution to other 
units through the data fill queue (DFQ). 

The DTLB is fully associative, and it is responsible for the address translations. All 
CAM/RAM translations are single-cycle operations.

The ASI operations are serialized through the LSU. They are sequenced through the 
ASI queue to the destination units on the chip. 

FIGURE 2-14 illustrates the LSU data flow concept.
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FIGURE 2-14 LSU Data Flow Concept

2.4.3 Level 1 Data Cache (D-Cache)
The 8-Kbyte level 1 (L1) D-cache is 4-way set-associative, and the line size is 16 
bytes. The D-cache has a single read and write port (1 RW) for the data and tag 
array. The valid bit (V-bit) array is dual ported with one read port and one write port 
(1R/1W). The valid bit array holds the cache line state of valid or invalid. 
Invalidations access the V-bit array directly without first accessing the data and tag 
array. The cache line replacement policy follows a pseudo-random algorithm, where 
loads are allocating and stores non-allocating.

A cacheable load-miss will allocate a line, and it will execute the write-through 
policy for stores. Stores do not allocate, and local stores may update the L1 D-cache 
if it is present in the L1 D-cache, as determined by L2 (Level 2) cache directory. If it 
is deemed that it is not present in L1 D-cache, the local stores will cause the lines to 
become invalidated. The line replacement policy is pseudo random based on a linear 
shift register. The data from the bypass queues will be multiplexed into the L1 D-
cache in order to be steered to the intended destination. The D-cache supports up to 
four simultaneous invalidates from the data evictions.
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The L2-cache is always inclusive of the L1 D-cache. The exclusivity of the D-cache 
dictates that a line present in the L1 D-cache will not be present in the L1 I-cache. 
The data valid array is dual ported with one read port and one write port (1R1W). 

Each line in the L1 D-cache is parity protected. A parity error will cause a miss in the 
L1 D-cache which, in turn, will cause the correct data to be brought back from the 
L2-cache.

In addition to the pipeline reads, the L1 D-cache can also be accessed by way of 
diagnostic ASI operations, BIST operations, and RAMtest operations through the test 
access port (TAP).

2.4.4 Data Translation Lookaside Buffer
The data translation lookaside buffer (DTLB) is the TLB for the D-cache. The DTLB 
caches up to the 64 most-recently-accessed translation table entries (TTE) in a fully 
associative array. The DTLB has one CAM port and one read-write port (1 RW). All 
four threads share the DTLB. The translation table entries of each thread are kept 
mutually exclusive from the entries of the other threads.

The DTLB supports the following 32-bit address translation operations:

■ VA -> PA [virtual address (VA) to physical address (PA) translation]

■ VA = PA [address bypass for hypervisor mode operations]

■ RA -> PA [Real Address (RA) to Physical Address (PA) bypass translation for 
supervisor mode operations]

The TTE tag and the TTE data are both parity protected and errors are uncorrectable. 
TTE access parity errors for load instructions will cause a precise trap. TTE access 
parity errors for store instructions will cause a deferred trap (that is, the generation 
of the trap will be deferred to the instruction following the store instruction). 
However, the trap PC delivered to the system software still points to the store 
instruction that encountered the parity error in the TTE access. Therefore, the 
deferred action of the trap generation will still cause a precise trap from the system 
software perspective.
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2.4.5 Store Buffer
The physical structure of the store buffer (STB) consists of a store buffer CAM (SCM) 
and a store buffer data array (STBDATA). Each thread is allocated with eight fixed 
entries in the shared data structures. The SCM has one CAM port and one RW port, 
and the STBDATA has one read (1R) port and one write (1W) port. 

All stores reside in the store buffer until they are ordered following a total store 
ordering (TSO) model and have updated the L1D (level 1 D-cache). The lifecycle of a 
TSO compliant store follows these four stages:

1. Valid

2. Commit (issued to L2-cache)

3. Acknowledged (L2-cache sent response)

4. Invalidated or L1D updated

Non-TSO complaint stores, such as blk-init and other flavors of bst (block store), will 
not follow the preceding life-cycle. A response from the L2-cache is not required 
before releasing the non-TSO complaint stores from the store buffer.

Atomic instructions such as CAS, LDSTUB, and SWAP, as well as flush instructions, 
can share the store buffer.

The store buffer implements partial and full read after write (RAW) checking. Full-
RAW data will be returned to the register files from the pipe. Partial RAW hits will 
force the load to access the L2-cache while interlocked with the store issued to the 
CCX. Multiple hits in the store buffer will always force access to the L2-cache in 
order to enforce data consistency.

If a store hits any part of a quad-load (16-byte access), the quad-load checking will 
force the serialization of the issue to the CCX. This forced serialization enforces that 
there will be no bypass operation.

Instructions such as a blk-load (64-byte access) will not detect the potential store 
buffer hit on the 64-byte boundary. The software must guarantee the data 
consistency using membar instructions.
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2.4.6 Load Miss Queue
The load miss queue (LMQ) contains four entries in its physical structure, and the 
queue supports up to one load miss per thread. Instructions similar to load (such as 
atomics and prefetches) may also reside in the load miss queue. 

A load instruction speculates on a D-cache miss to reduce the latency in accessing 
the CCX. The load instruction may also speculate on the availability of a queue entry 
in the CCX. If the speculation fails, the miss-speculated load instruction can be 
replayed out of LMQ.

Load requests to the L2-cache from different addresses can alias to the same L2-
cache line. Primary versus secondary checking will be performed in order to prevent 
potential duplication in the L2-cache tags.

The latencies for completing different load instructions may differ (for example, a 
quad-load fill will have to access integer register file (IRF) twice).

The LMQ is also leveraged by other instructions. For example, the first packet of a 
CAS instruction will be issued out of the store buffer while the second packet will be 
issued out the LMQ.

2.4.7 Processor to Crossbar Interface Arbiter
The processor-to-crossbar interface (PCX) is the interface between the processor and 
the CCX. The arbiter takes on 13 sources to produce one arbitrated output in one 
cycle. The 13 sources include – four load-type instructions, four store-type 
instructions, one instruction cache (I-cache) fill, one floating-point unit (FPU) access, 
one stream processing unit (SPU) access, one interrupt, and one forward-packet. 

The 13 sources are further divided into four categories of different priorities. The 
I-cache miss handling is one category. The load instructions (one outstanding per 
thread) are in one category. The store instructions (one outstanding per thread) are in 
another category. The rest of accesses are lumped into one category, and include – 
the FPU access, SPU access, interrupt, and the forward-packet.

The arbitration is done within the category first and then among the other 
categories. An I-cache fill is at the highest priority, while all other categories have an 
equal priority. The priorities can be illustrated in this order:

1. I-cache miss

2. Load miss

3. Stores

4. {FPU operations, SPU operations, Interrupts}
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The use of a two-level history allows a fair, per-category scheduling among the 
different categories. The arbiter achieves a resolution in every cycle. Requests from 
atomic instructions take two cycles to finish the arbitration.

There are five possible targets, which include four L2-cache banks and one I/O 
buffer (IOB). The FPU access shares the path through the IOB.

Speculation on the PCX availability does occur, and a history will be established 
once the speculation is known to be correct.

2.4.8 Data Fill Queue
A SPARC core communicates with memory and I/O using packets. The incoming 
packets, destined to a SPARC core, are queued in the data fill queue (DFQ) first. 
These packets can be acknowledgement packets or data packets from independent 
sources. The DFQ maintains a predefined ordering requirement for all the inbound 
packets. The targets for the DFQ to deliver the packets to include the instruction 
fetch unit (IFU), load store unit (LSU), trap logic unit (TLU), and stream processing 
unit (SPU).

A store to the D-cache is not allowed to bypass another store to the D-cache. Store 
operations to different caches can bypass each other without violating the total store 
ordering (TSO) model.

Interrupts are allowed to be delivered to TLU only after all the prior invalidates 
have been visible in their respective caches. An acknowledgement to a local I-flush is 
treated the same way as an interrupt.

Streaming stores will be completed to the D-cache before the acknowledgement is 
sent to the SPU.

2.4.9 ASI Queue and Bypass Queue
Certain SPARC core internal alternate space identifier (ASI) accesses, such as the 
long latency MMU ASI transactions and all IFU ASI transactions, are queued in the 
ASI queue. The ASI queue is a FIFO that supports one outstanding ASI transaction 
per thread. For all read-type ASI transactions, regardless whether they originated 
from the LSU or not, must have their the return data routed through the LSU and be 
delivered to the register file by way of the bypass queue.

The bypass queue handles all of the load reference data, other than that received 
from the L2-cache, that must be asynchronously written to the integer register file 
(IRF). This kind of read data includes full-RAW data from the store buffer, ldxa to the 
internal ASI data, store data for casa, a forward packet for the ASI transactions, as 
well as the pending precise traps.
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2.4.10 Alternate Space Identifier Handling in the Load 
Store Unit
In addition to sourcing alternate space identifier (ASI) data to other functional units 
of a SPARC core, the load store unit (LSU) decodes and supports a variety of ASI 
transactions, which include:

■ Defining the behavior of ld/st ASI transactions such as blk-ld, blk-st, quad-ASI, 
and so on

■ Defining an explicit context for address translation at all levels of privilege, such 
as primary, secondary, as_if_user, as_if_supv, and so on

■ Defining special attributes, such as non_faulting and endianness, and so on

■ Defining address translation bypassed, such as [RA=PA], [VA=PA], and so on, 
where VA stands for virtual address, PA stands for physical address, and RA 
stands for real address

2.4.11 Support for Atomic Instructions (CAS, SWAP, 
LDSTUB)
CAS is issued as a two-packet sequence to the Processor to L2-cache Interface (PCX). 
Packet 1 contains the compare address (rs1) and the data (rs2). Packet 2 contains the 
swap data (rd). Packet 1 resides in the store buffer in order to be compliant to the 
TSO ordering, while Packet 2 occupies the thread’s entry into the load miss queue 
(LMQ). 

Packet 1 and Packet 2 are issued in back-to-back order to the PCX. An 
acknowledgement to the load is returned to the CPX in response to Packet 1.  
This acknowledgment contains the data in memory from the address-in (rs1). An 
acknowledgement to the store is returned on the CPX in response to Packet 2. This 
acknowledgement will cause an invalidation at address-in (rs1) if the cache line is 
present in the level 1 D-cache. 

SWAP and LDSTUB are single packet requests to the PCX, and they reside in the 
store buffer.
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2.4.12 Support for MEMBAR Instructions
MEMBAR instructions ensure that the store buffer of a thread has been drained 
before the thread gets switched back in. The completion of draining the store buffer 
implies that all stores prior to the MEMBAR instruction have reached a global 
visibility, in compliance with TSO ordering. Before a MEMBAR is released, it ensures 
that all blk-init and blk-st instructions have also reached global visibility. This is 
accomplished by making sure that st-ack counter has been cleared.

There are several flavors of MEMBAR instructions. The implementation for 
#storestore, #loadstores, and #loadload is to make them behave like NOPs. The 
implementation for #storeload, #memissue, and #lookaside is to make them to 
behave like #sync. membar #sync is fully implemented to help enforce the compliance 
to TSO ordering.

A parity error on a store to the DTLB will cause a deferred trap. It will be reported 
on the follow-up membar #sync. The trap PC in this case will point to the store 
instruction encountering the parity error when storing to the DTLB. The deferred 
trap will look like a precise trap to the system software because of the way the 
hardware supports the recording of the precise trap PC.

2.4.13 Core-to-Core Interrupt Support
A core-to-core interrupt is initiated by a write to the interrupt dispatch register 
IINT_VEC_DIS ASI) in Trap Logic Unit (TLU). It will generate a request to LSU for 
access to PCX. LSU only supports one outstanding interrupt request at any time.

An interrupt is treated similar to a membar. It will be sent to PCX once the store 
buffer of the corresponding thread has been drained. This interrupt will then 
immediately be acknowledged to TLU.

After the interrupt packet has been dispatched by way of the L2-cache to Core 
Interface (CCX), the packet would be executed on the destination thread of a SPARC 
core. It can be invalidated after all prior invalidates have completed and results 
arrived at L1 D-cache (L1D).

2.4.14 Flush Instruction Support
A flush instruction does not actually flush the instruction memory. It instead, it acts 
as a barrier to ensure that all of the prior invalidations for a thread have been visible 
in the level 1 I-cache (L1I) before causing the thread to be switched back in.

The flush is issued as an interrupt with the flush bit set, which causes the L2-cache 
to broadcast the packet to all SPARC cores.
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For the SPARC core that issued the flush, an acknowledgement from the DFQ upon 
receiving the packet will cause all of the prior invalidations to complete with the 
results arrived at the level 1 I-cache and the level 1 D-cache (L1 I/D). 

For the SPARC cores that did not issue the flush, the DFQ will serialize the flushes 
so that the order of the issuing threads actions, relative to the flushes, will be 
preserved.

2.4.15 Prefetch Instruction Support
A prefetch instruction is treated as a non-cacheable load. A prefetch that misses in 
the TLB, or accesses I/O space, will be treated as a NOP. The issuing thread will be 
switched back in without accessing the processor to L2-cache interface (PCX).

The LSU supports a total of eight outstanding prefetch instructions across all four 
threads. The LSU keeps track of the number of outstanding prefetches per thread, 
which limits the number of outstanding prefetches.

2.4.16 Floating-Point BLK-LD and BLK-ST Instructions 
Support
Floating-point blk-ld and blk-st instructions are non-TSO compliant. Only one 
outstanding blk-ld or blk-st instruction is allowed per SPARC core. These 
instructions will bypass the level 1 caches and will not allocate in the level 1 caches 
either. On a level 1 D-cache (L1D) hit, a blk-st instruction will cause an invalidation 
to the L1D. Both blk-st and blk-ld instructions can access the memory space and the 
I/O space.

The LSU breaks up a the 64-byte packet of a blk-ld instruction into four of 16-byte 
load packets so that they can access the processor and L2-cache interface (PCX). The 
Level 2 cache returns four of the 16-byte packets, which in turn, will cause eight of 8-
byte data transfers to the floating-point register file (FRF). Errors are reported on the 
last packet. A blk-ld instruction could cause a partial update to the FRF. Software 
must be written to retry the instruction later.

A blk-st instruction will be unrolled into eight helper instructions by the floating-
point functional unit (FFU) for a total of a 64-byte data transfer. Each 8-byte data 
gets an entry of the corresponding thread in the store buffer. The blk-st instructions 
are non-TSO compliant, so the software must do the ordering.
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2.4.17 Integer BLK-INIT Loads and Stores Support
The blk-init load and blk-init store instructions were introduced as the substitute for 
blk-ld and blk-st in block-copy routines. They can access both the memory space and 
the I/O space. The blk-init loads do not allocate in the level 1 D-cache. On a level 1 
D-cache hit, the blk-init stores will invalidate the level 1 D-cache (L1D). 

The blk-init load instructions must be quad-word accesses, and violating this rule 
will cause a trap. Like quad-load instructions, blk-init loads also send double-pump 
writes (8-byte access) to the integer register file (IRF) when a blk-init load packet 
reaches the head of the data fill queue (DFQ).

The blk-init stores are also non-TSO compliant, which allows for greater write 
throughput and higher-performance yields for the block-copy routine. 

Up to only eight of all non-TSO compliant instructions can be allowed outstanding 
for each SPARC core. The LSU keeps a counter per thread to enforce this limit.

2.4.18 STRM Load and STRM Store Instruction Support
Instructions such as strm-ld and strm-st make requests from the stream processing 
unit (SPU) to memory by way of the LSU. 

The Store buffer will not be looked-up by the strm-ld instructions, and the store 
buffer will not buffer strm-st data. Software must be written to enforce the ordering 
and the maintenance of the data coherency.

The acknowledgements for strm-st instructions will be ordered through the data fill 
queue (DFQ) upon the return to the stream processing unit (SPU). The 
corresponding store acknowledgement (st ack) will be sent to the SPU once the 
level 1 D-cache (L1D) invalidation, if any, has been completed.

2.4.19 Test Access Port Controller Accesses and Forward 
Packets Support
Test access port (TAP) controller can access any SPARC core by way of the SPARC 
interface of the I/O bridge (IOB). A forward request to the SPARC core might take 
any of the following actions:

■ Read or write level 1 I-cache or D-cache
■ Read or write BIST control
■ Read or write margin control
■ Read or write de-feature bits to the de-feature any, or all, of L1I, L1D, ITLB, DTLB 

in order to take a cache off-line, or a TLB offline, for diagnostic purposes
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A forward reply will be sent back to the I/O bridge (IOB) once the data is read or 
written. A SPARC core might further forward the request to the L2-cache for an 
access to the control status register (CSR). The I/O bridge only supports one 
outstanding forward access at any time.

2.4.20 SPARC Core Pipeline Flush Support
A SPARC core pipeline flush is reported through the LSU since the LSU is the source 
of the latest traps in the pipeline.

The trap logic unit (TLU) gathers traps from all functional units except the LSU, and 
it then sends them to the LSU. the LSU performs the or function for all of them (plus 
its own) and then it broadcasts across the entire chip.

The LSU can also send a truncated flush for the internal ASI ld/st to the TLU, the 
MMU, and the SPU.

2.4.21 LSU Error Handling
Errors can be generated from any, or all, of the following memory arrays – DCACHE 
(D-cache), D-cache tag array (DTAG), D-cache valid bit array (DVA), DTLB, data fill 
queue (DFQ), store buffer CAM array (SCM), and store buffer data array 
(STBDATA). Only the DCACHE, DTAG, and DTLB arrays are parity protected. 

■ A parity error on a load reference to the DCACHE will be corrected by way of the 
reloading the correct data from the L2-cache as if there were a D-cache miss.

■ A DTAG parity error will result in a correction packet, followed by the actual load 
request, to the L2-cache. The correction packet synchronizes the L2 directory and 
the L1 D-cache set. On the load request acknowledgement, the level 1 D-cache 
will be filled. 

■ A parity error on the DTLB tte-data will cause an uncorrectable error trap to the 
originating loads or stores.

■ A parity error on the DTLB tte-data can also cause an uncorrectable error trap for 
ASI reads.

■ A parity error on the DTLB tte-tag can only cause an uncorrectable error trap for 
ASI reads.
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2.5 Execution Unit
The execution unit (EXU) contains these four subunits – arithmetic and logic unit 
(ALU), shifter (SHFT), integer multiplier (IMUL), and integer divider (IDIV).

FIGURE 2-15 presents a top level diagram of the execution unit.

FIGURE 2-15 Execution Unit Diagram

The execution control logic (ECL) block generates the necessary select signals that 
control the multiplexors, keeps track of the thread and reads of each instruction, and 
implements the bypass logic. The ECL also generates the write-enables for the 
integer register file (IRF). The bypass logic block does the operand bypass from the 
E, M, and W stages to the D stage. Results of long latency operations such as load, 
mul, and div, are forwarded from the W stage to the D stage. The condition codes 
are bypassed similar to the operands, and bypassing of the FP results and writes to 
the status registers are not allowed.

The shifter block (SHFT) implements the 0 - 63-bit shift, and FIGURE 2-16 illustrates 
the top level block diagram of the shifter.
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FIGURE 2-16 Shifter Block Diagram

The arithmetic and logic unit (ALU) consists of an adder and logic operations such 
as – ADD, SUB, AND, NAND, OR, NOR, XOR, XNOR, and NOT. The ALU is also 
reused when calculating the branch address or a virtual address. FIGURE 2-17 
illustrates the top level block diagram of the ALU.

FIGURE 2-17 ALU Block Diagram
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MUL is the integer multiplier unit (IMUL), and DIV is the integer divider unit 
(IDIV). IMUL includes the accumulate function for modular arithmetic. The latency 
of IMUL is 5 cycles, and the throughput is 1-half per cycle. IMUL supports one 
outstanding integer multiplication operation per core, and it is shared between a 
SPARC core pipeline and the modular arithmetic unit (MAU). The arbitration is 
based on a round-robin algorithm.

IDIV contains a simple non-restoring divider, and it supports one outstanding 
divide operation per core.

FIGURE 2-18 illustrates the top level diagram of the IDIV.

FIGURE 2-18 IDIV Block Diagram

When either IMUL or IDIV is occupied, a thread issuing a MUL or DIV instruction 
will be rolled back and switched out.
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2.6.1 Functional Description of the FFU
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operations (FP ops) to the floating-point unit (FPU) through the LSU, as well as 
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The FFU is composed of four blocks – the floating-point register file (FFU_FRF), the 
control block (FFU_CTL), the data-path block (FFU_DP), and the VIS execution block 
(FFU_VIS). FIGURE 2-19 shows a block diagram of the FFU illustrating these four sub-
blocks.

FIGURE 2-19 Top-Level FFU Block Diagram

2.6.2 Floating-Point Register File
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2.6.4 FFU Data-Path (FFU_DP)
This FFU data-path block contains the multiplexors and the flops for the data that 
has been read from, or is about to be written to, the FRF. The FFU data-path also 
dispatches the data for the STF and the FPops to the LSU, receives LDF from the 
LSU, and receives the results from the FPops from the CPX. The FFU data-path also 
implements FMOV, FABS, and FNEG, checks the ECC for the data read from the 
FRF, and generates the ECC for the data written to the FRF. 

2.6.5 FFU VIS (FFU_DP)
The FFU VIS (FFU_DP) block implements a subset of the VIS graphics instructions, 
including partitioned addition/subtraction, logical operations, and faligndata. All 
the operations are implemented in a single cycle, and the data inputs and outputs 
are connected to the FFU_DP.

2.7 Multiplier Unit

2.7.1 Functional Description of the MUL
The SPARC multiplier unit (MUL) performs the multiplication of two 64-bit inputs. 
The MUL is shared between the EXU and the SPU, and it has a control block and 
data-path block. FIGURE 2-20 shows how the multiplier is connected to other 
functional blocks. 

FIGURE 2-20 Multiplexor (MUL) Block Diagram
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2.8 Stream Processing Unit
Each SPARC core is equipped with a stream processing unit (SPU) supporting the 
asymmetric cryptography operations (public-key RSA) for up to a 2048-bit key size. 

The SPU shares the integer multiplier with the execution unit (EXU) for the modular 
arithmetic (MA) operations. The SPU itself supports full modular exponentiation. 
While the SPU facility is shared among all threads of a SPARC core, only one thread 
can use the SPU at a time. The SPU operation is set up by a storing a thread to a 
control register and then returning to normal processing. The SPU will initiate 
streaming load or streaming store operations to the level 2 cache (L2) and compute 
operations to the integer multiplier. Once the operation is launched, it can operate in 
parallel with SPARC core instruction execution. The completion of the operation is 
detected by polling (synchronous fashion) or by interrupt (asynchronous fashion).

2.8.1 ASI Registers for the SPU
All alternate space identifier (ASI) registers for the SPU are 8 bytes in length. Access 
to all of the ASI registers for the SPU have hypervisor privilege, so they can only be 
accessed in hypervisor mode. The following list highlights those ASI registers.

■ Modular arithmetic physical address (MPA) register

This register carries the physical address used to access the main memory. 
MA_LD requests must be on the 16-byte boundary while MA_ST requests must 
be on the 8-byte boundary.

■ Modular arithmetic memory addresses (MA_ADDR) register

This register carries the memory address offsets for various operands, and the 
size of the exponent. FIGURE 2-21 highlights the layout of the bit fields.

FIGURE 2-21 Layout of MA_ADDR Register Bit Fields

■ Modular arithmetic N-prime value (MA_NP) register
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■ Modular arithmetic synchronization (MA_SYNC) register

A load operation from this register is used to synchronize a thread with the 
completion of asynchronous modular arithmetic operations performed by the 
SPU.

■ Modular arithmetic control parameters (MA_CTL) register

This register contains several bit-filed fields that provide these control 
parameters:

■ PerrInj – Parity error injection

When this parameter is set, each operation that writes to modular arithmetic 
memory will have the parity bit inverted.

■ Thread – Thread ID for receiving interrupt

If the Int bit is set, this set of bits specifies the thread that will receive the 
disrupting trap on the completion of the modular arithmetic operation.

■ Busy – SPU is BUSY

When this parameter is set, the SPU is busy working on the specified 
operation.

■ Int – Interrupt enable

When this parameter is set, the SPU will generate a disrupting trap to the 
current thread on completion of the current modular arithmetic operation. If 
cleared, software can synchronize with the current modular arithmetic 
operation using the MA_Sync instruction.

The disrupting trap will use the implementation_dependent_exception_20 as the 
modular arithmetic interrupt. 

■ Opcode – Operation code of modular arithmetic operation (see TABLE 2-3)

■ Length – Length of modular arithmetic operations

This field contains the bits for the value of the (length - 1) for the modular 
arithmetic operations.

TABLE 2-3 Modular Arithmetic Operations 

Opcode Value Modular Arithmetic Operation

0 Load from modular arithmetic memory

1 Store to modular arithmetic memory

2 Modular multiply

3 Modular reduction

4 Modular exponentiation loop

5-7 Reserved
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2.8.2 Data Flow of Modular Arithmetic Operations
FIGURE 2-22 illustrates the data flow of modular arithmetic operations.

FIGURE 2-22 Data Flow of Modular Arithmetic Operations
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2.8.4 Modular Arithmetic Operations 
All modular arithmetic registers must be initialized prior to launching a modular 
arithmetic operation. Modular arithmetic operations (MA ops) start with a stxa to 
the MA_CTL register if the store buffer for that thread is empty. Otherwise, the 
thread will wait until the store buffer is emptied before sending stx_ack to the LSU. 
An MA operation that is in progress can be aborted by another thread by way of a 
stx to the MA_CTL register.

An ldxa to MA registers are blocking. All except ldxa to the MA_Sync register will 
respond immediately. An ldxa to the MA_Sync register will return a 0 to the 
destination register upon the operation completion. The thread ID of this ldxa 
should be equal to that stored in the thread ID field of the MA_CTL register. 
Otherwise, the SPU will respond immediately and send signals to the LSU to not 
update the register file. In case of aborting an MA operation, the pending ldxa to 
MA_Sync is unblocked, and the SPU signals the LSU will not update the register file.

FIGURE 2-23 illustrates the MA operations using a state transition diagram.

FIGURE 2-23 State Transition Diagram Illustrating MA Operations
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The state transitions are clarified by the following set of equations:

A MA_ST operation is started with a stxa to the MA_CTL register opcode equals the 
MA_ST, and the length field specifies the number of words to send to the level 2 
cache (L2-cache). The SPU sends a processor to cache interface (PCX) request to the 
LSU and waits for an acknowledgement from the LSU prior to sending another 
request. If needed, store acknowledgements, which are returned from the L2-cache 
on level 2 cache to processor interface (CPX), will go to the LSU in order to 
invalidate the level 1 D-cache (L1D). The LSU will then send the SPU an 
acknowledgement. The SPU then decrements a local counter and waits for all the 
stores sent out to be acknowledged and transitioned to the done state. 

On a read from the MA Memory, the operation will be halted if a parity error is 
encountered. The SPU waits for all posted stores to be acknowledged. If the Int bit is 
cleared (Int = 0), the SPU will signal the LSU and the IFU on all ldxa to the MA 
registers. 

An MA_LD operation is started with a stxa to MA_CTL register opcode equals 
MA_LD, and the length field specifies the number of words to be fetched from the 
L2-cache. The SPU sends a PCX request to the LSU and waits for an 
acknowledgement from the LSU before sending out another request. The L2-cache 
returns data to the SPU directly on CPX. 

Any data returned with an uncorrectable error will halt the operation. If the Int bit is 
cleared (Int = 0), the SPU will send a signal to the LSU and the IFU on any ldxa to 
MA register.

Any data returned with a correctable error will cause the error address to be sent to 
IFU and be logged, while the operation will continue until completion.

TABLE 2-4 illustrates the error handling behavior.

tr2_maop_frm_idle = cur_idle & stxa_2ctlreq & ~wait_4stb_empty & ~wait_4trapack_set;
tr2_abort_frm_maop = cur_maop & stxa_2ctlreg;
tr2_wait_frm_abort = cur_abort & ma_op_complete;
tr2_maop_frm_wait = cur_wait & ~(stxa_2ctlreg | wait_4stb_empty | wait_4trapack_set);
tr2_idl_frm_maop = cur_maop & ~stxa_2cltreg & ma_op_complete;
tr2_wait_frm_idle = cur_idle & stxa_2ctlreg & (wait_4stb_empty | wait_4trapack_set);

TABLE 2-4 Error Handling Behavior 

NCEEN Int LSU IFU

0 0 - error_log

0 1 - error_log

1 0 precise trap error_log

1 1 - error_log
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The MA_MUL, MA_RED, and the MA_EXP operations all started with a stxa to 
MA_CTL register with an opcode equal to the respective operation, and the length 
field specifies the number of 64-bit words for each operation. The maximum length 
of these operations should never exceed 32 words. 

The MA_MUL operates on A, B, M, N and N operands. The result will be stored in 
the X operand.

The MA_RED operates on A and N operands and the result will be stored in the R 
operand.

The MA_EXP performs the inner loop of modular exponentiation of A, M, N, X, E, 
operands stored in the MA Memory. This is the binary approach where the 
MA_MUL, followed by MA_RED functions, are called and will have the results 
stored in X operand.

The parity error encountered on an operand read will cause the operation to be 
halted. The LSU and the IFU will be signaled. 

FIGURE 2-24 shows a pipeline diagram that illustrates the sequence of the result 
generation of the multiply function.

FIGURE 2-24 Multiply Function Result Generation Sequence Pipeline Diagram

2.9 Memory Management Unit
The memory management unit (MMU) maintains the contents of the instruction 
translation lookaside buffer (ITLB) and the data translation lookaside buffer (DTLB). 
The ITLB resides in instruction fetch unit (IFU), and the DTLB resides in load and 
store unit (LSU). FIGURE 2-25 shows the relationship among the MMU and the TLBs.
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FIGURE 2-25 MMU and TLBs Relationship

2.9.1 The Role of MMU in Virtualization
The OpenSPARC T1 processor provides hardware support for the virtualization 
where multiple images and/or instances of the operating system (OS) coexist on top 
of the underlying chip multiple threading (CMT) microprocessor. 

FIGURE 2-26 illustrates the view of virtualization.

FIGURE 2-26 Virtualization Diagram
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The hypervisor (HV) layer virtualizes the underlying central processing units (CPU). 
The multiple instances of the OS images form multiple partitions of the underlying 
virtual machine. The hypervisor improves the OS portability to the new hardware 
and insures that failure in one domain would not affect the operation in the other 
domains. The OpenSPARC T1 processor supports up to eight partitions, and the 
hardware provides 3 bits of partition ID in order to distinguish one partition from 
another.

The hypervisor (HV) layer uses physical addresses (PA) while the supervisor (SV) 
layer views real addresses (RA) where the RAs represent a different abstraction of 
the underlying PAs. All applications use virtual addresses (VA) to access memory. 
(The VA will be translated to RA and then to PA by TLBs and the MMU.) 

2.9.2 Data Flow in MMU
The MMU interacts with TLBs to maintain the content of TLBs. The system software 
manages the content of MMU by way of three kinds of operations – reads, writes, 
and demap. All TLB entries are shared among the threads, and the consistency 
among the TLB entries is maintained through auto-demap. The MMU is responsible 
for generating the pointers to the software translation storage buffers (TSB), and it 
also maintains the fault status for the various traps.

The access to the MMU is through the hypervisor-managed ASI operations such as 
ldxa and stxa. These ASI operations can be asynchronous or in-pipe, depending on 
the latency requirements. Those asynchronous ASI reads and writes will be queued 
up in LSU. Some of the ASI operations can be updated through faults or by a data 
access exception. Fault data for the status registers will be sent by trap logic unit 
(TLU) and the load and store unit (LSU).

2.9.3 Structure of Translation Lookaside Buffer
The translation lookaside buffer (TLB) consists of content addressable memory 
(CAM) and randomly addressable memory (RAM). CAM has one compare port and 
one read-write port (1C1RW), and RAM has one read-write port (1RW). The TLB 
supports the following mutually exclusive events.

1. CAM

2. Read

3. Write

4. Bypass

5. Demap
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6. Soft-reset

7. Hard-reset

CAM consists of the following field of bits – partition ID (PID), real (identifies a RA-
to-PA translation or a VA-to-PA translation), context ID (CTXT), and virtual address 
(VA). The VA field is further broken down to page-size based fields with individual 
enables. The CTXT field also has its own enable in order to allow the flexibility in 
implementation. The CAM portion of the fields are for comparison purposes. RAM 
consists of the following field of bits, namely, physical address (PA) and attributes. 
The RAM portion of the fields are for read purposes, where a read could be caused 
by a software read or a CAM based 1-hot read.

FIGURE 2-27 illustrates the structure of the TLB.

FIGURE 2-27 Translation Lookaside Buffer Structure
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2.9.4 MMU ASI Operations
The types of regular MMU ASI operations are as follows:

■ Writes

■ IMMU Data-In
■ DMMU Data-In
■ IMMU Data-Access
■ DMMU Data-Access

■ Reads

■ IMMU Data-In
■ DMMU Data-In
■ IMMU Tag-Read
■ DMMU Tag-Read

■ Demap

■ IMMU Demap Page
■ DMMU Demap Page
■ IMMU Demap Context
■ DMMU Demap Context
■ IMMU Demap All (cannot demap locked pages)
■ DMMU Demap All (cannot demap locked pages)

■ Soft-Reset

■ IMMU Invalidate All (including locked pages)
■ DMMU Invalidate All (including locked pages)

■ Fault Related ASI Accesses to Registers

■ IMMU Synchronous Fault Status Register (SFSR)
■ DMMU Synchronous Fault Status Register (SFSR)
■ DMMU Synchronous Fault Address Register (SFAR)
■ IMMU Tag Access
■ DMMU Tag Access
■ IMMU Tag Target
■ DMMU Tag Target

■ ASI Accesses to Registers as Miss Handler Support

■ IMMU TSB Page Size 0
■ IMMU TSB Page Size 1
■ DMMU TSB Page Size 0
■ DMMU TSB Page Size 1
■ IMMU Context 0 TSB Page Size 0
■ IMMU Context 0 TSB Page Size 1
■ DMMU Context 0 TSB Page Size 0
■ DMMU Context 0 TSB Page Size 1
■ IMMU Context non-0 TSB Page Size 0
■ IMMU Context non-0 TSB Page Size 1
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■ DMMU Context non-0 TSB Page Size 0
■ DMMU Context non-0 TSB Page Size 1
■ IMMU Context 0 Config
■ DMMU Context 0 Config
■ IMMU Context non-0 Config
■ DMMU Context non-0 Config

2.9.5 Specifics on TLB Write Access
A stxa to data-in or data-access causes a write operation that is asynchronous to the 
pipeline flow. Write requests are originated from the four-entry FIFO in the LSU. The 
LSU passes the write request to the MMU, which forwards it to the ITLB or the 
DTLB. A handshake from the target completes the write operation, which in turn 
enables the four-entry FIFO in the LSU to proceed with the next entry.

Write access to the data-in algorithmically places the translation table entry (TTE) in 
the TLB. Writes occur to the least significant unused entry. In contrast, write access 
to the data-access places the TTE in the specified entry in the TLB. For diagnostics 
purposes, a single bit parity error can be injected on writes.

A page may be specified as a real-on write, and a page will have a partition assigned 
to it on a write.

2.9.6 Specifics on TLB Read Access
TLB read operations follow the same handshake protocol as TLB write operations. 
The ASI data-access operations will read the RAM portion (that is, the TTE data). 
The ASI tag-read access operations will read the TTE tag from the RAM. The TLB 
read data will be returned to the bypass queue in the LSU. If no parity error is 
detected, the LSU will forward the data. Otherwise, the LSU will take a trap.

2.9.7 Translation Lookaside Buffer Demap
The system software can invalidate entries in the translation lookaside buffer (TLB) 
selectively using demap operations in any one of the following forms for the ITLB 
and the DTLB respectively and distinctly. Each demap operation is partition specific.

■ Demap by page real – Match VA-tag and translate RA to PA

■ Demap by page virtual – Match VA-tag and translate VA to PA

■ Demap by context – Match context only (has no effect on real pages)

■ Demap all – Demap all but the locked pages
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The system software can clear the entire TLB distinctly through an invalidate all 
operation, which includes all of the locked pages.

2.9.8 TLB Auto-Demap Specifics
Each TLB is shared by all four threads. The OpenSPARC T1 processor provides a 
hardware auto-demap to prevent the threads from writing to overlapping pages. 
Each auto-demap operation is partition specific. The sequence of an auto-demap 
operation is as follows.

1. Schedule a write from the four entry FIFO in the LSU.

2. Construct an equivalent auto-demap key.

3. Assert demap and complete with a handshake.

4. Assert write and complete with a handshake.

2.9.9 TLB Entry Replacement Algorithm
Each entry has a Used bit. An entry is picked to be a candidate for a replacement if it 
is the least significant unused bit among all 64 entries.

A used bit can be set on a write, or on a CAM hit, or when locked. A locked page 
will have its used bit always set. An invalid entry has its used bit always cleared. All 
used bits will be cleared when the TLB reaches a saturation point (that is, when all 
entries have their used bit set while a new entry needs to be put in a TLB). If a TLB 
remains saturated because all of the entries have been locked, the default 
replacement candidate (entry 0x63) will be chosen and an error condition will be 
reported.

2.9.10 TSB Pointer Construction
An MMU miss will cause the write of the faulting address and the context in the tag 
access. The tag access has a context 0 copy or a context non-0 copy, which is updated 
depending on the context of the fault. The miss handler will read the pointer of 
page-size 0 or page-size 1. The hardware will continue with the following sequence 
in order to complete the operation.
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1. Read zero_ctxt_cfg or nonzero_ctxt_cfg to determine the page size.

2. Read zero_ctxt_tsb_base_ps0 or zero_ctxt_tsb_base_ps1 on 
nonzero_ctxt_tsb_base_ps0 or nonzero_ctxt_tsb_base_ps1 to get the TSB base 
address and size of the TSB.

3. Access tag.

Software will then generate a pointer into the TSB based on the VA, the TSB base 
address, the TSB size, and the Tag.

2.10 Trap Logic Unit
The trap logic unit (TLU) supports six trap levels. A trap can be in one of the 
following four modes – reset-error-debug (RED) mode, hypervisor (HV) mode, 
supervisor (SV) mode, and user mode. Traps will cause the SPARC core pipeline to 
be flushed, and a thread-switch to occur, until the trap vector (redirect PC) has been 
resolved. 

Software interrupts are delivered to each of the virtual cores using the 
interrupt_level_n trap through the SOFTINT_REG register. I/O and CPU cross-call 
interrupts are delivered to each virtual core using the interrupt_vector trap. Up to 64 
outstanding interrupts can be queued up per thread—one for each interrupt vector. 
Interrupt vectors are implicitly prioritized, with vector 0x63 being at the highest 
priority, while vector 0x0 is at the lowest priority. Each I/O interrupt source has a 
hardwired interrupt number that is used as the interrupt vector by the I/O bridge 
block.

The TLU is in a logically central position to collect all of the traps and interrupts and 
forward them. FIGURE 2-28 illustrates the TLU role with respect to all other backlogs 
in a SPARC core.
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FIGURE 2-28 TLU Role With Respect to All Other Backlogs in a SPARC Core
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2.10.1 Architecture Registers in the Trap Logic Unit
The following list highlights the architecture registers maintained by the trap logic 
unit (TLU). Only supervisor (SV) or hypervisor (HV) privileged code can access 
these registers.

1. Processor state and control registers

■ PSTATE (processor state) register

■ TL (trap level) register

■ GL (global register window level) register

■ PIL (processor interrupt level) register

■ TBA (trap base address) register

■ HPSTATE (Hypervisor processor state) register

■ HTBA (Hypervisor trap base address) register

■ HINTP (Hypervisor interrupt pending) register

■ HSTICK_CMPR_REG (Hypervisor system tick compare) register 

2. Trap stack (six-deep)

■ TPC (trap PC) register

■ TNPC (trap next PC) register

■ TTYPE (trap type) register

■ TSTATE (trap state) register

■ HTSTATE (Hypervisor trap state) register

3. Ancillary state registers

■ TICK_REG (tick) register

■ STICK_REG (system tick) register

■ TICK_CMPR_REG (tick compare) register

■ STICK_CMPR_REG (system tick compare) register

■ SOFTINT_REG (software interrupt) register

■ SET_SOFTINT (set software interrupt register) register

■ CLEAR_SOFTINT (clear software interrupt register) register

■ PERF_CONTROL_REG (performance control) register

■ PERF_COUNTER (performance counter) register
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4. ASI mapped registers

■ Scratch-pad registers (eight of them)

■ CPU and device mondo registers

■ Head and tail pointers of resumable and non-resumable error queue

■ CPU interrupt registers

■ Interrupt receive register

■ Incoming vector register

■ Interrupt dispatch registers (for cross-calls)

2.10.2 Trap Types
Traps can be generated from the user code, the supervisor code, or from the 
hypervisor code. A trap will be delivered to different trap handler levels for further 
processing, namely the supervisor level (SV level; otherwise known as the privileged 
level) or the hypervisor level (HV level). The way the traps are generated can help 
categorize a trap into either an asynchronous trap (asynchronous to the SPARC core 
pipeline operation) or a synchronous trap (synchronous to the SPARC core pipeline 
operation). 

There are three defined categories of traps – precise trap, deferred trap, and 
disrupting trap. The following paragraphs briefly describe the nature of each 
category of trap.

1. Precise trap

A precise trap is induced by a particular instruction and occurs before any 
program-visible state has been changed by the trap-inducing instruction. When a 
precise trap occurs, several conditions must be true:

■ The PC saved in TPC[TL] points to the instruction that induced the trap, and 
NPC saved in NTPC[TL] points to the instruction that was to be executed next.

■ All instructions issued before the one that induced the trap must have 
completed their execution.

■ Any instructions issued after the one that induced the trap remain unexecuted.

2. Deferred trap

A deferred trap is induced by a particular instruction. However, the trap may 
occur after the program-visible state has been changed by the execution of either 
the trap inducing instruction itself, or one or more other instructions.

If an instruction induces a deferred trap, and a precise trap occurs simultaneously, 
the deferred trap may not be deferred past the precise trap.
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3. Disrupting trap

A disrupting trap is caused by a condition (for example, an interrupt), rather than 
directly caused by a particular instruction. When a disrupting trap has been 
serviced, the program execution resumes where it left off. A reset type of trap 
resumes execution at the unique reset address and it is not a disrupting trap. 

Disrupting traps are controlled by a combination of the processor interrupt level 
(PIL) and the interrupt enable (IE) bit field of the processor state register 
(PSTATE). A disrupting trap condition is ignored when the interrupts are disabled 
(PSTATE.IE = 0) or the condition’s interrupt level is lower than that specified in 
the PIL.

A disrupting trap may be due to either an interrupt request not directly related to 
a previously executed instruction, or to an exception related to a previously 
executed instruction. Interrupt requests may be either internal or external, and 
can be induced by the assertion of a signal not directly related to any particular 
processor or memory state. 

A disrupting trap, related to an earlier instruction causing an exception, is similar 
to a deferred trap in that it occurs after instructions, follows the trap-inducing 
instruction, and modifies the processor or memory state. The difference is that the 
condition which caused the instruction to induce the trap may lead to 
unrecoverable errors, since the implantation may not preserve the necessary 
states.

Disrupting trap conditions should persist until the corresponding trap is taken.

TABLE 2-5 illustrates the type of traps supported by the OpenSPARC T1 processor.

Asynchronous traps are taken opportunistically. They will be pending until the TLU 
can find a trap bubble in the SPARC core pipeline. A maximum of one asynchronous 
trap per thread can be pending at a time. When the other three threads are taking 
traps back-to-back, an asynchronous trap may wait a maximum three SPARC core 
clock cycles before the trap is taken.

TABLE 2-5 Supported OpenSPARC T1 Trap Types 

Trap Type Deferred Disrupting Precise

Asynchronous None None Spill traps, FPU traps, DTLB 
parity error on loads, SPU-MA 
memory error return on load to 
SYNC reg

Synchronous DTLB parity error on 
stores (precise to SW)

Interrupts and some error traps All other traps
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2.10.3 Trap Flow
An asynchronous trap is normally associated with long latency instructions and 
saves/restores, so the occurrence of such a trap is not synchronous with the SPARC 
core pipeline operation. These traps are all precise traps in the OpenSPARC T1 
processor. A trap bubble is identified in the W-stage when there is no valid 
instruction available, or the instruction there is taking a trap. Asynchronous traps 
will be taken at the W-stage when a trap bubble has been identified. 

Disrupting traps are associated with certain particular conditions. The TLU collects 
them and forward them to the IFU. The IFU sends them down the pipeline as 
interrupts instead of sending instructions down. A trap bubble is thus guaranteed at 
the W-stage, and the trap will be taken.

FIGURE 2-29 illustrates the trap flow sequence.

FIGURE 2-29 Trap Flow Sequence
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All the traps from the IFU, EXU, SPU, LSU, and the TLU will be sorted through in 
order to resolve the priority first, and also to determine the following – trap type 
(TTYPE) and trap vector (redirect PC). After these are resolved, the trap base address 
(TBA) will be selected to travel down the pipeline for further execution.

FIGURE 2-30 illustrates the trap flow with respect to the hardware blocks.

FIGURE 2-30 Trap Flow With Respect to the Hardware Blocks
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2.10.4 Trap Program Counter Construction
The following list highlights the algorithm for constructing the trap program counter 
(TPC).

■ Supervisor trap (SV trap)

Redirect PC <= {TBA[47:15], (TL>0), TTYPE[8:0], 5’b00000}

■ Hypervisor trap (HV trap)

Redirect PC <= {TBA[47:14], TTYPE[8:0], 5’b00000}

■ Traps in non-split mode

Redirect PC <= {TBA[47:15], (TL>0), TTYPE[8:0], 5’b00000}

■ Reset trap

Redirect PC <= {RSTVAddr[47:8], (TL>0), RST_TYPE[2:0], 5’b00000}

■ RSTVAddr = 0xFFFFFFFFF0000000

■ Done instruction

Redirect PC <= TNPC[TL]

■ Retry instruction

Redirect PC <= TPC[TL]

Redirect NPC <= TNPC[TL]

2.10.5 Interrupts
The software interrupts are delivered to each virtual core using the interrupt_level_n 
traps (0x41-0x4f) through the SOFTINT_REG register. I/O and CPU cross-call 
interrupts are delivered to each virtual core using the interrupt_vector trap (0x60). 

Interrupt_vector traps for software interrupts have a corresponding 64-bit 
ASI_SWVR_INTR_RECEIVE register.

I/O devices and CPU cross-call interrupts contain a 6-bit identifier, which 
determines which interrupt vector (level) in the ASI_SWVR_INTR_RECEIVE register 
the interrupt will target. Each strand’s ASI_SWVR_INTR_RECEIVE register can 
queue up to 64 outstanding interrupts, one for each interrupt vector. Interrupt 
vectors are implicitly prioritized with vector 63 being the highest priority and vector 
0 being the lowest priority.

Each I/O interrupt source has a hard-wired interrupt number, which is used to 
index a table of interrupt vector information (INT_MAN) in the I/O bridge unit. 
Generally, each I/O interrupt source will be assigned a unique virtual core target 
and vector level. This association is defined by the software programming of the 
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interrupt vector and the VC_ID fields in the INT_MAN table of the I/O bridge 
(IOB). The software must maintain the association between the interrupt vector and 
the hardware interrupt number in order to index the appropriate entry in the 
INT_MAN and the INT_CTL tables.

2.10.6 Interrupt Flow
FIGURE 2-31 illustrates the flow of hardware interrupts and vector interrupts.

FIGURE 2-31 Flow of Hardware and Vector Interrupts
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FIGURE 2-32 illustrates the flow of reset, idle, or resume interrupts.

FIGURE 2-32 Flow of Reset or Idle or Resume Interrupts
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FIGURE 2-33 illustrates the flow of software and timer interrupts.

FIGURE 2-33 Flow of Software and Timer Interrupts
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2.10.7 Interrupt Behavior and Interrupt Masking
The following list highlights the behavior and the masking of interrupts.

1. Hypervisor interrupts cannot be masked by the supervisor nor the user and can 
only be masked by the hypervisor by way of the PSTATE.IE bit. Such interrupts 
include hardware interrupts, HINTP, and so on.

2. Normal inter-core or inter-thread interrupts such as cross-calls can be sent by 
software writing to the CPU INT_VEC_DIS_REG register.

3. Special inter-core or inter-thread interrupts (such as reset, idle, or resume) can 
only be sent by software through the I/O bridge (IOB) by writing to the IOB 
INT_VEC_DIS_REG register.

4. Hypervisor will always suspend supervisor interrupts.

5. Some supervisor interrupts such as Mondo-Qs can only be masked by the 
PSTATE.IE bit.

6. Interrupts of Interrupt_level_n-type can only be masked by the PIL and the 
PSTATE.IE bit at the supervisor or user level.

2.10.8 Privilege Levels and States of a Thread
Split mode is referred to as the operating mode where hypervisor and supervisor 
modes are uniquely distinguished. Otherwise, the mode is referred to as non-split 
mode.

TABLE 2-6 illustrates the privilege levels and states of a thread.

TABLE 2-6 Privilege Levels and Thread States 

Split Mode Non-Split Mode

Red Hypervisor Supervisor User Privileged User

HPSTATE.enb X 1 1 1 0 0

HPSTATE.red 1 0 0 0 0 0

HPSTATE.priv 1 1 0 0 X(1) 0

PSTATE.priv 1 X 1 0 1 0
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2.10.9 Trap Modes Transition
FIGURE 2-34 illustrates the mode transitions among the different levels of traps.

FIGURE 2-34 Trap Modes Transition
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2.10.10 Thread States Transition
A thread can be in any one of these four states – RED (reset, error, debug), 
supervisor (SV), hypervisor (HV), or user. The privilege level is very different in 
each different states. FIGURE 2-35 illustrates the state transition of a thread.

FIGURE 2-35 Thread State Transition
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2.10.11 Content Construction for Processor State Registers
Processor state registers (PSRs) carry different content in different situations, such 
as, traps, interrupts, done instructions, or retry instructions. The following list 
highlights the register contents.

1. On traps or interrupts – save states in the trap stack and update them

a. Update trap level (TL) and global level (GL)

i. On normal traps or interrupts

TL = min(TL+1, MAXTL)

GL = min(GL+1, MAXGL) for hypervisor

GL = min(GL+1, 2) for supervisor

ii. On power-on reset (POR) or warm reset

TL = MAXTL (=6)

GL = MAXGL (=3)

iii. On software write

For hypervisor:

TL <= min(wr-data[2:0], MAXTL) for hypervisor

GL <= min(wr-data[3:0], MAXGL) for hypervisor

For supervisor:

TL <= min(wr-data[2:0], 2) for supervisor

GL <= min(wr-data[3:0], 2) for supervisor

b. PC => TPC[TL]

c. NPC => TNPC[TL]

d. {ASI_REG, CCR_REG, GL, PSTATE} => TSTATE[TL]

e. Final_Trap_Type => TTYPE[TL}

f. HPSTATE => HTSTATE[TL]

g. Update HPSTATE[enb, red, priv, and so on] register

h. Update PSTATE[priv, ie, and so on] register
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2. On done or retry instructions – restore states from trap stack

a. Update the trap level (TL) and the global level (GL)

TL <= TL -1

GL <= Restore from trap stack @TL and apply CAP

b. Restore all the registers including PC, NPC, HPSTATE, PSTATE, from the trap 
stack @[TL]

c. Send CWP and CCR register updates to the execution unit (EXU)

d. Send ASI register update to load store unit (LSU)

e. Send restored PC and NPC to the instruction fetch unit (IFU)

f. Decrement TL

2.10.12 Trap Stack
The OpenSPARC T1 processor supports a six deep trap stack for six trap levels. The 
trap stack has one read port and one write port (1R1W), and it stores the following 
registers:

■ PC

■ NPC

■ HPSTATE (Note: The HPSTATE.enb bit is not saved)

■ PSTATE

■ GL

■ CWP

■ CCR

■ ASI_REG

■ TTYPE

Synchronization based on the HTSTATE.priv bit and the TSTATE.priv bit for the 
non-split mode is not enforced on software writes, but synchronized while restoring 
done and retry instructions.

Software writes in supervisor mode to the TSTATE.gl bit do not cap at two. The cap 
is applied while restoring done and retry instructions.
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2.10.13 Trap (Tcc) Instructions
Traps number 0x0 to 0x7f are all SPARC V9 compliant. They can be used by user 
software or by privileged software. The trap will be delivered to the supervisor if 
TL < MAXPTL(2). Otherwise, it will be delivered to the hypervisor.

Traps number 0x80 to 0xff can only be used by privileged software. These traps are 
always delivered to hypervisor. User software using trap number 0x80 to 0xff will 
result in an illegal instruction trap if the condition code evaluates to true. Otherwise, it 
is just a NOP.

The instruction decoding and condition code evaluation of Tcc instructions are done 
by the instruction fetch unit (IFU) and the seventh bit of the Trap# is checked by the 
TLU.

2.10.14 Trap Level 0 Trap for Hypervisor
Whenever the trap level (TL) changes from non-zero to zero, and if the HPSTATE.tlz 
bit is set to 1, and the thread is not at Hypervisor privilege level, then a precise trap 
level 0 (TLZ) trap will be delivered to the hypervisor on the next following 
instruction.

The trap level can be changed by the done or the retry instructions or a WRPR 
instruction to TL. The trap is taken on the instruction immediately following these 
instructions. The change could be stepping down the trap level, or changing the TL 
from >0 to 0. The HPSTATE.tlz bit will not be cleared by the hardware when a trap 
is taken so the TLZ trap (tlz-trap) handler has to clear this bit before returning in 
order to avoid the infinite tlz-trap loop.

2.10.15 Performance Control Register and Performance 
Instrumentation Counter
Each thread has a privileged performance control register (PCR). Non-privileged 
accesses to this register causes a privileged_opcode trap. 

Each thread has a performance instrumentation counter (PIC) register. The access 
privileged is controlled by the setting the PERF_CONTROL_REG.PRIV bit. When 
PERF_CONTROL_REG.PRIV=1, non-privileged accesses to this register cause a 
privileged_action trap.

FIGURE 2-36 highlights the layout of PCR and PIC.
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FIGURE 2-36 PCR and PIC Layout

If the PCR.OVFH bit is set to 1, the PIC.H has overflowed and the next event will 
cause a disrupting trap that appears to be precise to the instruction following the 
event.

If the PCR.OVFL bit is set to 1, the PIC.L has overflowed and next event will cause a 
disrupting trap that appears to be precise to the instruction following the event.

If the PCR.UT bit is set to 1, it counts events in user mode. Otherwise, it will ignore 
user mode events.

If the PCR.ST bit is set to 1 and HPSTATE.ENB is also set to 1, it counts events in 
supervisor mode. Otherwise, it will ignore supervisor mode events.

If the PCR.ST bit is set to 1 and HPSTATE.ENB is also set to 0, it counts events in 
hypervisor mode. Otherwise, it will ignore hypervisor mode events.

If the PCR.PRIV bit is set to 1, it prevents user code access to the PIC counter. 
Otherwise, it allows the user code to access the PIC counter.

The PIC.H bits form the instruction counter. Trapped or canceled instructions will 
not be counted. The Tcc instructions will be counted even if some other trap is taken 
on them. 
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The PIC.L bits form the event counter. The TLU includes only the counter control 
logic, while the other functional units in the SPARC core provide the logic to signal 
any event. An event counter overflow will generate a disrupting trap, while a 
performance counter overflow will generate a disrupting but precise trap (of a type 
level_15 interrupt) on the next following instruction and set the PCR.OVFH or the 
PCR.OVFL bits and bit-15 of the SOFTINT_REG register.

Software writes to the PCR that set one of the overflow bits (OVFH, OVFL) will also 
cause a disrupting but precise trap on the instruction following the next 
incrementing event.
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CHAPTER 3

CPU-Cache Crossbar

This chapter contains the following topics:

■ Section 3.1, “Functional Description” on page 3-1

■ Section 3.2, “CCX I/O List” on page 3-9

■ Section 3.3, “CCX Timing Diagrams” on page 3-13

■ Section 3.4, “PCX Internal Blocks Functional Description” on page 3-17

■ Section 3.5, “CPX Internal Blocks Functional Description” on page 3-20

3.1 Functional Description

3.1.1 CPU-Cache Crossbar Overview
The CPU-cache crossbar (CCX) manages the communication among the eight CPU 
cores, the four L2-cache banks, the I/O bridge, and the floating-point unit (FPU). 
These functional units communicate with each by sending packets, and the CCX 
arbitrates the packet delivery.

Each SPARC CPU core can send a packet to any one of the L2-cache banks, the I/O 
bridge, or the FPU. Conversely, packets can also be sent in the reverse direction, 
where any of the four L2-cache banks, the I/O bridge, or the FPU can send a packet 
to any one of the eight CPU cores.

FIGURE 3-1 shows that each of the eight SPARC CPU cores can communicate with 
each of the four L2-cache banks, the I/O bridge, and the FPU. The cache-processor 
crossbar (CPX) and the processor-cache crossbar (PCX) packet formats are described 
in Section 3.1.5, “CPX and PCX Packet Formats” on page 3-5.
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FIGURE 3-1 CPU Cache-Crossbar (CCX) Interface

3.1.2 CCX Packet Delivery
The CCX consists of two main blocks – processor-cache crossbar (PCX) and the 
cache-processor crossbar (CPX). The PCX block manages the communication from 
any of the eight CPUs (source) to any of the four L2-cache banks, I/O bridge, or FPU 
(destination). The CPX manages communication from any of the four L2-cache 
banks, I/O bridge, or FPU (source), to any of the eight CPUs (destination). FIGURE 3-2 
illustrates the PCX interface and FIGURE 3-3 illustrates the CPX interface.

FIGURE 3-2 Processor Cache-Crossbar (PCX) Interface
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When multiple sources send a packet to the same destination, the CCX buffers each 
packet and arbitrates its delivery to the destination. The CCX does not modify or 
process any packet.

In one cycle, only one packet can be delivered to a particular destination. The CCX 
handles two types of communication requests. The first type of requests contain one 
packet and it is delivered in one cycle. The second type of request contains two 
packets, and these two packets are delivered in two cycles. 

The total number of cycles required for a packet to travel from the source to the 
destination may be more than the number of cycles required to deliver a packet. This 
issue occurs when the PCX (or the CCX) uses more than one cycle to deliver the 
packet. The PCX (or the CCX) uses more than one cycle to deliver a particular packet 
if multiple sources can send packets for the same destination.

3.1.3 Processor-Cache Crossbar Packet Delivery
The processor-cache crossbar (PCX) accepts packets from a source (any of eight 
SPARC CPU cores) and delivers the packet to its destination (any one of the four L2-
cache banks, the I/O bridge, or the FPU).

A source sends a packet and a destination ID to the PCX. These packets are sent on 
a 124-bit wide bus. Out of the 124 bits, 40 bits are used for address, 64 bits for data, 
and rest of the bits are used for control. The destination ID is sent on a separate 5-bit 
bus. Each source connects with its own separate bus to the PCX. Therefore, there are 
eight buses that connect from the CPUs to the PCX. 

The PCX connects to each destination by way of a separate bus. However, the FPU 
and I/O bridge share the same bus. Therefore, there are five buses that connect the 
PCX to the six destinations. The PCX does not perform any packet processing and 
therefore the bus width from the PCX to each destination is 124-bits wide, which is 
identical to the PCX packet width. FIGURE 3-2 illustrates this PCX interface.

Since both the FPU and the I/O bridge share a destination ID, the packets intended 
for each get routed to both. The FPU and I/O bridge each decode the packet to 
decide whether to consume or discard the packet.

A source can send at most two single-packet requests or one two-packet request to a 
particular destination. There is a 2 deep queue inside the PCX for each source-
destination pair that holds the packet. The PCX sends a grant to the source after 
dispatching a packet to its destination. Each source uses this handshake signal to 
monitor the queue full condition.

The L2-caches and the I/O bridge can process a limited number of packets. When a 
destination reaches its limit, it sends a stall signal to the PCX. This stall signal 
prevents the PCX from sending the grant to a source (CPU core). The FPU, however, 
cannot stall the PCX.
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3.1.4 Cache-Processor Crossbar Packet Delivery
The cache-processor crossbar (CPX) accepts packets from a source (which can be one 
of the four L2-cache banks, the I/O bridge, or the FPU) and delivers the packet to its 
destination (one any of eight SPARC CPU cores). 

A source sends a packet and a destination ID to the CPX. The packets are sent on a 
145-bit wide bus. Out of the 145 bits, the 128 bits is used for data and the rest of the 
bits are used for control.

The destination ID is sent on a separate 8-bit bus. Each source connects with the CPX 
on its own separate bus. Therefore, there are six buses that connect from the four 
L2-caches, the I/O bridge, and the FPU to the CPX. The CPX connects by way of a 
separate bus to each destination. Therefore, there are eight buses from the PCX that 
connect it to the six destinations. The CPX does not perform any packet processing, 
so the bus width from the CPX to each destination is 145-bits wide, which is 
identical to the bus width from the source to the CPX. FIGURE 3-3 illustrates the CPX 
interface.

FIGURE 3-3 Cache-Processor Crossbar (CPX) Interface

A source can send at most two single-packet requests, or one two-packet request, to 
a particular destination. There is a 2 deep queue inside the CPX for each source-
destination pair that holds the packet. The CPX sends a grant to the source after 
dispatching a packet to its destination. Each source uses this handshake signal to 
monitor the queue full condition.

Unlike the PCX, the CPX does not receive a stall from any of its destinations, as each 
CPU has an efficient mechanism to drain the buffer that stores the incoming packets.

CPU (8)

L2Cache (4) IOBridge FPU
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3-4  OpenSPARC T1 Microarchitecture Specification • August 2006



3.1.5 CPX and PCX Packet Formats
TABLE 3-1 and TABLE 3-2 define the CPX packet format, and TABLE 3-3 and TABLE 3-4 
define the PCX packet format.

Note – For the next four packet format tables, the table entries are defined as 
follows:

■ x – Not used or don’t care
■ V – Valid
■ rs – Source register
■ rd – Destination register
■ T – Thread ID
■ FD – Forwarded data
■ src – Source
■ tar – Target

TABLE 3-1 CPX Packet Format – Part 1 

Pkt bits No. Load
I$fill (1) 
L2,IOB I$fill (2) L2 Strm Load Evict Inv

Valid 144 1 V V V V V

Rtntyp 143:140 4 0000 0001 0001 0010 0011

L2 miss 139 1 V V 0 V x

ERR 138:137 2 V V V V x

NC 136 1 V V V V V

Shared bit 135 1 T T T T x

Shared bit 134 1 T T T T x

Shared bit 133 1 WV WV,0 WV WV x

Shared bit 132 1 W W,x W W x

Shared bit 131 1 W W,x W W x

Shared bit 130 1 0 0, F4B 0 A x

Shared bit 129 1 atomic 0 1 B x

Reserved 128 1 PFL 0 0 0 0

Data 127:0 128 V V V V {INV1 
+6(pa) 
+112(inv)}
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TABLE 3-2 CPX Packet Format – Part 2 

Pkt bits No. Store Ack
Strm Store 
Ack Int FP

Fwd 
req

Fwd 
Reply Error

Valid 144 1 V V V V V V V

Rtntyp 143:140 4 0100 0101 0110 0111 1000 1001 1010 1011 1100

L2 miss 139 1 x x x x x x x

ERR 138:137 2 x x x x x V V

NC 136 1 V V flush V R/!W R/!W x

Shared bit 135 1 T T x T x x 0

Shared bit 134 1 T T x T x x 0

Shared bit 133 1 x x x x src tar x

Shared bit 132 1 x x x x src tar x

Shared bit 131 1 x x x x src tar x

Shared bit 130 1 x/R A x x SASI x x

Shared bit 129 1 atomic x x x x x x

Reserved 128 1 x/R 0 0 0 0 0 0 0

Data 127:0 128 {INV2 
+3(cpu) 
+6(pa) 
+112(inv)}

{INV3 
+3(cpu) 
+6pa)  
+112(inv)}

V! V* FD {64(x)  
+ Data}

x
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TABLE 3-3 PCX Packet Format – Part 1 

Pkt Bits No. Load Ifill Req ST CAS(1) CAS(2)

Valid 123 1 V V V V V

Rqtyp 122:118 5 00000 10000 00001 00010 00011

NC 117 1 V V V ‘1’ ‘1’

Cpu_idfs 116:114 3 V V V V V

Thread_id 113:112 2 V V V V V

Invalidate 111 1 V V 0 0 0

Prefetch 110 1 V 0 BST 0 0

Block init store/ 
Displacement 
flush

109 1 DF 0 BIS/BST 0 0

Rep_L1_way 108:107 2 V V P V x

Size 106:104 3 V x V V V

Address 103:64 40 V V# V V V

Data 63:0 64 x x V Vrs2 Vrd
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TABLE 3-4 PCX Packet Format – Part 2 

Pkt Bits No.
SWP 
Ldstb

Stream
loads

Stream
Store Int FP (1) FP (2)

Fwd 
req

Fwd 
reply

Valid 123 1 V V V V V V V V

Rqtyp 122:118 5 00110 00100 00101 01001 01010 01011 01100 01101 01110

NC 117 1 ‘1’ ‘1’ V Br x x R/!W R/!W

Cpu_id 116:114 3 V V V V V V src tar

Thread_id 113:112 2 V V V V V V 000  x

Invalidate 111 1 0 0 0 0 x x 0 0

Prefetch 110 1 0 0 0 0 x x 0 0

Block init store/ 
Displacement flush

109 1 0 0 0 0 x x 0 0

Rep_L1_way 108:107 2 V V A,x x x x x x

Size 106:104 3 V A,B,x V x x x 011 ERR 

Address 103:64 40 V V V x V* V* V x

Data 63:0 64 Vrs2 x V V! RS2 RS1 V/x V/x
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3.2 CCX I/O List
TABLE 3-5 lists the CCX I/O signals.

TABLE 3-5 CCX I/O Signal List 

Signal Name I/O Source/Destination Description

adbginit_l In  Asynchronous reset

ccx_scanin0 In DFT Scan in 0

ccx_scanin1 In DFT Scan in 1

clk_ccx_cken In CTU 

cmp_arst_l In CTU Asynchronous reset

cmp_grst_l In CTU Synchronous reset

ctu_tst_macrotest In CTU 

ctu_tst_pre_grst_l In CTU 

ctu_tst_scan_disable In CTU 

ctu_tst_scanmode In CTU 

ctu_tst_short_chain In CTU 

fp_cpx_data_ca[144:0] In FPU FPU CPX data

fp_cpx_req_cq[7:0] In FPU FPU CPX request

gclk[1:0] In CTU Clock

gdbginit_l In CTU Synchronous reset

global_shift_enable In CTU 

iob_cpx_data_ca[144:0] In IOB IOB CPX data

iob_cpx_req_cq[7:0] In IOB IOB CPX request

sctag0_cpx_atom_cq In L2-Bank0 Atomic packet

sctag0_cpx_data_ca[144:0] In L2-Bank0 L2 CPX data

sctag0_cpx_req_cq[7:0] In L2-Bank0 L2 CPX request

sctag0_pcx_stall_pq In L2-Bank0 PCX Stall

sctag1_cpx_atom_cq In L2-Bank1 Atomic packet

sctag1_cpx_data_ca[144:0] In L2-Bank1 L2 CPX data

sctag1_cpx_req_cq[7:0] In L2-Bank1 L2 CPX request
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sctag1_pcx_stall_pq In L2-Bank1 PCX stall

sctag2_cpx_atom_cq In L2-Bank2 Atomic packet

sctag2_cpx_data_ca[144:0] In L2-Bank2 L2 CPX data

sctag2_cpx_req_cq[7:0] In L2-Bank2 L2 CPX request

sctag2_pcx_stall_pq In L2-Bank2 PCX stall

sctag3_cpx_atom_cq In L2-Bank3 Atomic packet

sctag3_cpx_data_ca[144:0] In L2-Bank3 L2 CPX data

sctag3_cpx_req_cq[7:0] In L2-Bank3 L2 CPX request

sctag3_pcx_stall_pq In L2-Bank3 PCX stall

spc0_pcx_atom_pq In sparc0 Atomic packet

spc0_pcx_data_pa[123:0] In sparc0 SPARC PCX data/address

spc0_pcx_req_pq[4:0] In sparc0 SPARC PCX request

spc1_pcx_atom_pq In  sparc1 Atomic packet

spc1_pcx_data_pa[123:0] In sparc1 SPARC PCX data/address

spc1_pcx_req_pq[4:0] In sparc1 SPARC PCX request

spc2_pcx_atom_pq In sparc2 Atomic packet

spc2_pcx_data_pa[123:0] In sparc2 SPARC PCX data/address

spc2_pcx_req_pq[4:0] In sparc2 SPARC PCX request

spc3_pcx_atom_pq In sparc3 Atomic packet

spc3_pcx_data_pa[123:0] In sparc3 SPARC PCX data/address

spc3_pcx_req_pq[4:0] In sparc3 SPARC PCX request

spc4_pcx_atom_pq In sparc4 Atomic packet

spc4_pcx_data_pa[123:0] In sparc4 SPARC PCX data/address

spc4_pcx_req_pq[4:0] In sparc4 SPARC PCX request

spc5_pcx_atom_pq In sparc5 Atomic packet

spc5_pcx_data_pa[123:0] In sparc5 SPARC PCX data/address

spc5_pcx_req_pq[4:0] In sparc5 SPARC PCX request

spc6_pcx_atom_pq In sparc6 Atomic packet

spc6_pcx_data_pa[123:0] In sparc6 SPARC PCX data/address

spc6_pcx_req_pq[4:0] In sparc6 SPARC PCX request

TABLE 3-5 CCX I/O Signal List (Continued)

Signal Name I/O Source/Destination Description
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spc7_pcx_atom_pq In sparc7 Atomic racket

spc7_pcx_data_pa[123:0] In sparc7 SPARC PCX data/address

spc7_pcx_req_pq[4:0] In sparc7 SPARC PCX request

iob_pcx_stall_pq In IOB PCX stall

ccx_scanout0 Out DFT Scan out 0

ccx_scanout1 Out DFT Scan out 1

cpx_iob_grant_cx2[7:0] Out IOB CPX grant

cpx_sctag0_grant_cx[7:0] Out L2-Bank0 CPX grant

cpx_sctag1_grant_cx[7:0] Out L2-Bank1 CPX grant

cpx_sctag2_grant_cx[7:0] Out L2-Bank2 CPX grant

cpx_sctag3_grant_cx[7:0] Out L2-Bank3 CPX grant

cpx_spc0_data_cx2[144:0] Out sparc0 CPX SPARC data

cpx_spc0_data_rdy_cx2 Out sparc0 CPX data ready

cpx_spc1_data_cx2[144:0] Out sparc1 CPX SPARC data

cpx_spc1_data_rdy_cx2 Out sparc1 CPX data ready

cpx_spc2_data_cx2[144:0] Out sparc2 CPX SPARC data

cpx_spc2_data_rdy_cx2 Out sparc2 CPX data ready

cpx_spc3_data_cx2[144:0] Out sparc3 CPX SPARC data

cpx_spc3_data_rdy_cx2 Out sparc3 CPX data ready

cpx_spc4_data_cx2[144:0] Out sparc4 CPX SPARC data

cpx_spc4_data_rdy_cx2 Out sparc4 CPX data ready

cpx_spc5_data_cx2[144:0] Out  sparc5 CPX SPARC data

cpx_spc5_data_rdy_cx2 Out sparc5 CPX data ready

cpx_spc6_data_cx2[144:0] Out sparc6 CPX SPARC data

cpx_spc6_data_rdy_cx2 Out sparc6 CPX data ready

cpx_spc7_data_cx2[144:0] Out sparc7 CPX SPARC data

cpx_spc7_data_rdy_cx2 Out sparc7 CPX data ready

pcx_fp_data_px2[123:0] Out FPU PCX data

pcx_fp_data_rdy_px2 Out FPU PCX data ready

pcx_iob_data_px2[123:0] Out IOB PCX data

TABLE 3-5 CCX I/O Signal List (Continued)

Signal Name I/O Source/Destination Description
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pcx_iob_data_rdy_px2 Out IOB PCX data ready

pcx_sctag0_atm_px1 Out L2-Bank0 PCX atomic packet

pcx_sctag0_data_px2[123:0] Out L2-Bank0 PCX data

pcx_sctag0_data_rdy_px1 Out L2-Bank0 PCX data ready

pcx_sctag1_atm_px1 Out L2-Bank1 PCX atomic packet

pcx_sctag1_data_px2[123:0] Out L2-Bank1 PCX data

pcx_sctag1_data_rdy_px1 Out L2-Bank1 PCX data ready

pcx_sctag2_atm_px1 Out L2-Bank2 PCX atomic packet

pcx_sctag2_data_px2[123:0] Out L2-Bank2 PCX data

pcx_sctag2_data_rdy_px1 Out L2-Bank2 PCX data ready

pcx_sctag3_atm_px1 Out L2-Bank3 PCX atomic packet

pcx_sctag3_data_px2[123:0] Out L2-Bank3 PCX data

pcx_sctag3_data_rdy_px1 Out L2-Bank3 PCX data ready

pcx_spc0_grant_px[4:0] Out sparc0 PCX grant to SPARC

pcx_spc1_grant_px[4:0] Out sparc1 PCX grant to SPARC

pcx_spc2_grant_px[4:0] Out sparc2 PCX grant to SPARC

pcx_spc3_grant_px[4:0] Out sparc3 PCX grant to SPARC

pcx_spc4_grant_px[4:0] Out sparc4 PCX grant to SPARC

pcx_spc5_grant_px[4:0] Out sparc5 PCX grant to SPARC

pcx_spc6_grant_px[4:0] Out sparc6 PCX grant to SPARC 

pcx_spc7_grant_px[4:0] Out sparc7 PCX grant to SPARC

rclk Out CCX Clock

TABLE 3-5 CCX I/O Signal List (Continued)

Signal Name I/O Source/Destination Description
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3.3 CCX Timing Diagrams
FIGURE 3-4 shows the timing diagram for processing a single packet request.

FIGURE 3-4 PCX Packet Transfer Timing – One Packet Request

CPU0 signals the PCX that it is sending a packet in cycle PQ. CPU0 then sends a 
packet in cycle PA. ARB0 looks at all pending requests and issues a grant to CPU0 in 
cycle PX. ARB0 sends a data ready signal to the L2-cache Bank0 in cycle PX. ARB0 
sends the packet to the L2-cache Bank0 in cycle PX2.
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FIGURE 3-5 shows timing diagram for processing a two-packet request.

FIGURE 3-5 PCX Packet Transfer Timing – Two-Packet Request

CPU0 signals the PCX that it is sending a packet in cycle PQ. CPU0 also asserts 
spc0_pcx_atom_pq, which tells the PCX that CPU0 is sending a two-packet request. 
The PCX handles all two-packet requests atomically. CPU0 sends the first packet in 
cycle PA and the second packet in cycle PX. ARB0 looks at all pending requests and 
issues a grant to CPU0 in cycle PX. The grant is asserted for two cycles. The PCX 
also asserts pcx_sctag0_atm_px1 in cycle PX, which tells the L2-cache Bank0 that the 
PCX is sending a two-packet request. ARB0 sends a data ready signal to the L2-cache 
Bank0 in cycle PX. ARB0 sends the two packets to the L2-cache Bank0 in cycles PX2 
and PX3.
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Note – FIGURE 3-4 and FIGURE 3-5 represent the best case scenario when there are no 
pending requests.

The timing for CPX transfers is similar to PCX transfers with the following 
difference—the data ready signal from the CPX is delayed by one cycle before 
sending the packet to its destination. FIGURE 3-6 and FIGURE 3-7 shows the CPX 
packet transfer timing diagrams.

FIGURE 3-6 CPX Packet Transfer Timing Diagram – One Packet Request

Arbiter
control

Arbiter
data

select

sctag0_cpx_req_cq[0]

sctag0_cpx_data_ca[144:0]

cpx_sctag0_grant_px

cpx_spc0_data_rdy_cx21

cpx_spc0_data_cx2[144:0]

CQ CA CX CX2

pkt1

pkt1
Chapter 3 CPU-Cache Crossbar  3-15



FIGURE 3-7 CPX Packet Transfer Timing Diagram – Two Packet Request
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3.4 PCX Internal Blocks Functional 
Description

3.4.1 PCX Overview
The PCX contains five identical arbiter modules—one for each destination. An 
arbiter stores the packets from the sources for one particular destination. The PCX 
then arbitrates and dispatches packets to that destination. FIGURE 3-8 shows a block 
diagram of the PCX arbitration.

FIGURE 3-8 PCX and CPX Internal Blocks
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3.4.2 PCX Arbiter Data Flow
The PCX contains five identical arbiter modules. While data flows similarly inside 
other arbiters, this section will describe the data flow inside one of the arbiters 
(ARB0). There is a 124-bit wide bus from each SPARC CPU core that extends out to 
the five arbiters (one bus for each arbiter corresponding to a destination).

ARB0 can receive packets from any of the eight CPUs for the L2-cache Bank0, and it 
stores packets from each CPU in a separate queue. Therefore, ARB0 contains eight 
queues. Each queue is a two entry deep FIFO, and each entry can hold one packet. A 
packet is 124-bits wide and it contains the address, the data, and the control bits. 
ARB0 delivers packets to the L2-cache Bank0 on a 124-bit wide bus. FIGURE 3-9 shows 
this data flow.

FIGURE 3-9 Data Flow in PCX Arbiter
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3.4.3 PCX Arbiter Control Flow
This section describes the control flow inside ARB0 (the control flow is similar inside 
other arbiters).

ARB0 dispatches packets to the destination in the order it receives each packet. 
Therefore, a packet received in cycle 4 will be dispatched before a packet received in 
cycle 5. When multiple sources dispatch a packet in the same cycle, ARB0 follows a 
round-robin policy to arbitrate among packets from multiple sources.

A 5-bit bus originates from each CPU, and the bit corresponding to the destination is 
high while all other bits are low. Each arbiter receives one bit from the 5-bit bus from 
each CPU.

The arbitration scheme is implemented using a simple checkerboard as shown in 
FIGURE 3-10.

FIGURE 3-10 Control Flow in PCX Arbiter
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most two valid bits in each FIFO. Therefore, the entire checkerboard can have a 
maximum of 16 valid bits. This maximum represents the case when the L2-cache 
Bank0 is unable to process any new entry. The PCX reaches the maximum limit of 
storing two packets from each source.

There can be only one entry for each request, even if a request contains two packets. 
Such requests occupy one valid entry in the checkerboard and two FIFO entries in 
the data queue. A separate bit identifies a two-packet request.

The direction for the round-robin selection depends on the direction bit. Round-
robin selection is left-to-right (C0 - C7) if the direction bit is high, or right-to-left (C7 
- C0) if the direction bit is low. The direction bit toggles every cycle.

The direction bit is low for all arbiters at a reset. The direction bit toggles for all 
arbiters during every cycle. This requirement is required to maintain the TSO 
ordering for invalidates sent by an L2-cache bank.

ARB0 picks the first valid entry from the last row of the checkerboard every cycle. 
ARB0 then sends an 8-bit signal to the multiplexer at the output of the FIFOs storing 
the data (as show in FIGURE 3-9). The 8-bit signal is 1-hot, and the index of the high 
bit is same as the index of the entry picked in the last row. If there are multiple valid 
entries, ARB0 picks them in a round-robin fashion. ARB0 decides the direction for 
round-robin based on the direction bit. 

3.5 CPX Internal Blocks Functional 
Description

3.5.1 CPX Overview
The CPX contains eight identical arbiter modules – one for each destination. The 
arbiters inside the CPX are identical to those inside PCX, so see Section 3.4.1, “PCX 
Overview” on page 3-17 for more information.

3.5.2 CPX Arbiters
Data and control flow inside the CPX are identical to those inside the PCX, so see 
Section 3.4.2, “PCX Arbiter Data Flow” on page 3-18 and Section 3.4.3, “PCX Arbiter 
Control Flow” on page 3-19 for more information.
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CHAPTER 4

Level 2 Cache

This chapter contains the following sections:

■ Section 4.1, “L2-Cache Functional Description” on page 4-1

■ Section 4.2, “L2-Cache I/O LIST” on page 4-18

4.1 L2-Cache Functional Description
The following sections describe the OpenSPARC T1 processor level 2 cache 
(L2-cache):

■ Section 4.1.1, “L2-Cache Overview” on page 4-1

■ Section 4.1.2, “L2-Cache Single Bank Functional Description” on page 4-2

■ Section 4.1.3, “L2-Cache Pipeline” on page 4-9

■ Section 4.1.4, “L2-Cache Instruction Descriptions” on page 4-12

■ Section 4.1.5, “L2-Cache Memory Coherency and Instruction Ordering” on 
page 4-17

4.1.1 L2-Cache Overview
The OpenSPARC T1 processor L2-cache is 3 Mbytes in size and is composed of four 
symmetrical banks that are interleaved on a 64-byte boundary. Each bank operates 
independently of each other. The banks are 12-way set associative and 768 Kbytes in 
size. The block (line) size is 64 bytes, and each L2-cache bank has 1024 sets.

The L2-cache accepts requests from the SPARC CPU cores on the processor-to-cache 
crossbar (PCX) and responds on the cache-to-processor crossbar (CPX). The L2-cache 
is also responsible for maintaining the on-chip coherency across all L1-caches on the 
chip by keeping a copy of all L1 tags in a directory structure. Since the OpenSPARC 
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T1 processor implements system on a chip, with single memory interface and no L3 
cache, there is no off-chip coherency requirement for the OpenSPARC T1 L2-cache 
other than it needs to be coherent with the main memory. 

Each L2-cache bank has a 128-bit fill interface and a 64-bit write interface with the 
DRAM controller. Each bank had a dedicated DRAM channel, and each 32-bit word 
is protected by 7-bits of single error correction double error detection (SEC/DED) 
ECC code.

4.1.2 L2-Cache Single Bank Functional Description
The L2-cache is organized into four identical banks. Each bank has its own interface 
with the J-Bus, the DRAM controller, and the CPU-cache crossbar (CCX).

Each L2-cache bank interfaces with the eight SPARC CPU cores through a processor 
-cache crossbar (PCX). The PCX routes the L2-cache requests (loads, ifetches, stores, 
atomics, ASI accesses) from all of the eight CPUs to the appropriate L2-cache bank. 
The PCX also accepts read return data, invalidation packets, and store ACK packets 
from each L2-cache banks and forwards them to the appropriate CPU(s). 

Each L2-cache bank interfaces with one DRAM controller in order to issue reads and 
evictions to the DRAM on misses in the L2-cache. A writeback gets issued 64-bits at 
a time to the DRAM controller. A fill happens 128-bits at a time from the DRAM 
controller to the L2-cache.

The L2-cache interfaces with the J-Bus interface (JBI) by way of the snoop input 
queue and the RDMA write buffer.

Each L2-cache bank consists of these three main sub-blocks:

■ sctag (secondary cache tag) contains the tag array, VUAD array, L2-cache 
directory, and the cache controller

■ scbuf contains write back buffer (WBB), fill buffer (FB) and DMA buffer

■ scdata contains the scdata array

FIGURE 4-1 shows the various L2-cache blocks and their interfaces. The following 
paragraphs provide additional details about each functional block.
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FIGURE 4-1 Flow Diagram and Interfaces for an L2-Cache Bank
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4.1.2.1 Arbiter

The arbiter (ARB) manages the access to the L2-cache pipeline from the various 
sources that request access. The arbiter gets inputs from the following:

■ Instructions from the CCX, and from the bypass path for input queue (IQ)

■ DMA instructions from the snoop input queue (which is the RDMA input queue 
interface with the JBI)

■ Instructions for recycle from the fill buffer and the miss buffer

■ Stall signals from the pipeline (a stall condition will evaluate to true for a signal 
currently in the pipeline)

4.1.2.2 L2 Tag

The L2 tag block contains the sctag array and the associated control logic. Each 22-bit 
tag is protected by 6-bits of SEC ECC (the L2 tag does not support double-bit error 
detection). sctag is a single ported array, and it supports inline false hit detection. In 
the C1 stage of pipeline, the access address bits, as well the check bits, are compared. 
Therefore, there is never a false hit.

The state of each line is maintained using valid (V), used (U), allocated (A), and 
dirty (D) bits. These bits are stored in the L2 VUAD array.

4.1.2.3 L2 VUAD States

The four state bits for sctags are organized in a dual-ported array structure in the L2 
VUAD array. The four states are – valid (V), used (U), allocated (A), and dirty (D). 
The used bit is not protected because a used error will not cause incorrect 
functionality. VAD bits are parity protected because an error will be fatal. The L2 
VUAD array has two read and two write ports.

A valid bit indicates that the line is valid. The valid bit (per way) gets set when a 
new line is installed in that way. It gets reset when that line gets invalidated.

The used bit is a reference bit used in the replacement algorithm. The L2-cache uses 
a pseudo LRU algorithm for selecting a way to be replaced. There are 12 used bits 
per set in the L2-cache. The used bit gets set when there are any store/load hits 
(1 per way). Used bits get cleared (all 12 at a time) when there are no unused or 
unallocated entries for that set. 

The allocate bit indicates that the marked line has been allocated to a miss. This bit 
is also used in the processing of some special instructions, such as atomics and 
partial stores. (Because these stores do read-modify-writes, which involve two passes 
through the pipe, the line needs to be locked until the second pass completes; 
otherwise, the line may get replaced before the second pass happens). The allocate 
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bit, therefore, acts analogous to a lock bit. The allocate bit (per way) gets set when a 
line gets picked for replacement. For a load or an ifetch, the bit gets cleared when a 
fill happens, and for a store when a store completes. 

The dirty bit indicates that L2-cache contains the only valid copy of the line. The 
dirty bit (per way) gets set when a stores modifies the line. It gets cleared when the 
line is invalidated. 

The pseudo least recently used (LRU) algorithm examines all the ways starting from 
a certain point in a round-robin fashion. The first unused, unallocated ways is 
selected for replacement. If no unused, unallocated way is found, then the first 
unallocated way is selected.

4.1.2.4 L2 Data (scdata)

The L2 data (scdata) array bank is a single ported SRAM structure. Each L2-cache 
bank is 768 Kbytes in size, with each logical line 64 bytes in size. The bank allows 
read access of 16 bytes and 64 bytes, and each cache line has 16 byte-enables to allow 
writing into each 4-byte part. However, a fill updates all 64 bytes at a time.

Each scdata array bank is further subdivided into four columns. Each column 
consists of six 32-Kbyte sub-arrays.

Any L2-cache data array access takes two cycles to complete, so no columns can be 
accessed in consecutive cycles. All access can be pipelined except back-to-back 
accesses to the same column. The scdata array has a throughput of one access per 
cycle.

Each 32-bit word is protected by seven bits of SEC/DED ECC. (Each line is 32 x [32 
+ 7 ECC] = 1248 bits). All sub-word accesses require a read modify write operation 
to be performed, and they are referred to in this chapter as partial stores.

4.1.2.5 Input Queue

The input queue (IQ) is a 16-entry FIFO that queues packets arriving on the PCX 
when they cannot be immediately accepted into the L2-cache pipe. Each entry in the 
IQ is 130-bits wide 

The FIFO is implemented with a dual-ported array. The write port is used for 
writing into the IQ from the PCX interface. The read port is for reading contents for 
issue into the L2-cache pipeline. If the IQ is empty when a packet comes to the PCX, 
the packet can pass around the IQ if it is selected for issue to the L2-cache pipe. The 
IQ asserts a stall to the PCX when all eleven entries are used in the FIFO. This stall 
allows space for the packets already in flight.
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4.1.2.6 Output Queue

The output queue (OQ) is a 16 entry FIFO that queues operations waiting for access 
to the CPX. Each entry in the OQ is 146-bits wide. The FIFO is implemented with a 
dual-ported array. The write port is used for writing into the OQ from the L2-cache 
pipe. The read port is used for reading contents for issue to the CPX. If the OQ is 
empty when a packet arrives from the L2-cache pipe, the packet can pass around the 
OQ if it is selected for issue to the CPX.

Multicast requests are dequeued from the FIFO only if all the of CPX destination 
queues can accept the response packet. When the OQ reaches its high-water mark, 
the L2-cache pipe stops accepting inputs from miss buffer or the PCX. Fills can 
happen while the OQ is full since they do not generate CPX traffic.

4.1.2.7 Snoop Input Queue

The Snoop input queue (SNPIQ) is a two-entry FIFO for storing DMA instructions 
coming from the JBI. The non-data portion (the address) is stored in the snoop input 
queue (SNPIQ). For a partial line write (WR8), both the control and the store data is 
stored in snoop input queue.

4.1.2.8 Miss Buffer

The 16-entry miss buffer (MB) stores instructions which cannot be processed as a 
simple cache hit. These instructions include true L2-cache misses (no tag match), 
instructions that have the same cache line address as a previous miss or an entry in 
the writeback buffer, instructions requiring multiple passes through the L2-cache 
pipeline (atomics and partial stores), unallocated L2-cache misses, and accesses 
causing tag ECC errors.

The miss buffer is divided into a non-tag portion which holds the store data, and a 
tag portion which contains the address. The non-tag portion of the buffer is a RAM 
with 1 read and 1 write port. The tag portion is a CAM with 1 read, 1 write, and 1 
cam port.

A read request is issued to the DRAM and the requesting instruction is replayed 
when the critical quad-word of data arrives from the DRAM.

All entries in the miss buffer that share the same cache line address are linked in the 
order of insertion in order to preserve the coherency. Instructions to the same 
address are processed in age order, whereas instructions to different addresses are 
not ordered and exist as a free list.

When an MB entry gets picked for issue to the DRAM (such as a load, store, or ifetch 
miss), the MB entry gets copied into the fill buffer and a valid bit gets set. There can 
be up to 8 reads outstanding from the L2-cache to the DRAM at any point of time. 
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Data can come from the DRAM to the L2-cache out of order with respect to the 
address order. When the data comes back out of order, the MB entries get readied for 
issue in the order of the data return. This means that there is no concept of age in the 
order of data returns to the CPU as these are all independent accesses to different 
addresses. Therefore, when a later read gets replayed from the MB down the pipe 
and invalidates its slot in the MB, a new request from the pipe will take its slot in the 
MB, even while an older read has not yet returned data from the DRAM.

In most cases, when a data return happens, the replayed load from the MB makes it 
through the pipe before the fill request can. Therefore, the valid bit of the MB entry 
gets cleared (after the replayed MB instruction execution is complete in the pipe) 
before the fill buffer valid bit. However, if there are other prior MB instructions, like 
partial stores that get picked instead of the MB instruction of concern, the fill request 
can enter the pipe before the MB instruction. In these cases, the valid bit in the fill 
buffer gets cleared prior to the MB valid bit. Therefore, the MB valid bit and FB valid 
bits always get set in the order of MB valid bit first, and FB valid bit second. (These 
bits can get cleared in any order, however.)

4.1.2.9 Fill Buffer

The fill buffer (FB) contains a cache-line wide entry to the stage data from the DRAM 
before it fills the cache. Addresses are also stored for maintaining the age ordering in 
order to satisfy coherency conditions. 

The fill buffer is an 8 entry buffer used to temporarily store data arriving from the 
DRAM on an L2-cache miss request. Data arrives from the DRAM in four 16-byte 
blocks starting with the critical quad-word. A load instruction waiting in the miss 
buffer can enter the pipeline after the critical quad-word arrives from the DRAM 
(the critical 16 bytes will arrive first from the DRAM). In this case, the data is 
bypassed. After all four quad-words arrive, the fill instruction enters the pipeline 
and fills the cache (and the fill buffer entry gets invalidated). 

When data comes back in the FB, the instruction in the MB gets readied for reissue 
and the cache line gets written into the data array. These two events are independent 
and can happen in any order. 

For a non-allocating read (for example, an I/O read), the data gets drained from the 
fill buffer directly to the I/O interface when the data arrives (and the fill buffer entry 
gets invalidated). When the FB is full, the miss buffer cannot make requests to the 
DRAM.

The fill buffer is divided into a RAM portion, which stores the data returned from 
the DRAM waiting for a fill to the cache, and a CAM portion, which contains the 
address. The fill buffer has a read interface with the DRAM controller. 
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4.1.2.10 Writeback Buffer

The writeback buffer (WBB) is an eight entry buffer used to store the 64-byte evicted 
dirty data line from the L2-cache. The replacement algorithm picks a line for eviction 
on a miss. The evicted lines are streamed out to the DRAM opportunistically. An 
instruction whose cache line address matches the address of an entry in the WBB is 
inserted into the miss buffer. This instruction must wait for the entry in the WBB to 
write to the DRAM before entering the L2-cache pipe.

The WBB is divided into a RAM portion, which stores the evicted data until it can be 
written to the DRAM, and a CAM portion, which contains the address.

The WBB has a 64-byte read interface with the scdata array and a 64 -bit write 
interface with the DRAM controller. The WBB reads from the scdata array faster than 
it can flush data out to the DRAM controller.

4.1.2.11 Remote DMA Write Buffer

The remote DMA (RDMA) write buffer is a four entry buffer that accommodates the 
cache line for a 64-byte DMA write. The output interface is with the DRAM 
controller that it shares with the WBB. The WBB has a direct input interface with the 
JBI. 

4.1.2.12 L2-Cache Directory

Each L2-cache directory has 2048 entries, with one entry per L1 tag that maps to a 
particular L2-cache bank. Half of the entries correspond to the L1 instruction-cache 
(icache) and the other half of the entries correspond to the L1 data-cache (dcache). 
The L2 directory participates in coherency management and it also maintains the 
inclusive property of the L2-cache. 

The L2-cache directory also ensures that the same line is not resident in both the 
icache and the dcache (across all CPUs). The L2-cache directory is written in the C5 
cycle of a load or an I-miss that hits the L2-cache, and is cammed in the C5 cycle of 
a store/streaming store operation that hits the L2-cache. The lookup operation is 
performed in order to invalidate all the SPARC L1-caches that own the line other 
than the SPARC core that performed the store.

The L2-cache directory is split into an icache directory (icdir) and a dcache directory 
(dcdir), which are both similar in size and functionality.

The L2-cache directory is written only when a load is performed. On certain data 
accesses (loads, stores and evictions), the directory is cammed to determine whether 
the data is resident in the L1-caches. The result of this CAM operation is a set of 
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match bits which are encoded to create an invalidation vector that is to be sent back 
to the SPARC CPU cores to invalidate the L1-cache lines. Descriptions of these data 
access are as follows:

■ Loads – The icdir is cammed to maintain I/D exclusivity. The dcdir is updated to 
reflect the load data that fills the L1-cache.

■ IFetch – The dcdir is cammed to maintain the I/D exclusivity. The icdir is 
updated to reflect the instruction data that fills the L1-cache.

■ Stores – Both directories are cammed, which ensures that (1) if the store is to 
instruction space, the L1 icache invalidates the line and does not pick up stale 
data; (2) if a line is shared across SPARC CPUs, the L1 dcache invalidates the 
other CPUs and does not pick up the stale data; and (3) the issuing CPU has the 
most current information on the validity of its line.

■ Evictions from the L2-cache – Both directories are cammed to invalidate any line 
that is no longer resident in the L2-cache.

The dcache directory is organized as sixteen panels with sixty-four entries in each 
panel. Each entry number is formed using the cpu ID, way number, and bit 8 from 
the physical address. Each panel is organized in four rows and four columns. The 
icache directory is organized similarly. For an eviction, all four rows are cammed.

4.1.3 L2-Cache Pipeline
This section describes the L2-cache transaction types and the stages of the L2-cache 
pipeline.

4.1.3.1 L2-Cache Transaction Types

The L2-cache processes three main types of instructions:

■ Requests from a CPU by way of the PCX
■ Requests from the I/O by way of the JBI
■ Requests from the IOB by way of the PCX

The requests from a CPU include the following instructions – load, streaming load, 
Ifetch, prefetch, store, streaming store, block store, block init store, atomics, 
interrupt, and flush.

The requests from the I/O include the following instructions – block read (RD64), 
write invalidate (WRI), and partial line write (WR8).

The requests from the I/O buffer includes the following instructions – forward 
request load and forward request store (these instructions are used for diagnostics). 
The test access port (TAP) device cannot talk to the L2-cache directly. The TAP 
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performs diagnostic reads from the JTAG or the L2-cache, and it sends a request to a 
CPU by way of the CPX. The CPU bounces the request to the L2-cache by way of the 
PCX. 

4.1.3.2 L2-Cache Pipeline Stages

The L2-cache access pipeline has eight stages (C1 to C8), and the following sections 
describe the logic executed during each stage of the pipeline.

C1
■ All buffers (WBB, WB and MB) are cammed. The instruction is a dependent 

instruction if the instruction address is found in any of the buffers.

■ Generate ECC for store data.

■ Access VUAD and TAG array to establish a miss or a hit.

C2
■ Pipeline stall conditions are evaluated. The following conditions require that the 

pipeline be stalled:

■ 32-byte access requires two cycles in the pipeline.

■ An I-miss instruction stalls the pipeline for one cycle. When an I-miss 
instruction is encountered in the C2 stage, it stalls the instruction in the C1 
stage so that it stays there for two cycles. The instruction in the C1 stage is 
replayed.

■ For instructions that hit the cache, the way-select generation is completed.

■ Pseudo least recently used (LRU) is used for selecting a way for replacement in 
case of a miss. 

■ VUAD is updated in the C5 stage. However, VUAD is accessed in the C1 stage. 
The bypass logic for VUAD generation is completed in the C2 stage. This process 
ensures that the correct data is available to the current instruction from the 
previous instructions because the C2 stage of the current instruction completes 
before the C5 stage of the last instruction.

■ The miss buffer is cammed in the C1 stage. However, the MB is written in the C3 
stage. The bypass logic for a miss buffer entry generation is completed in the C2 
stage. This ensures that the correct data is available to the current instruction from 
previous instructions, because the C2 stage of the current instruction starts before 
the C3 stage of the last instruction completes.
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C3
■ The set and way select is transmitted to scdata.

■ An entry is created in miss buffer for instructions that miss the cache.

C4
■ The first cycle of read or write to the scdata array for load/store instructions that 

hit the cache.

C5
■ The second cycle of read or write to the scdata array for load/store instructions 

that hit the cache.

■ Write into the L2-cache directory for loads, and CAM the L2-cache directory for 
stores.

■ Write the new state of line into the VUAD array (by now the new state of line has 
been computed).

■ Fill buffer bypass – If the data to service the load that missed the cache is 
available in the FB, then do not wait for the data to be available in the data array. 
The FB provides the data directly to the pipeline.

C6
■ 128-bits of data and 28-bits of ECC are transmitted from the scdata (data array) to 

the sctag (tag array). 

C7
■ Error correction is done by the sctag (data array). 

■ The sctag sends the request packet to the CPX, and the sctag is the only interface 
the L2-cache has with the CPX.

C8
■ A data packet is sent to the CPX. This stage corresponds with the CQ stage of the 

CPX pipeline.

Cache miss instructions are reissued from the miss buffer after the data returns from 
the DRAM controller. These reissued instructions follow the preceding pipeline.
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4.1.4 L2-Cache Instruction Descriptions
The following instructions follow a skewed pipeline. They do not follow the simple 
pipeline like the one described in Section 4.1.3, “L2-Cache Pipeline” on page 4-9.

4.1.4.1 Loads

A load instruction to the L2-cache is caused by any one of the following conditions:

■ A miss in the L1-cache (the primary cache) by a load, prefetch, block load, or a 
quad load instruction. 

■ A streaming load issued by the stream processing unit (SPU)

■ A forward request read issued by the IOB

The output of the scdata array, returned by the load, is 16 bytes in size. This size is 
same as the size of the L1 data cache line. An entry is created in the dcache directory. 
An icache directory entry is invalidated if it exists. An icache directory entry is 
invalidated for L1-cache of every CPU in which it exists.

From an L2-cache perspective, a block load is the same as eight load requests. A 
quad load is same as four load requests.

A prefetch instruction is issued by a CPU and is identical to a load, except for this 
one difference – the results of a prefetch are not written into the L1-cache and 
therefore the tags are not copied into the L2-cache directory. 

From an L2-cache perspective, a streaming load behaves same as a normal load 
except for one difference. The L2-cache understands that it will not install the data in 
the L1-cache. Therefore, the dcache entry is not created and the icache entries are not 
invalidated. The L2-cache returns 128-bits of data.

A forward request read returns 39-bits (32 + 7 ECC) of data. The data is returned 
without an ECC check. Since the forward request load is not installed in the L1-
cache, there is no L2-cache directory access.

4.1.4.2 Ifetch

An ifetch is issued to the L2-cache in response to an instruction missing the L1 
icache. The size of icache is 256-bits. The L2-cache returns the 256-bits of data in two 
packets over two cycles to the requesting CPU over the CPX. The two packets are 
returned as an atomic. The L2-cache then creates an entry in the icache directory and 
invalidates any existing entry in the dcache directory.
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4.1.4.3 Stores

A store instruction to L2-cache is caused by any of the following conditions: 

■ A miss in the L1-cache by a store, block store, or a block init store instruction. 

■ A streaming store issued by the stream processing unit (SPU).

■ A forward request write issued by the IOB.

The store instruction writes (in a granularity of) 32-bits of data into the scdata array. 
An acknowledgment packet is sent to the CPU that issued the request, and an 
invalidate packet is sent to all other CPUs. The icache directory entry for every CPU 
is cammed and invalidated. The dcache directory entry of every CPU, except the 
requesting CPU, is cammed and invalidated.

A block store is the same as eight stores from an L2-cache perspective. A block init 
store is same as a block store except for one difference – in the case of a miss for a 
block init store, a dummy read request is issued to the DRAM controller. The DRAM 
controller returns a line filled with all zeroes. Essentially, this line return saves 
DRAM read bandwidth. 

The LSU treats every store as a total store order (TSO) store. The LSU waits for an 
acknowledgement to arrive before processing the next store. However, block init 
stores can be processed without waiting for acknowledgements.

From the L2-cache's perspective, a streaming store is the same as a store.

A forward request write stores 64-bits of data in the scdata. The icache and the 
dcache directory entries are not cammed afterwards. 

The forward request write and the streaming store may stride a couple of words and 
therefore may require partial stores.

Partial stores (PST) perform sub-32-bit writes into the scdata array. As mentioned 
earlier, the granularity of the writes into the scdata is 32-bits. A partial stores is 
executed as a read-modify-write operation. In the first step the cache line is read and 
merged with the write data. It is then saved in the miss buffer. The cache line is 
written into the scdata array in the second pass of the instruction through the pipe.

4.1.4.4 Atomics

The L2-cache processes three types of atomic instructions – load store unsigned byte 
(LDSTUB), SWAP, and compare and swap (CAS). These instructions require two 
passes down the L2-cache pipeline. 
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LDSTUB/SWAP

The instruction reads a byte from memory into a register, and then it writes 0xFF 
into memory in a single, indivisible operation. The value in the register can then be 
examined to see if it was already 0xFF, which means that another processor got there 
first. If the value is 0x00, then this processor is in charge. This instruction is used to 
make mutual exclusion locks (known as mutexes) that make sure only one processor 
at a time can hold the lock. The lock is acquired through the LDSTUB and cleared by 
storing 0x00 back to the memory.

The first pass reads the addressed cache line and returns 128-bits of data to the 
requesting CPU. It also merges it with unsigned-byte/swap data. This merged data 
is written into the miss buffer. 

In the second pass of the instruction, the new data is stored in the scdata array. An 
acknowledgement is sent to the issuing CPU and the invalidation is sent to all other 
CPUs appropriately. The icache and the dcache directories are cammed and the 
entries are invalidated. In case of atomics, the directory entry of even the issuing 
CPU is invalidated.

CAS/CAS(X)

CAS{X} instructions are handled as two packets on the PCX. The first packet 
(CAS(1)) contains the address and the data (against which the read data will be 
compared). 

The first pass reads the addressed cache line and sends 128-bits of data read back to 
the requesting CPU. (The comparison is performed in the first pass.)

The second packet (CAS(2)) contains the store data. The store data is inserted into 
the miss buffer as a store at the address contained in the first packet. If the 
comparison result is true, the second pass proceeds like a normal store. If the result 
was false, the second pass proceeds to generate the store acknowledgment only. The 
scdata array is not written.

4.1.4.5 J-Bus Interface Instructions

I/O requests are sent to the L2-cache by way of the J-Bus interface (JBI). The L2-
cache processes the following instructions from a JBI – block read (RD64), write 
invalidate (WRI), and partial line write (WR8).
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Block Read

A block read (RD64) from the JBI goes through the L2-cache pipe like a regular load 
from the CPU. On a hit, 64 bytes of data is returned to the JBI. On a miss, the L2-
cache does not allocate, but sends a non-allocating read to the DRAM. It gets 64 
bytes of data from the DRAM and sends it back to the JBI directly (read once data 
only) without installing it in the L2-cache. The CTAG (the instruction identifier) and 
the 64-byte data is returned to the JBI on a 32-bit interface.

Write Invalidate

For a 64-byte write (the write invalidate (WRI) from the JBI), the JBI issues a 64-byte 
write request to the L2-cache.

When the write progresses through the pipe, it looks up the tags. If a tag hit occurs, 
it invalidates the entry and all primary cache entries that match. If a tag miss occurs, 
it does nothing (it just continues down the pipe) to maintain the order.

Data is not written into the scdata cache on a miss. However, the scdata entry, and all 
primary cache lines, are invalidated on a hit.

The CTAG (the instruction identifier) is returned to the JBI when the processor sends 
an acknowledgement to the cache line invalidation request sent over the CPX.

After the instruction is retired from the pipe, 64 bytes of data is written to the 
DRAM. 

Partial Line Write

A partial line write (WR8) supports the writing of any subset of 8 bytes to the scdata 
array by the JBI. However, the bytes written have to be contiguous. The JBI breaks 
down any store that is not composed of contiguous bytes. 

When the JBI issues 8-byte writes to the L2-cache with random byte enables, the L2-
cache treats them just like 8-bytes stores from the CPU. (That is, it does a two-pass 
partial store if an odd number of byte enables are active or if there is a misaligned 
access. Otherwise, it does a regular store.)

Data is written into the scdata cache on a miss (allocated).

The CTAG (the instruction identifier) is returned to the JBI when the processor sends 
an acknowledgement to the cache line invalidation request sent over the CPX.

The directory entry is not created in the case of a miss.
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4.1.4.6 Eviction

When a load or a store instruction is a miss in the L2-cache, a request goes to the 
DRAM controller to bring the cache line from the main memory. Before the arriving 
data can be installed, one of the ways must be evicted. The pseudo LRU algorithm 
described earlier picks the way to be evicted. 

The L2-cache (scdata) includes all valid L1-cache lines. In order to preserve the 
inclusion, the L2-cache directory (both icache and dcache) is cammed with the 
evicted tag, and the corresponding entry is invalidated. The invalidated packets are 
all sent to the appropriate CPUs.

If the evicted line is dirty, it is written into the write back buffer (WBB). The WBB 
opportunistically streams out the cache line to the DRAM controller over a 64-bit 
bus.

4.1.4.7 Fill

A fill is issued following an eviction after an L2-cache store or load miss. The 64-byte 
data arrives from the DRAM controller and is stored in the fill buffer. Data is read 
from the fill buffer and written into the L2-cache scdata array.

4.1.4.8 Other Instructions

L1-Cache Invalidation

The instruction invalidates the four primary cache entries as well as the four L2-
cache directory entries corresponding to each primary cache tag entry. The 
invalidation is issued whenever the CPU detects a parity error in the tags of I-cache 
or dcache. 

Interrupts

When a thread wants to send an interrupt to another thread, it sends it through the 
L2-cache. The L2-cache treats the thread like a bypass. After a decode, the L2-cache 
sends the instruction back to destination CPU if it is a interrupt. 
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Flush

From the L2-cache's perspective, a flush is a broadcast. The OpenSPARC T1 
processor requires this flush instruction. Whenever a self-modifying code is 
performed, the first instruction at the end of the self-modifying sequence should 
come from a new stream.

An interrupt with a BR=1 is broadcast to all CPUs. (Such an interrupt is issued by a 
CPU in response to a flush instruction.)

A flush stays in the output queue until all eight receiving queues are available. This 
is a total store order (TSO) requirement.

4.1.5 L2-Cache Memory Coherency and Instruction 
Ordering
Cache coherency is maintained using a mixture of structures in the miss buffer, fill 
buffer, and the write back buffer. The miss buffer maintains a dependency list for the 
access to the 64 bytes of cache lines with the same address. Responses are sent to the 
CPUs in the age order of the requests for the same address.

The L2-cache directory maintains the cache coherency in all primary caches. The L2-
cache directory preserves the inclusion property – all valid entries in the primary 
cache should reside in the L2-cache as well. It also keeps the icache and the dcache 
exclusive for each CPU.

The read after write (RAW) dependency to the DRAM controller is resolved by 
camming the write back buffer on a load miss.

Mulitcast requests (for example, a flush request) are sent to the CPX only if all of the 
receiving queues are available. This process is a requirement for maintaining the 
total store order (TSO).
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4.2 L2-Cache I/O LIST
The following tables describe the L2-cache I/O signals.

TABLE 4-1 SCDATA I/O Signal List 

Signal Name I/O
Source/
Destination Description

cmp_gclk[1:0] In CTU Clock

global_shift_enable In CTU To data of bw_r_l2d.v

si In DFT Scan in

arst_l, In CTU 

cluster_cken In CTU 

ctu_tst_pre_grst_l In CTU 

ctu_tst_scanmode In CTU 

ctu_tst_scan_disable In CTU 

ctu_tst_macrotest In CTU 

ctu_tst_short_chain In CTU 

efc_scdata_fuse_ashift In EFC To efuse_hdr of scdata_efuse_hdr.v

efc_scdata_fuse_clk1 In EFC To efuse_hdr of scdata_efuse_hdr.v, and so on.

efc_scdata_fuse_clk2 In EFC To efuse_hdr of scdata_efuse_hdr.v, and so on.

efc_scdata_fuse_data In EFC To efuse_hdr of scdata_efuse_hdr.v

efc_scdata_fuse_dshift In EFC To efuse_hdr of scdata_efuse_hdr.v

scbuf_scdata_fbdecc_c4[623:0] In SCBUF To periph_io of scdata_periph_io.v

sctag_scdata_col_offset_c2[3:0] In SCTAG 

sctag_scdata_fb_hit_c3 In SCTAG To rep of scdata_rep.v

sctag_scdata_fbrd_c3 In SCTAG To rep of scdata_rep.v

sctag_scdata_rd_wr_c2 In SCTAG To rep of scdata_rep.v

sctag_scdata_set_c2[9:0] In SCTAG To rep of scdata_rep.v

sctag_scdata_stdecc_c2[77:0] In SCTAG To rep of scdata_rep.v

sctag_scdata_way_sel_c2[11:0] In SCTAG 

sctag_scdata_word_en_c2[15:0] In SCTAG 

so Out DFT Scan out
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scdata_efc_fuse_data Out EFC From efuse_hdr of scdata_efuse_hdr.v

scdata_scbuf_decc_out_c7[623:0] Out SCBUF 

scdata_sctag_decc_c6[155:0] Out SCTAG From rep of scdata_rep.v

TABLE 4-2 SCBUF I/O Signal List 

Signal Name I/O
Source/
Destination Description

sctag_scbuf_fbrd_en_c3 In SCTAG rd en for a fill operation or fb bypass

sctag_scbuf_fbrd_wl_c3[2:0] In SCTAG 

sctag_scbuf_fbwr_wen_r2[15:0] In SCTAG 

sctag_scbuf_fbwr_wl_r2[2:0] In SCTAG 

sctag_scbuf_fbd_stdatasel_c3 In SCTAG Select store data in OFF mode

sctag_scbuf_stdecc_c3[77:0] In SCTAG Store data goes to scbuf and scdata

sctag_scbuf_evict_en_r0 In SCTAG 

sctag_scbuf_wbwr_wen_c6[3:0] In SCTAG Write en

sctag_scbuf_wbwr_wl_c6[2:0] In SCTAG From wbctl

sctag_scbuf_wbrd_en_r0 In SCTAG Triggered by a wr_ack from DRAM

sctag_scbuf_wbrd_wl_r0[2:0] In SCTAG 

sctag_scbuf_ev_dword_r0[2:0] In SCTAG 

sctag_scbuf_rdma_wren_s2[15:0] In SCTAG 

sctag_scbuf_rdma_wrwl_s2[1:0] In SCTAG 

jbi_sctag_req[31:0] In JBI 

jbi_scbuf_ecc[6:0] In JBI 

sctag_scbuf_rdma_rden_r0 In SCTAG 

sctag_scbuf_rdma_rdwl_r0[1:0] In  SCTAG

sctag_scbuf_ctag_en_c7 In SCTAG 

sctag_scbuf_ctag_c7[14:0] In SCTAG 

sctag_scbuf_req_en_c7 In SCTAG 

sctag_scbuf_word_c7[3:0] In SCTAG 

TABLE 4-1 SCDATA I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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sctag_scbuf_word_vld_c7 In SCTAG 

scdata_scbuf_decc_out_c7[623:0] In SCDATA

dram_scbuf_data_r2[127:0] In DRAM 

dram_scbuf_ecc_r2[27:0] In DRAM 

cmp_gclk In CTU Clock

arst_l In  CTU Asynchronous reset

grst_l In CTU Synchronous reset

global_shift_enable, In CTU

cluster_cken In CTU 

ctu_tst_pre_grst_l In CTU

ctu_tst_scanmode In CTU

ctu_tst_scan_disable In CTU

ctu_tst_macrotest In CTU 

ctu_tst_short_chain In CTU 

scbuf_sctag_ev_uerr_r5 Out SCTAG 

scbuf_sctag_ev_cerr_r5 Out SCTAG 

scbuf_jbi_ctag_vld Out  JBI

scbuf_jbi_data[31:0] Out JBI 

scbuf_jbi_ue_err Out JBI 

scbuf_sctag_rdma_uerr_c10 Out SCTAG 

scbuf_sctag_rdma_cerr_c10 Out SCTAG 

scbuf_scdata_fbdecc_c4[623:0] Out SCDATA

scbuf_dram_data_mecc_r5 Out DRAM 

scbuf_dram_wr_data_r5[63:0] Out DRAM 

scbuf_dram_data_vld_r5 Out DRAM 

so Out DFT Scan out

TABLE 4-2 SCBUF I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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TABLE 4-3 SCTAG I/O Signal List 

Signal Name I/O
Source/
Destination Description

pcx_sctag_data_rdy_px1 In CCX:PCX PCX data ready

pcx_sctag_data_px2[123:0] In CCX:PCX PCX to sctag packet

pcx_sctag_atm_px1 In CCX:PCX Indicates that the current packet is atomic

cpx_sctag_grant_cx[7:0] In CCX:CPX CPX grant

scdata_sctag_decc_c6[155:0] In SCDATA From data of scdata_data.v

scbuf_sctag_ev_uerr_r5 In SCBUF 

scbuf_sctag_ev_cerr_r5 In SCBUF 

scbuf_sctag_rdma_uerr_c10 In SCBUF 

scbuf_sctag_rdma_cerr_c10 In SCBUF 

dram_sctag_rd_ack In DRAM 

dram_sctag_wr_ack In DRAM 

dram_sctag_chunk_id_r0[1:0] In DRAM 

dram_sctag_data_vld_r0 In DRAM 

dram_sctag_rd_req_id_r0[2:0] In DRAM 

dram_sctag_secc_err_r2 In DRAM 

dram_sctag_mecc_err_r2 In DRAM 

dram_sctag_scb_mecc_err In DRAM 

dram_sctag_scb_secc_err In DRAM 

jbi_sctag_req_vld In JBI 

jbi_sctag_req[31:0] In JBI

arst_l In CTU Asynchronous reset

grst_l In CTU Synchronous reset

adbginit_l In CTU Asynchronous reset

gdbginit_l In CTU Synchronous reset

cluster_cken In CTU 

cmp_gclk In CTU Global clock input to cluster header

global_shift_enable In CTU 

ctu_sctag_mbisten In CTU 

ctu_sctag_scanin In CTU 
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scdata_sctag_scanout In DFT Scan in

ctu_tst_macrotest In CTU To test_stub of test_stub_bist.v

ctu_tst_pre_grst_l In CTU To test_stub of test_stub_bist.v

ctu_tst_scan_disable In CTU To test_stub of test_stub_bist.v

ctu_tst_scanmode In CTU To test_stub of test_stub_bist.v

ctu_tst_short_chain In CTU To test_stub of test_stub_bist.v

efc_sctag_fuse_clk1 In EFC 

efc_sctag_fuse_clk2 In EFC 

efc_sctag_fuse_ashift In EFC 

efc_sctag_fuse_dshift In EFC 

efc_sctag_fuse_data In EFC 

sctag_cpx_req_cq[7:0] Out CCX:CPX sctag to processor request

sctag_cpx_atom_cq Out CCX:CPX Atomic request

sctag_cpx_data_ca[144:0] Out CCX:CPX sctag to cpx data pkt

sctag_pcx_stall_pq Out CCX:PCX sctag to pcx IQ_full stall

sctag_jbi_por_req Out JBI

sctag_scdata_way_sel_c2[11:0] Out SCDATA

sctag_scdata_rd_wr_c2 Out SCDATA

sctag_scdata_set_c2[9:0] Out SCDATA

sctag_scdata_col_offset_c2[3:0] Out SCDATA

sctag_scdata_word_en_c2[15:0] Out SCDATA

sctag_scdata_fbrd_c3 Out SCDATA From arbctl of sctag_arbctl.v

sctag_scdata_fb_hit_c3 Out SCDATA Bypass data from Fb

sctag_scdata_stdecc_c2[77:0] Out SCDATA

sctag_scbuf_stdecc_c3[77:0] Out SCBUF 

sctag_scbuf_fbrd_en_c3 Out SCBUF rd en for a fill operation or fb bypass

sctag_scbuf_fbrd_wl_c3[2:0] Out SCBUF 

sctag_scbuf_fbwr_wen_r2[15:0] Out SCBUF 

sctag_scbuf_fbwr_wl_r2[2:0] Out SCBUF 

sctag_scbuf_fbd_stdatasel_c3 Out SCBUF Select store data in OFF mode

TABLE 4-3 SCTAG I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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sctag_scbuf_wbwr_wen_c6[3:0] Out SCBUF Write en

sctag_scbuf_wbwr_wl_c6[2:0] Out SCBUF From wbctl

sctag_scbuf_wbrd_en_r0 Out SCBUF Triggerred by a wr_ack from dram

sctag_scbuf_wbrd_wl_r0[2:0] Out SCBUF 

sctag_scbuf_ev_dword_r0[2:0] Out SCBUF 

sctag_scbuf_evict_en_r0 Out SCBUF 

sctag_scbuf_rdma_wren_s2[15:0] Out SCBUF May be all 1s

sctag_scbuf_rdma_wrwl_s2[1:0] Out SCBUF 

sctag_scbuf_rdma_rdwl_r0[1:0] Out SCBUF 

sctag_scbuf_rdma_rden_r0 Out SCBUF 

sctag_scbuf_ctag_en_c7 Out SCBUF 

sctag_scbuf_ctag_c7[14:0] Out SCBUF 

sctag_scbuf_word_c7[3:0] Out SCBUF 

sctag_scbuf_req_en_c7 Out SCBUF 

sctag_scbuf_word_vld_c7 Out SCBUF This signal is high for 16 signals.

sctag_dram_rd_req Out DRAM 

sctag_dram_rd_dummy_req Out DRAM 

sctag_dram_rd_req_id[2:0] Out DRAM 

sctag_dram_addr[39:5] Out DRAM 

sctag_dram_wr_req Out DRAM 

sctag_jbi_iq_dequeue Out JBI Implies that an instruction has been issued

sctag_jbi_wib_dequeue Out JBI Implies that an entry in the rdma array has freed.

sctag_dbgbus_out[40:0] Out IOB Debug bus

sctag_clk_tr Out

sctag_ctu_mbistdone Out CTU MBIST done

sctag_ctu_mbisterr Out CTU MBIST error

sctag_ctu_scanout Out DFT Scan out

sctag_scbuf_scanout Out  DFT Scan out

sctag_efc_fuse_data Out EFC From red_hdr of cmp_sram_redhdr.v

TABLE 4-3 SCTAG I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
Chapter 4 Level 2 Cache  4-23



4-24  OpenSPARC T1 Microarchitecture Specification • August 2006



CHAPTER 5

Input/Output Bridge

This chapter describes the following topics:

■ Section 5.1, “Functional Description” on page 5-1
■ Section 5.2, “I/O Bridge Signal List” on page 5-12

5.1 Functional Description
The input/output bridge (IOB) is the interface between the CPU-cache crossbar 
(CCX) and the rest of the blocks in the OpenSPARC T1 processor. The main IOB 
functions include:

■ I/O address decoding:

■ IOB maps or decodes I/O addresses to the proper internal or external 
destination.

■ IOB generates control/status register (CSR) accesses to the IOB, JBI, DRAM, 
and CTU clusters.

■ IOB generates programmed I/O (PIO) accesses to the external J-Bus.

■ Interrupts:

■ IOB collects the interrupts from clusters (errors and EXT_INT_L) and mondo 
interrupts from the J-Bus.

■ IOB forwards interrupts to the proper core and thread.

■ IOB wakes up a single thread at reset.

■ Interface between the read/write/ifill to the SSI.

■ IOB provides test port access (TAP) access to CSRs, Memory, L2-cache, and CPU 
ASIs.

■ IOB provides debug Port functionality (both to an external debug port and to the 
JBI).

■ IOB operates in both the CMP and J-Bus clock domains.
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5.1.1 IOB Interfaces
FIGURE 5-1 shows the interfaces to and from the IOB to the rest of the blocks and 
clusters. 

FIGURE 5-1 IOB Interfaces

The main interfaces to and from the IOB are:

■ Crossbar (CCX): interface to the PCX to the CPX (both are parallel interfaces).

■ Universal connection bus (UCB) interface is a common packetized interface to all 
clusters for CSR accesses.

■ Common width-parameterized blocks in the IOB and clusters.

■ The separate request and acknowledge/interrupt paths with parameterized 
widths, various blocks, and widths are defined in TABLE 5-1.
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■ In most of the UCB interfaces, the IOB is master and the cluster/block is a 
slave, with the exception of the TAP. The TAP interface is unique – it is both 
master and slave.

■ All UCB interfaces are visible through the debug ports.

■ J-Bus Mondo Interrupt Interface:

■ 16-bit request interface and a valid bit.

■ Header with 5-bit source and target (thread) IDs.

■ 8 cycles of data - 128 bits (J-Bus Mondo Data 0 & 1).

■ 2-bit acknowledge interface - ACK / NACK.

■ Efuse Controller (EFC) – Serial Interface:

■ Shifted-in at power-on-reset (POR) to make the software visible (read-only).

■ CORE_AVAIL, PROC_SER_NUM.

■ Debug Ports:

■ Internal visibility port on each UCB interface.

■ L2-cache visibility port input from the L2-cache (2 x 40-bits @ CMP clock).

■ Debug port A output to the debug pads (40-bits @ J-Bus clock).

■ Debug port B output to the JBI (2 x 48-bits @ J-Bus clock).

TABLE 5-1 UCB interfaces to Clusters

Cluster/Block Width from IOB to block Width from block to IOB

CTU 4 bits 4 bits

DRAM02 and DRAM13 4 bits 4 bits

JBI PIO 64 bits 16 bits

JBI SSI 4 bits 4 bits

TAP 8 bits 8 bits
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5.1.2 UCB Interface
FIGURE 5-2 shows the UCB interface from and to cluster. There are two  
uni-directional ports – one from the IOB to the cluster and one from the cluster to 
the IOB. Each port consists of a valid signal, a data packet, and a stall signal.

FIGURE 5-2 IOB UCB Interface to and From the Cluster
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TABLE 5-3 defines the UCB request or acknowledge packet types. 

There is no write NACK as writes to invalid addresses are dropped. Some packet 
types have data (payload) while others are without data (no payload).

TABLE 5-4 defines the UCB data size parameters. 

The buffer ID is 00 when the master is CPU and the ID is 01 when the master is 
TAP. The thread ID has two parts – CPU ID (3-bits) and Thread ID within CPU (2-
bits).

TABLE 5-3 UCB Request/ACK Packet Types

Description Packet Type Value (Binary)

UCB_READ_NACK 0000

UCB_READ_ACK 0001

UCB_WRITE_ACK 0010

UCB_IFILL_ACK 0011

UCB_READ_REQ 0100

UCB_WRITE_REQ 0101

UCB_IFILL_REQ 0110

UCB_IFILL_NACK 0111

TABLE 5-4 UCB Data Size

Description Size Value (Binary)

UCB_SIZE_1B 000

UCB_SIZE_2B 001

UCB_SIZE_4B 010

UCB_SIZE_8B 011

UCB_SIZE_16B 111
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5.1.2.2 UCB Interrupt Packet

The UCB interrupt packet has a fixed width of 64-bits. TABLE 5-5 describes the UCB 
interrupt packet format.

TABLE 5-6 defines the UCB interrupt packet types. 

5.1.2.3 UCB Interface Packet Example

The UCB interface packet without payload has width of 64-bits. If the physical 
interface is 8-bits, it will take 8 cycles (without a stall) to send the packet. The first 
data sent (D0) is bits 7 to 0, the second data sent (D1) is bits 15 to 8, and so on.

TABLE 5-7 shows the UCB no payload packet (64-bit) over an 8-bit interface without 
stalls. 

TABLE 5-5 UCB Interrupt Packet Format

Bits 63:57 56:51 50:19 18:10 9:4 3:0

Description Reserved Vector Reserved Device ID Thread ID Packet Type

TABLE 5-6 UCB Interrupt Packet Types

Description Packet Type Value (Binary) Comment

UCB_INT 1000

UCB_INT_VEC 1100 IOB Internal Use Only

UCB_RESET_VEC 1101 IOB Internal Use Only

UCB_IDLE_VEC 1110 IOB Internal Use Only

UCB_RESUME_VEC 1111 IOB Internal Use Only

TABLE 5-7 UCB No Payload Over an 8-Bit Interface Without Stalls

iob_ucb_vld 0 1 1 1 1 1 1 1 1 0

iob_ucb_data[7:0] X D0 D1 D2 D3 D4 D5 D6 D7 X

ucb_iob_stall 0 0 0 0 0 0 0 0 0 0
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TABLE 5-8 shows the UCB no payload packet (64-bit) over an 8-bit interface with 
stalls.

5.1.3 IOB Address Map
Refer to UltraSPARC T1 Supplement to UltraSPARC Architecture 2005 Specification for 
descriptions of the detailed addresses of the registers and bit levels. TABLE 5-9 
describes the high-level IOB address map for the address block level.

TABLE 5-8 UCB No Payload Over an 8-Bit Interface With Stalls

iob_ucb_vld 0 1 1 1 1 1 1 1 1 1 1 1 0

iob_ucb_data[7:0] X D0 D1 D2 D2 D2 D3 D3 D4 D5 D6 D7 X

ucb_iob_stall 0 0 1 1 1 0 0 0 0 0 0 0 0

TABLE 5-9 IOB Address Map

PA[39:32] (Hex) Destination Description

0x00 - 0x7F DRAM Memory TAP only - CCX forward request

0x80 JBI PIO JBI CSRs, J-Bus 8MB Non-Cached & Fake DMA spaces

0x81 - 0x95 Reserved

0x96 CTU

0x97 DRAM DRAM CSRs, PA[12] = 0 for DRAM02, PA[12] = 1 for DRAM13

0x98 IOB_MAN IOB Management CSRs

0x99 TAP TAP CSRs

0x9A - 0x9D Reserved

0x9E CPU ASI TAP Only - CCX forward request

0x9F IOB_INT IOB Mondo Interrupt CSRs

0xA0 - 0xBF L2 CSRs TAP Only - CCX forward request

0XC0 - 0xFE JBI PIO J-Bus 64 GB Non-Cached Spaces

0xFF JBI SSI SSI CSRs and Boot PROM
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5.1.4 IOB Block Diagram
FIGURE 5-3 shows the IOB internal block diagram. The PCX requests from the CPU 
are processed by a block called the CPU to I/O (c2i) and it generates UCB requests 
to the various blocks. UCB requests from various blocks are processed by a block 
called I/O to CPU (i2c) which then generates a CPX packet. Internal control/status 
registers (CSRs) are controlled by the CSR block. The debug block takes data from 
L2-cache and sends it to debug port A (an external port) and to debug port B (to the 
JBI).

FIGURE 5-3 IOB Internal Block Diagram
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5.1.5 IOB Transactions
This section describes the various transactions processed by the IOB.

■ UCB Reads:

■ LOAD_RQ packet received by the c2i

■ Map/decode address to the destination port

■ Translates to the UCB packet format and sends UCB_READ_REQ over the UCB

■ UCB_READ_ACK/_NACK received by i2c

■ Translates to the CPX packet format and sends to CPU

■ UCB Writes:

■ STORE_RQ packet received by the c2i

■ Map addresses to the destination port

■ Translates to the UCB packet format and sends UCB_WRITE_REQ over the 
UCB

■ Send write ACK (STORE_ACK) directly to the i2c

■ Sends STORE_ACK packet to the CPX

■ IOB_MAN (IOB Management) CSR Accesses:

■ Similar to UCB Reads/Writes, except the UCB request packet is routed to the 
iobdg_ctrl

■ CSRs (except J_INT_BUSY/DATA0/DATA1) are implemented in the iobdg_ctrl

■ UCB ACK packet sent to the i2c, translated, and sent on to the CPX

■ IOB_INT CSR Accesses:

■ J_INT_BUSY/DATA0/DATA1 CSRs are implemented in the register file in the 
c2i

■ Read/Write ACKS sent to the i2c (by way of the int_buf register file) and sent 
on to the CPX

■ TAP Reads/Writes:

■ TAP mastered requests are similar to the UCB Read/Writes

■ Requests to the TAP CSRs are bounced through the iobdg_ctrl to the i2c for 
IOB->TAP UCB

■ TAP requests to memory, L2-cache CSRs, and CPU ASIs, are bounced through 
iobdg_ctrl on to i2c and issued as a forward request to CPX. ACK returns on 
the PCX.
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5.1.6 IOB Interrupts
This section describes the various interrupts that are handled by the IOB.

■ UCB Signalled Interrupts (Request Type = UCB_INT)

■ Only two LSBs of the DEV ID are used

■ Error Interrupt (Dev_ID = 1)

■ SSI EXT_INT_L (Dev_ID = 2)

■ Signalled on the UCB interface to the i2c

■ Looks up Mask status in the INT_CTL[Dev_ID], the CPU ID, and the vector in 
the INT_MAN[Dev_ID] CSR 

■ Generate CPX interrupt packets and sends them to the CPU

■ Software Generated Interrupts (INT_VEC_DIS CSR)

■ Writable by the CPU or the TAP

■ Sends reset, interrupt, idle, and resume signals to the selected thread

■ Generates UCB interrupt packets in the iobdg_ctrl

■ Translates to the CPX interrupt packet format in the i2c and sends them to the 
CPU

■ J-Bus Mondo Interrupts

■ JBI sends mondo interrupt packet to the i2c

■ Accumulate packet interrupts sent to the target/src/data0/data1

■ If J_INT_BUSY[target] CSR BUSY = 0

i. Send ACK to the JBI

ii. Send target/src/data0/data1 to the c2i

iii. Stores source in J_INT_BUSY[target], data0/1 in J_INT_DATA0/1[target] 
and set J_INT_BUSY[target] BUSY

iv. Generates an CPX interrupt packet to the target using J_INT_VEC CSR and 
send

■ If J_INT_BUSY[target] CSR BUSY = 1

i. Send NACK to the JBI

ii. Source will re-issue the INTERRUPT on the J-BUS
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■ Mondo Interrupt Handling

■ Mondo interrupt CSRs:

i. J_INT_VEC – specifies interrupt vector for the CPX Int in order to target 
thread

ii. J_INT_BUSY (count 32) – source and BUSY for each target thread

iii. J_INT_DATA0 (count 32) – mondo data 0 for each target thread

iv. J_INT_DATA1 (count 32) – mondo data 1 for each target thread

v. J_INT_ABUSY, J_INT_ADATA0, J_INT_ADATA1 – aliases to J_INT_BUSY, 
J_INT_DATA0, J_INT_DATA1 for the current thread

■ The interrupt handler must clear the BUSY bit in J_INT_BUSY[target] to allow 
future mondo interrupts to that thread

5.1.7 IOB Miscellaneous Functionality
■ Launches one thread after reset

■ Sends resume interrupt to thread 0 in the lowest available core (the EFC sends 
the available cores information)

■ RSET_STAT CSR shows the RO and RW status for: POR, FREQ, and WRM

■ Software Visibility for Efuse Data

■ Serial data shifted in after a power-on reset (POR)

■ CORE_AVAIL

■ PROC_SER_NUM

■ IOB_EFUSE – contains parity check results from the EFC (If non-zero, the chip 
is suspect with a potentially bad CORE_AVAIL or a memory array 
redundancy)

■ Power Management - Thermal Sensor

■ Sends an idle/resume interrupt to threads specified in the TM_STAT_CTL 
mask

5.1.8 IOB Errors
■ Accesses to non-existent I/O addresses (address map reserved)

■ Drops I/O writes

■ Sends NACK for the I/O reads

■ IOB forwards NACKs received from the other blocks

■ IOB forwards error interrupts signalled by the other blocks
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5.1.9 Debug Ports
Debug ports provide on chip support for logic analyzer data capture. The visibility 
port inputs are:

■ L2 visibility ports (2 x 40-bits @ CMP clock) – these are pre-filtered in the CPU 
clock domain for bandwidth.

■ IOB visibility ports (J-Bus clock): you can select the IOB UCB port to monitor with 
raw valid/stall or decoded qualified-valid qualifiers.

The output debug ports have separate mux select and filtering on each port. There 
are two debug ports:

■ Debug port A - dedicated debug pins (40-bits @ J-Bus clock)

■ Debug port B - J-Bus port (2 x 48-bits @ J-Bus clock)

■ 16-bytes data return to a non-existent module (AID 2)

5.2 I/O Bridge Signal List
TABLE 5-10 describes the I/O Signals for OpenSPARC T1 processor’s IOB.

TABLE 5-10 I/O Bridge I/O Signal List 

Signal Name I/O Source/Destination Description

clk_iob_cmp_cken In CTU 

clk_iob_data[3:0] In CTU 

clk_iob_jbus_cken In CTU 

clk_iob_stall In CTU 

clk_iob_vld In CTU 

clspine_iob_resetstat[3:0] In

clspine_iob_resetstat_wr In

clspine_jbus_rx_sync In RX synchronous

clspine_jbus_tx_sync In TX synchronous

cmp_adbginit_l In CTU Asynchronous reset

cmp_arst_l In CTU Asynchronous reset

cmp_gclk In CTU Clock

cmp_gdbginit_l In CTU Synchronous reset
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cmp_grst_l In CTU Synchronous reset

cpx_iob_grant_cx2[7:0] In CCX:CPX CPX grant

ctu_iob_wake_thr In CTU 

ctu_tst_macrotest In CTU 

ctu_tst_pre_grst_l In CTU 

ctu_tst_scan_disable In CTU 

ctu_tst_scanmode In CTU 

ctu_tst_short_chain In CTU 

dbg_en_01 In

dbg_en_23 In

dram02_iob_data[3:0] In DRAM UCB data

dram02_iob_stall In DRAM UCB stall

dram02_iob_vld In DRAM UCB valid

dram13_iob_data[3:0] In DRAM UCB data

dram13_iob_stall In DRAM UCB stall

dram13_iob_vld In DRAM UCB valid

efc_iob_coreavail_dshift In EFC 

efc_iob_fuse_data In EFC 

efc_iob_fusestat_dshift In EFC 

efc_iob_sernum0_dshift In EFC 

efc_iob_sernum1_dshift In EFC 

efc_iob_sernum2_dshift In EFC 

global_shift_enable In CTU

io_temp_trig In PADS

io_trigin In PADS

jbi_iob_mondo_data[7:0] In JBI UCB data

jbi_iob_mondo_vld In JBI UCB valid

jbi_iob_pio_data[15:0] In JBI UCB data

jbi_iob_pio_stall In JBI UCB stall

jbi_iob_pio_vld In JBI UCB valid

TABLE 5-10 I/O Bridge I/O Signal List (Continued)

Signal Name I/O Source/Destination Description
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jbi_iob_spi_data[3:0] In JBI UCB data

jbi_iob_spi_stall In JBI UCB stall

jbi_iob_spi_vld In JBI UCB valid

jbus_adbginit_l In CTU Asynchronous reset

jbus_arst_l In CTU Asynchronous reset

jbus_gclk In CTU Clock

jbus_gdbginit_l In CTU Synchronous reset

jbus_grst_l In CTU Synchronous reset

l2_dbgbus_01[39:0] In L2 Debug bus

l2_dbgbus_23[39:0] In L2 Debug bus

pcx_iob_data_px2[123:0] In CCX:PCX PCX packet

pcx_iob_data_rdy_px2 In CCX:PCX PCX data ready

tap_iob_data[7:0] In CTU:TAP UCB data

tap_iob_stall In CTU:TAP UCB stall

tap_iob_vld In CTU:TAP UCB valid

efc_iob_fuse_clk1 In EFC  

iob_scanin In DFT  Scan in

iob_clk_l2_tr Out CTU Debug trigger

iob_clk_tr Out  CTU Debug trigger

iob_cpx_data_ca[144:0] Out  CCX:CPX CPX packet

iob_cpx_req_cq[7:0] Out CCX:CPX CPX request

iob_ctu_coreavail[7:0] Out CTU  

iob_io_dbg_ck_n[2:0] Out PADS Debug clock N

iob_io_dbg_ck_p[2:0] Out PADS Debug clock P

iob_io_dbg_data[39:0] Out PADS Debug bus

iob_io_dbg_en Out PADS Debug enable

iob_jbi_dbg_hi_data[47:0] Out JBI Debug data high

iob_jbi_dbg_hi_vld Out JBI Debug data high valid

iob_jbi_dbg_lo_data[47:0] Out JBI Debug data low

iob_jbi_dbg_lo_vld Out JBI Debug data high valid

TABLE 5-10 I/O Bridge I/O Signal List (Continued)

Signal Name I/O Source/Destination Description
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iob_jbi_mondo_ack Out JBI MONDO ACK

iob_jbi_mondo_nack Out JBI MONDO negative ACK

iob_pcx_stall_pq Out CCX:PCX PCX stall

iob_clk_data[3:0] Out CTU:CLK UCB data

iob_clk_stall Out CTU:CLK UCB stall

iob_clk_vld Out CTU:CLK UCB valid

iob_dram02_data[3:0] Out DRAM DRAM data

iob_dram02_stall Out DRAM DRAM stall

iob_dram02_vld Out DRAM DRAM valid

iob_dram13_data[3:0] Out DRAM DRAM data

iob_dram13_stall Out DRAM DRAM stall

iob_dram13_vld Out DRAM DRAM valid

iob_jbi_pio_data[63:0] Out JBI PIO data

iob_jbi_pio_stall Out JBI PIO stall

iob_jbi_pio_vld Out JBI PIO valid

iob_jbi_spi_data[3:0] Out JBI JBI UCB data

iob_jbi_spi_stall Out JBI JBI UCB stall

iob_jbi_spi_vld Out JBI JBI UCB valid

iob_tap_data[7:0] Out CTU:TAP UCB data

iob_tap_stall Out CTU:TAP UCB stall

iob_tap_vld Out CTU:TAP UCB valid

iob_scanout Out DFT  Scan out

TABLE 5-10 I/O Bridge I/O Signal List (Continued)

Signal Name I/O Source/Destination Description
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CHAPTER 6

J-Bus Interface

This chapter contains the following topics about the J-Bus interface (JBI) functional 
block:

■ Section 6.1, “Functional Description” on page 6-1
■ Section 6.2, “I/O Signal list” on page 6-8

6.1 Functional Description
For a detailed description on the external J-Bus interface, refer to OpenSPARC T1 
Processor External Interface Specification. The OpenSPARC T1 J-Bus interface (JBI) 
block generates J-Bus transactions and responds to external J-Bus transactions.

The JBI block:

■ Interfaces with following blocks in an OpenSPARC T1 processor:

■ L2-cache (scbuf and sctag) to read and write data to L2-cache

■ I/O Bridge (IOB) - for programmed input/output (PIO), interrupts, and debug 
port

■ J-Bus I/O pads

■ Most of the JBI sub-blocks use the J-Bus clock, and remaining part runs at the 
CPU core clock or cmp clk. The data transfer between the two clock domains is by 
way of queues within the two clock domains, these are the Request header queues 
and the Return data queues. The interface to the L2-cache is through the direct 
memory access (DMA) reads and DMA writes.

■ The IOB debug port data is stored in the debug FIFOs and then it is sent out to 
the external J-Bus.

■ IOB PIO requests are stored in the PIO queue and the return data is stored in the 
PIO return queue. Similarly, there is an interrupt queue and an interrupt 
ACK/NACK queues in the JBI in order to interface to the IOB.
6-1



■ There are only two sub-blocks in the JBI (J-Bus parser and J-Bus transaction issue) 
specific to J-Bus. All of the other blocks are J-Bus independent. J-Bus independent 
blocks can be used for any other external bus interface implementation.

FIGURE 6-1 displays the JBI block diagram.

FIGURE 6-1 JBI Functional Block Diagram

The following sub-sections describe the various JBI transactions and interfaces from 
the JBI to the other functional blocks. 
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6.1.1 J-Bus Requests to the L2-Cache
There are two types of requests from J-Bus to L2 – read and write.

6.1.1.1 Write Requests to the L2-Cache

DMA write request from J-Bus is parsed by J-Bus parser and then it passes the 
information to the Write Decomposition Queue, which will then send Request 
Header and Data to sctag of L2-cache.

■ The following types of writes are supported (refer to the OpenSPARC T1 External 
Interface Specification for details of the transaction types):

1. WriteInvalidate (WRI), WriteInvalidateSelf (WRIS), NonCachedWriteComressible 
(NCBWR) are treated as 64-byte writes

2. NCWR is treated as 8-byte write

3. WriteMerge (WRM):

■ WRM is similar to WRI but with 64-bit Byte enables, supporting 0 to 64-byte 
writes.

■ Multiple 8-byte write requests (WR8) to the L2-cache

■ Write decomposition

■ WRM is broken into 8-byte write requests (WR8) and sent to the L2-cache at 
the head of the write decomposition queue (WDQ)

■ Number of requests is dependent on the WRM byte enable pattern

■ Each WR8 request writes 1 to 8 contiguous bytes

■ If a run of contiguous bytes crosses an 8-byte address boundary, two WR8s are 
generated

■ A WRM transaction can generate up to 32 WR8s to the L2-cache

■ Writes to the L2-cache may observe strict ordering with respect to the other writes 
to the L2-cache (software programmable)
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6.1.1.2 Read Requests to the L2-Cache

A DMA read request from the J-Bus is parsed by the J-Bus parser and then the 
information is passed to the write decomposition queue (WDQ), which will then 
send the request header to the sctag of the L2-cache. Data returned from the L2-
cache scbuf is then passed from the return queues to the J-Bus transaction issue, and 
then to the J-Bus.

■ Type of reads supported:

■ ReadToDiscard (RDD), ReadToShare (RDS), ReadToShareAlways (RDSA), 
NonCachedBlockRead (NCBRD) translates to 64-byte RDDs to the L2-cache

■ NonCachedRead (NCRD) translates to 8-byte RDD to the L2-cache

■ There is a maximum of 4 outstanding reads to each L2-cache bank

■ Reads to the L2-cache may observe strict ordering with respect to writes to the L2-
cache (software programmable)

6.1.1.3 Flow Control

WDQ gives backward pressure to the J-Bus when the programmable high 
watermark has been reached. Credit based flow control exists between the JBI and 
the L2-cache, arising from the L2-cache’s two-entry snoop input buffer and the four-
entry RDMA write buffer.

6.1.2 I/O Buffer Requests to the J-Bus
Write requests (NCWR) can be 1, 2, 4, or 8-byte writes and those writes are aligned 
to size. Write request comes from the I/O buffer (IOB), gets stored in the PIO request 
queue, and then goes out on the J-Bus.

Read requests comes from IOB, gets stored in the PIO request queue, and then goes 
out on the J-Bus. The data read from J-Bus is then parsed by J-Bus parser, and then 
the data is stored in the PIO return queue which is sent to the IOB. 

The Read transactions (NCRD) can be 1, 2, 4, 8, 16-byte reads and are aligned to size. 
There is a maximum support for 1 to 4 pending reads to the J-Bus (software 
programmable). Read returns to the IOB may observe strict ordering with respect to 
the writes to the L2-cache (software programmable).
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6.1.3 J-Bus Interrupt Requests to the IOB
■ A J-Bus interrupt in the mondo vector format is received by the J-Bus parser and 

then it is stored in the interrupt queue before being sent to the IOB.

■ A modified mondo interrupt transaction is where only the first data cycle is 
forwarded to the CPU.

■ The mondo interrupt queue is maximally sized to 16 entries, and there is no flow 
control on queue.

■ Interrupts to the IOB may observe strict ordering with respect to the writes to the 
L2-cache (software programmable).

■ An interrupt ACK/NACK received from the IOB is first stored in the interrupt 
ACK/NACK queue, and then it is sent out on the J-Bus.

6.1.4 J-Bus Interface Details
The J-Bus interface has the following characteristics:

■ JBI Requests the J-Bus as agent 0

■ Masters transaction using agent ID 0 to 3 

■ 16 transaction IDs (TIDs) assigned in the least recently used order

■ A read TID becomes available when the read data is returned

■ A write TID is never marked unavailable

■ Responds to the addresses corresponding to agent ID 0 to 3

■ External J-Bus arbitration:

■ Adheres to the J-Bus arbitration protocol

■ May arbitrate to maximize its time as the default owner, in order to 
opportunistically drive the debug port data even when it has nothing to issue 
(software controlled)

■ JBI starts up in multi-segment arb mode, which can be change by way of 
software

■ Flow control - address OK (AOK) and data OK (DOK)

■ Uses only AOK-off to flow control the J-Bus when WDQ reaches its high 
watermark

■ DOK-off is not used for flow control

■ Follows J-Bus protocol when other agents assert their AOKs/DOKs
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6.1.5 Debug Port to the J-Bus
■ There are two debug first-in/first-outs (FIFOs), each with 32 entries

■ Programmable to fill and dump from one or both FIFOs. If both FIFOs are 
programmed, then each FIFO is alternately filled, but they are dumped both in 
parallel, thus using half as many cycles.

■ Arbitration models for using the J-Bus to report debug data include:

■ Default - when the J-Bus is idle, and the JBI has no other transactions available 
to issue on to the J-Bus, the JBI opportunistically dumps debug data if it is the 
default owner

■ DATA_ARB - JBI will arbitrate (arb) whenever the FIFOs are higher than the 
low watermark, and the JBI is not the bus owner

■ AGGR_ARB - JBI arbs whenever it does not own the bus, so the bus behavior 
does not change based on the quantity of the debug output

■ Debug data appears on the J-Bus as a Read16 return cycle to the AID4 with debug 
data payload on J_AD[127:0]

■ Fake DMA range (0x80_1000_0000 to 0x80_FFFF_FFFF) is used for the debug data

■ Error injection is supported in outbound and inbound J-Bus traffic

■ BI debug info, when enabled, is placed in the transaction headers (the JBI queues 
info in the upper 64 bits of the AD)

6.1.6 J-Bus Internal Arbitration
■ There are seven agents for internal arbitration: 

■ Four read return queues

■ PIO request queues

■ Mondo interrupt ACK/NACK queues

■ Debug FIFO

■ In the default arbitration, the debug FIFO has the lowest priority, and there is 
round-robin arbitration between the other six agents

■ Until the FIFO is flushed, the debug FIFO has the highest priority when the 
HI_WATER or MAX_WAIT limits are reached
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6.1.7 Error Handling in JBI
■ There are 19 different fatal and not-correctable errors, each with a log enable, 

signal enable, error detected bit, and error overflow detected bit. (Refer to the 
UltraSPARC T1 Supplement to UltraSPARC Architecture 2005 Specification for details 
on programming control bits and reading status registers.)

■ J-Bus snapshot registers contain address, data, control, parity bits.

■ J-Bus requests to non-existent memory causes a read to address 0 before the JBI 
issues an error cycle on the J-Bus.

■ Fatal error asserts DOK-on for 4 cycles, which instructs the external J-Bus to PCI-
Express ASIC to perform a warm reset.

6.1.8 Performance Counters
■ There are two performance counters in the JBI, which are 31-bits wide each.

■ The software can select one of the 12 events to be counted:

■ J-Bus cycles

■ DMA read transactions (inbound)

■ Total DMA read latency

■ DMA write transactions

■ DMA WR8 transactions

■ Ordering waits (number of jbi->l2 queues blocked each cycle)

■ PIO read transactions

■ Total PIO read latency

■ PIO write transactions

■ AOK off or DOK off seen

■ AOK off seen

■ DOK off seen
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6.2 I/O Signal list
TABLE 6-1 lists the I/O Signals for the OpenSPARC T1 JBI block.

TABLE 6-1 JBI I/O Signal List 

Signal Name I/O
Source/
Destination Description

cmp_gclk In CTU CMP clock.

cmp_arst_l In CTU CMP clock domain async reset.

cmp_grst_l In CTU CMP clock domain reset.

jbus_gclk In CTU J-Bus clock.

jbus_arst_l In CTU J-Bus clock domain async reset.

jbus_grst_l In CTU J-Bus clock domain reset.

ctu_jbi_ssiclk In CTU J-Bus clk divided by 4

ctu_jbi_tx_en In CTU CMP to JBI clock domain crossing synchronization pulse.

ctu_jbi_rx_en In CTU JBI to CMP clock domain crossing synchronization pulse.

ctu_jbi_fst_rst_l In CTU Fast reset for capturing port present bits (J_RST_L + 1).

clk_jbi_jbus_cken In CTU Jbi clock enable.

clk_jbi_cmp_cken In CTU Cmp clock enable.

global_shift_enable In CTU Scan shift enable signal.

ctu_tst_scanmode In CTU Scan mode.

ctu_tst_pre_grst_l In CTU  

ctu_tst_scan_disable In CTU  

ctu_tst_macrotest In CTU  

ctu_tst_short_chain In CTU  

ddr3_jbi_scanin18 In DFT  

jbusr_jbi_si In DFT  

sctag0_jbi_iq_dequeue In SCTAG0 SCTag is unloading a request from its 2 request queue.

sctag0_jbi_wib_dequeue In SCTAG0 Write invalidate buffer (size=4) is being unloaded.

scbuf0_jbi_data[31:0] In SCBUF0 Return data

scbuf0_jbi_ctag_vld In SCBUF0 Header cycle of a new response packet.

scbuf0_jbi_ue_err In SCBUF0 Current data cycle has a uncorrectable error.
6-8  OpenSPARC T1 Microarchitecture Specification • August 2006



sctag0_jbi_por_req_buf In SCTAG0 Request for DOK_FATAL.

sctag1_jbi_iq_dequeue In SCTAG1 SCTag is unloading a request from its 2 request queue.

sctag1_jbi_wib_dequeue In SCTAG1 Write invalidate buffer (size=4) is being unloaded.

scbuf1_jbi_data[31:0] In SCBUF1 Return data

scbuf1_jbi_ctag_vld In SCBUF1 Header cycle of a new response packet.

scbuf1_jbi_ue_err In SCBUF1 Current data cycle has a uncorrectable error.

sctag1_jbi_por_req_buf In SCTAG1 Request for DOK_FATAL.

sctag2_jbi_iq_dequeue In SCTAG2 SCTag is unloading a request from its 2 request queue.

sctag2_jbi_wib_dequeue In SCTAG2 Write invalidate buffer (size=4) is being unloaded.

scbuf2_jbi_data[31:0] In SCBUF2 Return data

scbuf2_jbi_ctag_vld In SCBUF2 Header cycle of a new response packet.

scbuf2_jbi_ue_err In SCBUF2 Current data cycle has a uncorrectable error.

sctag2_jbi_por_req_buf In SCTAG2 Request for DOK_FATAL.

sctag3_jbi_iq_dequeue In SCTAG3 SCTag is unloading a request from its 2 request queue.

sctag3_jbi_wib_dequeue In SCTAG3 Write invalidate buffer (size=4) is being unloaded.

scbuf3_jbi_data[31:0] In SCBUF3 Return data

scbuf3_jbi_ctag_vld In  SCBUF3 Header cycle of a new response packet.

scbuf3_jbi_ue_err In SCBUF3 Current data cycle has a uncorrectable error.

sctag3_jbi_por_req_buf In SCTAG3 Request for DOK_FATAL.

iob_jbi_pio_stall In IOB PIO stall

iob_jbi_pio_vld In IOB PIO valid

iob_jbi_pio_data[63:0] In IOB PIO data

iob_jbi_mondo_ack In IOB Mondo acknowledgement

iob_jbi_mondo_nack In IOB Mondo negative acknowledgement

io_jbi_ssi_miso In PADS SSI Master in slave out from pad.

io_jbi_ext_int_l In PADS External interrupt

iob_jbi_spi_vld In IOB Valid packet from IOB.

iob_jbi_spi_data[3:0] In IOB Packet data from IOB.

iob_jbi_spi_stall In IOB Flow control to stop data.

io_jbi_j_req4_in_l In PADS J-Bus request. 4 input

TABLE 6-1 JBI I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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io_jbi_j_req5_in_l In PADS J-Bus request. 5 input

io_jbi_j_adtype[7:0] In PADS J-Bus packet type

io_jbi_j_ad[127:0] In PADS J-Bus address/data bus

io_jbi_j_pack4[2:0] In PADS J-Bus ACK 4

io_jbi_j_pack5[2:0] In PADS J-Bus ACK 5

io_jbi_j_adp[3:0] In PADS J-Bus parity for AD bus

io_jbi_j_par In PADS J-Bus parity for request/PACK

iob_jbi_dbg_hi_data[47:0] In IOB Debug data high

iob_jbi_dbg_hi_vld In IOB Debug data high valid

iob_jbi_dbg_lo_data[47:0] In IOB Debug data low

iob_jbi_dbg_lo_vld In IOB Debug data low valid

jbi_ddr3_scanout18 Out DFT Scan out

jbi_clk_tr Out CTU Debug_trigger.

jbi_jbusr_so Out DFT Scan out

jbi_jbusr_se Out DFT Scan enable

jbi_sctag0_req[31:0] Out SCTAG0 L2-cache request

jbi_scbuf0_ecc[6:0] Out SCBUF0  

jbi_sctag0_req_vld Out SCTAG0 Next cycle will be header of a new request packet.

jbi_sctag1_req[31:0] Out SCTAG1 L2-cache request

jbi_scbuf1_ecc[6:0] Out SCBUF1  

jbi_sctag1_req_vld Out SCTAG1 Next cycle will be header of a new request packet.

jbi_sctag2_req[31:0] Out SCTAG2 L2-cache request

jbi_scbuf2_ecc[6:0] Out SCBUF2  

jbi_sctag2_req_vld Out SCTAG2 Next cycle will be header of a new request packet.

jbi_sctag3_req[31:0] Out SCTAG3 L2-cache request

jbi_scbuf3_ecc[6:0] Out SCBUF3  

jbi_sctag3_req_vld Out SCTAG3 Next cycle will be Header of a new request packet.

jbi_iob_pio_vld Out IOB PIO valid

jbi_iob_pio_data[15:0] Out IOB PIO data

jbi_iob_pio_stall Out IOB PIO stall

TABLE 6-1 JBI I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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jbi_iob_mondo_vld Out IOB MONDO valid

jbi_iob_mondo_data[7:0] Out IOB MONDO data

jbi_io_ssi_mosi Out PADS Master out slave in to pad.

jbi_io_ssi_sck Out PADS Serial clock to pad.

jbi_iob_spi_vld Out IOB Valid packet from UCB.

jbi_iob_spi_data[3:0] Out IOB Packet data from UCB.

jbi_iob_spi_stall Out IOB Flow control to stop data.

jbi_io_j_req0_out_l Out PADS J-Bus request 0

jbi_io_j_req0_out_en Out PADS J-Bus request 0 enable

jbi_io_j_adtype[7:0] Out PADS J-Bus type 

jbi_io_j_adtype_en Out PADS J-Bus type enable

jbi_io_j_ad[127:0] Out PADS J-Bus address/data

jbi_io_j_ad_en[3:0] Out PADS J-Bus address/data enable

jbi_io_j_pack0[2:0] Out PADS J-Bus ACK. 0

jbi_io_j_pack0_en Out PADS J-Bus ACK. 0 enable

jbi_io_j_pack1[2:0] Out PADS J-Bus ACK. 1

jbi_io_j_pack1_en Out PADS J-Bus ACK. 1 enable

jbi_io_j_adp[3:0] Out PADS J-Bus address/data Parity

jbi_io_j_adp_en Out PADS J-Bus address/data parity enable

jbi_io_config_dtl[1:0] Out PADS J-Bus I/O DTL configuration

TABLE 6-1 JBI I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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CHAPTER 7

Floating-Point Unit

This chapter describes the following topics:

■ Section 7.1, “Functional Description” on page 7-1
■ Section 7.2, “I/O Signal list” on page 7-15

7.1 Functional Description
The OpenSPARC T1 floating-point unit (FPU) has the following features and 
supports the following functions:

■ The FPU implements the SPARC V9 floating-point instruction set with the 
following exceptions:

■ Does not implement these instructions – FSQRT(s,d), and all quad precision 
instructions

■ Move-type instructions executed by the SPARC core floating-point frontend 
unit (FFU): FMOV(s,d), FMOV(s,d)cc, FMOV(s,d)r, FABS(s,d), FNEG(s,d)

■ Loads and stores (the SPARC core FFU executes these operations)

■ The FPU does not support the visual instruction set (VIS). (The SPARC core FFU 
provides limited VIS support.)

■ The FPU is a single shared resource on the OpenSPARC T1 processor. Each of the 
eight SPARC cores may have a maximum of one outstanding FPU instruction. A 
thread with an outstanding FPU instruction stalls (switches out) while waiting for 
the FPU result.

■ The floating-point register file (FRF) and floating-point state register (FSR) are not 
physically located within the FPU. The SPARC core FFU owns the register file and 
FSR. The SPARC core FFU also performs odd/even single precision address 
handling.

■ The FPU complies with the IEEE 754 standard. 
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■ The FPU includes three independent execution pipelines:

■ Floating-point adder (FPA) – adds, subtracts, compares, conversions

■ Floating-point multiplier (FPM) – multiplies

■ Floating-point divider (FPD) – divides

■ One instruction per cycle may be issued from the FPU input FIFO queue to one of 
the three execution pipelines.

■ One instruction per cycle may complete and exit the FPU.

■ Support for all IEEE 754 floating-point data types (normalized, denormalized, 
NaN, zero, infinity). A denormalized operand or result will never generate an 
unfinished_FPop trap to the software. The hardware provides full support for 
denormalized operands and results.

■ IEEE non-standard mode (FSR.ns) is ignored by the FPU.

■ The following instruction types are fully pipe-lined and have a fixed latency, 
independent of operand values – add, subtract, compare, convert between 
floating-point formats, convert floating-point to integer, convert integer to 
floating-point.

■ The following instruction types are not fully pipe-lined – multiply (fixed latency, 
independent of operand values), divide (variable latency, dependent on operand 
values).

■ Divide instructions execute in a dedicated datapath and are non-blocking.

■ Underflow tininess is detected before rounding. Loss of accuracy is detected 
when the delivered result value differs from what would have been computed 
were both the exponent range and precision unbounded (inexact condition).

■ A precise exception model is maintained. The OpenSPARC T1 implementation 
does not require early exception detection/prediction. A given thread stalls 
(switches out) while waiting for an FPU result.

■ The FPU includes three parallel pipelines and these pipelines can simultaneously 
have instructions at various stages of completion. FIGURE 7-1 displays an FPU 
block diagram that shows these parallel pipelines.

FIGURE 7-1 FPU Functional Block Diagram

From PCX To CPX
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queue
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Add pipeline: FPA
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The following sections provide additional information about the OpenSPARC T1 
FPU:

■ Section 7.1.1, “Floating-Point Instructions” on page 7-4

■ Section 7.1.2, “FPU Input FIFO Queue” on page 7-5

■ Section 7.1.3, “FPU Output Arbitration” on page 7-6

■ Section 7.1.4, “Floating-Point Adder” on page 7-6

■ Section 7.1.5, “Floating-Point Multiplier” on page 7-7

■ Section 7.1.6, “Floating-Point Divider” on page 7-8

■ Section 7.1.7, “FPU Power Management” on page 7-9

■ Section 7.1.8, “Floating-Point State Register Exceptions and Traps” on page 7-10

TABLE 7-1 OpenSPARC T1 FPU Feature Summary 

Feature OpenSPARC T1 Processor FPU Implementation

ISA SPARC V9

VIS Not available

Issue 1

Register file In FFU

FDIV blocking No

Full hardware 
denorm support

Yes

Hardware quad 
support

No
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7.1.1 Floating-Point Instructions
TABLE 7-2 describes the floating-point instructions, including the execution latency 
and the throughput for each instruction.

TABLE 7-2 SPARC V9 Single and Double Precision FPop Instruction Set 

Mnemonic Description Pipe Execution Latency Throughput

FADD(s,d) Floating-point add FPA 4 1/1

FSUB(s,d) Floating-point subtract FPA 4 1/1

FCMP(s,d) Floating-point compare FPA 4 1/1

FCMPE(s,d) Floating-point compare (exception if 
unordered)

FPA 4 1/1

F(s,d)TO(d,s) Convert between floating-point formats FPA 4 1/1

F(s,d)TOi Convert floating point to integer FPA 4 1/1

F(s,d)TOx Convert floating point to 64-bit integer FPA 4 1/1

FiTOd Convert integer to floating point FPA 4 1/1

FiTOs Convert integer to floating point FPA 5 1/1

FxTO(s,d) Convert 64-bit integer to floating point FPA 5 1/1

FMUL(s,d) Floating-point multiply FPM 7 1/2

FsMULd Floating-point multiply single to double FPM 7 1/2

FDIV(s,d) Floating-point divide FPD 32 SP, 61 DP
(less for zero or 
denormalized 
results)

29 SP, 58 DP
(less for zero 
or 
denormalized 
results)

FSQRT(s,d) Floating-point square root Unimplemented

Executed in the SPARC core FFU

FMOV(s,d) Floating-point move

FMOV(s,d)cc Move floating-point register if condition is 
satisfied

FMOV(s,d)r Move floating-point register if integer register 
contents satisfy condition

FABS(s,d) Floating-point absolute value

FNEG(s,d) Floating-point negate
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7.1.2 FPU Input FIFO Queue
The OpenSPARC FPU input first-in/first-out (FIFO) queue has the following 
characteristics:

■ Contains: 16 entry x 155-bits, 1R/1W ports.

■ The input FIFO queue accepts input data from the crossbar. One source operand 
per cycle is transferred. The crossbar will always provide a two-cycle transfer. 
Single source instructions produce an invalid transfer on the second cycle.

■ A bypass path around the FIFO is provided when the FIFO is empty.

■ While a two-source instruction requires two valid transfers, the two transfers are 
merged into a single 155-bit entry prior updating or bypassing the FIFO.

■ For single source instructions, the FPU forces rs1 to zero (within the 155-bit entry) 
prior to updating or bypassing the FIFO.

■ For single precision operands, the unused 32-bit region of the 64-bit source is 
forced to zero by the FFU. The 32-bits of single precision data is always contained 
in the upper 32-bits of the 64-bit source.

■ One instruction per cycle may be issued from the FIFO queue to one of the three 
execution pipelines (FPA, FPM, or FPD).

■ Prior to updating or bypassing the FIFO, five tag bits are generated per source 
operand. This creates a 69-bit source operand width (64+5=69). The five tag bits 
convey information about the zero fraction, the zero exponent, and the all ones 
exponent.

■ Eight FIFO entries are dedicated to the combined FPA/FPM, and eight entries are 
dedicated to FPD. The FPD has issue priority over FPA/FPM.

■ The eight FPD FIFO entries and the eight FPA/FPM entries always issue in FIFO 
order.

■ The 155-bit FIFO entry format:

■ [154:150] – 5-bit ID (CPU and thread)

■ [149:148] – 2-bit round mode

■ [147:146] – 2-bit fcc field

■ [145:138] – 8-bit opcode

■ [137:69] – 69-bit rs1 (includes tag bits)

■ [68:0] – 69-bit rs2 (includes tag bits)
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7.1.3 FPU Output Arbitration
The FPA, FPM, and FPD execution pipelines are arbitrated for the single FPU result 
bus to the crossbar. Only one instruction may complete and exit the FPU per cycle. 
During this arbitration, the FPD pipeline has priority over the FPA and the FPM 
pipelines. The FPA and FPM pipelines are prioritized in a round-robin fashion.

If an FPA or FPM execution pipeline is waiting for its result to exit the FPU, the 
pipeline will stall at the final execution stage. If the final execution stage is not 
occupied by a valid instruction, instructions within the pipeline will advance, and 
the input FIFO queue may issue to the pipeline. If the final execution stage is 
occupied by a valid instruction then each pipeline stage is held.

The input FIFO queue will not advance if the instruction at the head of the FIFO 
must issue to a pipeline, which at each stage has been held due to a result from that 
pipeline not exiting the FPU.

7.1.4 Floating-Point Adder
The floating-point adder (FPA) performs addition and subtraction on single and 
double precision floating-point numbers, conversions between floating point and 
integer formats, and floating-point compares.

FPA characteristics include:

■ The FPA execution datapath is implemented in four pipeline stages (A1, A2, A3, 
and A4). 

■ Certain integer conversions to floating-point instructions require a second pass 
through the final stage (see TABLE 7-3 for details).

■ All FPA instructions are fixed latency, and independent of operand values.

■ Follows a large exponent difference (LED)/small exponent difference (SED) 
mantissa datapath organization.

■ A post-normalization incrementer is used for rounding (late round organization).

■ NaN source propagation is supported by steering the appropriate NaN source 
through the datapath to the result. (Refer to the UltraSPARC Architecture 2005 
Specification for more information.)
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7.1.5 Floating-Point Multiplier
Characteristics of the floating-point multiplier (FPM) include:

■ The FPM execution datapath is implemented in six pipeline stages (M1 through 
M6). (See TABLE 7-4 for details of these stages.)

■ A two-pass (double-pump) implementation is used for all multiply instructions 
(single and double precision), which produces a latency of seven cycles and a 
throughput of one instruction every two cycles.

■ All FPM instructions are fixed latency and are independent of the operand values.

■ A post-normalization incrementer is used for rounding (otherwise known as a late 
round organization).

■ NaN source propagation is supported by steering the appropriate NaN source 
through the datapath to the result. (Refer to the UltraSPARC Architecture 2005 
Specification for more information.)

TABLE 7-3 FPA Datapath Stages 

Stage LED Action SED Action

A1 Format input operands

Compare fractions

A2 Align smaller operand to larger 
operand

Invert smaller operand if a logical 
(effective) subtraction is to be 
performed

Invert smaller operand if a logical 
(effective) subtraction is to be 
performed

Compute the intermediate result (A + B)

A3 Compute the intermediate result (A + B) Leading zero detect

A4 Round Normalize

FiTOs, FxTOs, FxTOd instructions only

A4 Round
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7.1.6 Floating-Point Divider
The floating-point divider (FPD) has the following characteristics:

■ The floating point divide (FDIV) instructions maximum execution latency is: 
32 single precision (SP), and 61 double precision (DP). (Zero or denormalized 
results have less latency.)

■ Normalized results always produce a fixed execution latency of 32 SP, 61 DP.

■ Denormalized results produce a variable execution latency of between 9 and 31 
for SP, and between 9 and 60 for DP.

■ Zero results always produce a fixed execution latency of 7 SP, 7 DP.

■ Infinity or QNaN results always produce a fixed execution latency of 32 SP, 61 DP.

■ The FPD uses a shift/subtract restoring algorithm generating 1-bit per cycle.

■ The FDIV instructions execute in a dedicated datapath and are non-blocking.

■ The FPD execution datapath is implemented in seven pipeline stages (D1 through 
D7). (See TABLE 7-5 for details of these stages.)

TABLE 7-4 FPM Datapath Stages

Stage Action

M1 Format input operands, booth recoder

M2 – M4
• Generate partial products using a radix-4 booth algorithm
• Accumulate partial products using a Wallace tree configuration
• Add the two Wallace tree outputs using a carry-propagate adder

M5 Normalize

M6 Round
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7.1.7 FPU Power Management
FPU power management is accomplished by way of block controllable clock gating. 
Clocks are dynamically disabled or enabled as needed, thus reducing clock power 
and signal activity when possible.

The FPU has independent clock control for each of the three execution pipelines 
(FPA, FPM, and FPD). Clocks are gated for a given pipeline when it is not in use, so 
a pipeline will have its clocks enabled only under one of the following conditions:

■ The pipeline is executing a valid instruction

■ A valid instruction is issuing to the pipeline

■ The reset is active

■ The test mode is active

The input FIFO queue and output arbitration blocks receive free running clocks. This 
eliminates potential timing issues, simplifies the design, and has only a small impact 
on the overall FPU power savings.

The FPU power management feature automatically powers up and powers down 
each of the three FPU execution pipelines, based on the contents of the instruction 
stream. Also, the pipelines are clocked only when required. For example, when no 
divide instructions are executing, the FPD execution pipeline automatically powers 
down. Power management is provided without affecting functionality or 
performance, and it is transparent to the software.

TABLE 7-5 FPD Datapath Stages 

Stage Action

D1 Format input operand rs1

D2 Leading zero detect for rs1
Format input operand rs2

D3 Pre-normalize rs1
Leading zero detect for rs2

D4 Pre-normalize rs2

D5 Quotient loop (if normalized result, run 55 cycles DP, 26 cycles SP)

D6 Determine sticky bit from remainder

D7 Round
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7.1.8 Floating-Point State Register Exceptions and Traps
The SPARC core FFU physically contains the architected floating-point state register 
(FSR). The characteristics of the FSR, as well as exceptions and traps, include:

■ The FFU provides FSR.rd (IEEE rounding direction) to the FPU. IEEE non-
standard mode (FSR.ns) is ignored by the FPU, and thus is not provided by the 
FFU.

■ The FFU executes all floating-point move (FMOV) instructions. The FPU does not 
require any conditional move information. A 2-bit FSR condition code (FCC) field 
identifier (fcc0, fcc1, fcc2, fcc3) is provided to the FPU so that the floating-point 
compare (FCMP) target fcc field is known when the FPU result is returned to the 
FFU.

■ The FPU provides IEEE exception status flags to the FFU for each instruction 
completed. The FFU determines if a software trap (fp_exception_ieee_754) is 
required based on the IEEE exception status flags supplied by the FPU and the 
IEEE trap enable bits located in the architected FSR.

■ A denormalized operand or result will never generate an unfinished FPop trap to 
the software. The hardware provides full support for denormalized operands and 
results.

■ Each of the five IEEE exception status flags and associated trap enables are 
supported – invalid operation, zero divide, overflow, underflow, and inexact.

■ IEEE traps enabled mode – if an instruction generates an IEEE exception when the 
corresponding trap enable is set, then a fp_exception_ieee_754 trap is generated 
and results are inhibited by the FFU.

■ The destination register remains unchanged

■ FSR condition codes (fcc) remain unchanged

■ FSR.aexc field remains unchanged

■ FSR.cexc field has one bit set corresponding to the IEEE exception

■ All four IEEE round modes are supported in hardware.

■ The five IEEE exception status flags include:

■ Invalid (nv)

■ Overflow (of)

■ Underflow (uf)

■ Division-by-zero (dz)

■ Inexact (nx)
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■ The FSR contains a 5-bit field for current exceptions (FSR.cexc) and a 5-bit field 
for accrued exceptions (FSR.aexc). Each IEEE exception status flag has a 
corresponding trap enable mask (TEM) in the FSR:

■ Invalid mask – NVM

■ Overflow mask – OFM

■ Underflow mask – UFM

■ Division-by-zero mask – DZM

■ Inexact mask – NXM

■ The FPU does not receive the FSR.TEM bits. The FSR.TEM bits are used within 
the FFU for the following cases:

■ fp_exception_ieee_754 trap detection: If a FPop generates an IEEE exception 
(nv, of, uf, dz, nx) when the corresponding trap enable (TEM) bit is set, then a 
fp_exception_ieee_754 trap is caused. The FSR.cexc field has one bit set 
corresponding to the IEEE exception, and the FSR.aexc field remains 
unchanged.

■ Clear the FSR.nxc flag if an overflow (underflow) exception does a trap 
because the FSR.OFM (FSR.UFM) mask is set, regardless of whether the 
FSR.NXM mask is set. Set FSR.ofc (FSR.ufc).

■ Clear the FSR.ofc (FSR.ufc) flag if overflow (underflow) exception traps when 
the FSR.OFM (FSR.UFM) mask is not set and the FSR.NXM mask is set. Set 
FSR.nxc.

■ Clear the FSR.ufc flag if the result is exact (and the FSR.nxc flag is not set) and 
the FSR.UFM mask is not set. This case represents an exact denormalized 
result.

■ There are three types of FPU related traps tracked in the architected trap type 
(TT) register located in the SPARC core TLU:

■ fp_disabled

External to the FPU, the SPARC core IFU detects the fp_disabled trap type.

■ fp_exception_ieee_754

If an FPop generates an IEEE exception (nv, of, uf, dz, nx) when the 
corresponding trap enable (TEM) bit is set, then an fp_exception_ieee_754 trap 
is caused. The FFU detects this trap type.

■ fp_exception_other

In the OpenSPARC T1 implementation, fp_exception_other trap results from an 
unimplemented FPop. The FFU detects unimplemented FPops.
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7.1.8.1 Overflow and Underflow

An overflow occurs when the magnitude of what would have been the rounded 
result (had the exponent range been unbounded) is greater than the magnitude of 
the largest finite number of the specified precision. FPA, FPM, and FPD support all 
overflow conditions.

The underflow exception condition is defined separately for the trap-enabled and 
trap-disabled states.

■ FSR.UFM = 1 – underflow occurs when the intermediate result is tiny

■ FSR.UFM = 0 – underflow occurs when the intermediate result is tiny and there is 
a loss of accuracy

A tiny result is detected before rounding, when a non-zero result value is computed 
as though the exponent range were unbounded and would be less in magnitude 
than the smallest normalized number.

Loss of accuracy is detected when the delivered result value differs from what 
would have been computed had both the exponent range and the precision been 
unbounded (an inexact condition).

The FPA, FPM, and FPD will signal an underflow to the SPARC core FFU for all tiny 
results. The FFU must clear the FSR.ufc flag if the result is exact (the FSR.nxc is not 
set) and the FSR.UFM mask is not set. This case represents an exact denormalized 
result.
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7.1.8.2 IEEE Exception List

TABLE 7-6 lists the IEEE exception cases and their OpenSPARC T1 generated results.

Note – The FPU does not receive the trap enable mask (FSR.TEM). The FSR.TEM 
bits are used within the FFU. If an instruction generates an IEEE exception when the 
corresponding trap enable is set, then an fp_exception_ieee_754 trap is generated 
and the results are inhibited by the FFU.

TABLE 7-6 IEEE Exception Cases 

Instruction Invalid Divide by zero Overflow
Underflow or  
Denormalized Inexact

FABS(s,d) Executed in SPARC core FFU (cannot generate IEEE exceptions)

FADD(s,d) • SNaN
• ∞ – ∞
result=NaN1,2

FSR.nvc=1

result=±max
or ±∞
FSR.ofc=14

result=±0 or
±min or
±denorm
FSR.ufc=15, 4

result=IEEE6

FSR.nxc=17

FCMP(s,d) • SNaN
result=fcc
FSR.nvc=1

FCMPE(s,d) • NaN
result=fcc
FSR.nvc=1

FDIV(s,d) • SNaN
• 0 ÷ 0
• ∞ ÷ ∞
result=NaN1, 2

FSR.nvc=1

• x ÷ 0, for 
x ≠ 0 or ∞  
or NaN

result=±∞
FSR.dzc=1

result=±max 
or ±∞
FSR.ofc=14

result=±0 or
±min or
±denorm
FSR.ufc=15, 4

result=IEEE6

FSR.nxc=17

FiTOs result=IEEE6

FSR.nxc=1 

FiTOd Cannot generate IEEE exceptions

FMOV(s,d) Executed in SPARC core FFU (cannot generate IEEE exceptions)

FMOV(s,d)cc Executed in SPARC core FFU (cannot generate IEEE exceptions)

FMOV(s,d)r Executed in SPARC core FFU (cannot generate IEEE exceptions)

FMUL(s,d) • SNaN
• ∞ × 0
result=NaN1, 2

FSR.nvc=1

result=±max 
or ±∞
FSR.ofc=14

result=±0 or
±min or
±denorm
FSR.ufc=15, 4

result=IEEE6

FSR.nxc=17

FNEG(s,d) Executed in SPARC core FFU (cannot generate IEEE exceptions)
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FsMULd • SNaN
• ∞ × 0
result=NaN1, 2

FSR.nvc=1

FSQRT(s,d) Unimplemented

F(s,d)TOi • NaN
• •
• large
result=max 
±integer3

FSR.nvc=1

result=IEEE6

FSR.nxc=1

FsTOd • SNaN
result=NaN2

FSR.nvc=1

FdTOs • SNaN
result=NaN2

FSR.nvc=1

result=±max or 
±∞
FSR.ofc=14

result=±0 or 
±min or 
±denorm
FSR.ufc=15, 4

result=IEEE6

FSR.nxc=17

F(s,d)TOx • NaN
• •
• large
result=max 
±integer3

FSR.nvc=1

result=IEEE6

FSR.nxc=1

FSUB(s,d) • SNaN
• ∞ – ∞
result=NaN1, 2

FSR.nvc=1

result=±max 
or ±∞
FSR.ofc=14

result=±0 or
±min or
±denorm
FSR.ufc=15, 4

result=IEEE6

FSR.nxc=17

FxTO(s,d) result=IEEE6

FSR.nxc=1

1 Default response QNaN = x’7ff...fff’

2 SNaN input propagated and transformed to QNaN result

3 Maximum signed integer (x’7ff...fff’ or x’800...000’)

4 FFU will clear FSR.ofc (FSR.ufc) if overflow (underflow) exception traps and FSR.OFM (FSR.UFM) is not set and FSR.NXM is set. FFU 
will set FSR.nxc.

5 FFU will clear FSR.ufc if the result is exact (FSR.nxc is not set) and FSR.UFM is not set. This case represents an exact denormalized result.

6 Rounded or overflow (underflow) result.

7  FFU will clear FSR.nxc if an overflow (underflow) exception does trap because FSR.OFM (FSR.UFM) is set, regardless of whether 
FSR.NXM is set. FFU will set FSR.ofc (FSR.ufc).

TABLE 7-6 IEEE Exception Cases (Continued)

Instruction Invalid Divide by zero Overflow
Underflow or  
Denormalized Inexact
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7.2 I/O Signal list
TABLE 7-7 describes the I/O Signals for the OpenSPARC T1 floating-point unit (FPU).

TABLE 7-7 FPU I/O Signal List 

Signal Name I/O Source/Destination Description

pcx_fpio_data_rdy_px2 In CCX:PCX FPU request ready from the PCX

pcx_fpio_data_px2[123:0] In CCX:PCX FPU request packet from the PCX

arst_l In CTU Chip asynchronous reset – asserted low

grst_l In CTU Chip synchronous reset – asserted low

gclk In CTU Chip clock

cluster_cken In CTU Cluster clock enable

ctu_tst_pre_grst_l In CTU

global_shift_enable In CTU 

ctu_tst_scan_disable In CTU 

ctu_tst_scanmode In CTU 

ctu_tst_macrotest In CTU 

ctu_tst_short_chain In CTU 

si In DFT Scan in

fp_cpx_req_cq[7:0] Out CCX:CPX FPU result request to the CPX

fp_cpx_data_ca[144:0] Out CCX:CPX FPU result packet to the CPX

so Out DFT Scan out
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CHAPTER 8

DRAM Controller

This chapter describes the following topics for the double data rate two (DDR-II) 
dynamic random access memory (DRAM) controller:

■ Section 8.1, “Functional Description” on page 8-1
■ Section 8.2, “I/O Signal List” on page 8-9

8.1 Functional Description
The OpenSPARC T1 DDR-II DRAM controller has the following characteristics:

■ There are four independent DRAM controllers – each controller is connected to 
one L2-cache bank and one DDR-II memory channel

■ Supports a maximum physical address space of 37 bits, for a maximum memory 
size of 128 Gbytes

■ 64-byte cache lines are interleaved across four channels

■ Operational range of 125 MHz to 200 MHz with a data rate of 250 to 400 MT/sec

■ Peak bandwidth of 23 Gbyte/sec at 200 MHz.

■ Error correction code (ECC) is based on single nibble correction and double nibble 
error detection (128 bit data + 16-bit ECC)

■ Supports the chip kill feature

■ The DRAM controller has three clock domains – CMP, DRAM, and J-Bus

■ The DRAM controller operates in two modes – four channel mode or two channel 
mode (the mode is software programmable)

■ The DRAM controller services L2-cache read requests from the DIMMs

■ Out-of-bound read addresses are returned with a multiple bit ECC (MECC) 
error

■ Reply zero data for L2-cache dummy read requests
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■ The DRAM controller performs L2-cache writebacks to the DIMMs

■ Out-of-bound write addresses are silently dropped
■ Uncorrectable L2-cache data is stored by poisoning the data

■ The DRAM controller performs DRAM data scrubbing

■ DRAM controller issues periodic refreshes to the DIMMs

■ Supports DRAM power throttling by reducing the number of DIMM activations

■ To program the DRAM controller control and status registers (CSRs), the 
controller uses the UCB bus as an interface to the I/O buffer (IOB)

FIGURE 8-1 displays a functional block diagram of the DRAM controller.

FIGURE 8-1 DDR-II DRAM Controller Functional Block Diagram
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8.1.1 Arbitration Priority
The read requests have higher priority over write requests, but there is a starvation 
counter which will enable writes to go through. Write requests that match the 
pending read requests are completed ahead for ordering. The DRAM controller 
should never see a read request followed by write request. The arbitration priority 
order is listed as follows, with the first list item having the highest priority:

1. Refresh request.

2. Pending column address strobe (CAS) requests (round-robin).

3. Scrub row address strobe (RAS) requests.

4. Write pending RAS requests, which have matching addresses, as read requests 
that are picked for RAS.

5. Read RAS requests from read queues, or write RAS requests from write queues 
when the write starvation counter reaches its limit (round-robin).

6. Write RAS requests from write queues, or read RAS requests from read queues if 
the write starvation counter reaches its limit.

7. Incoming read RAS requests.
Chapter 8 DRAM Controller  8-3



8.1.2 DRAM Controller State Diagrams
FIGURE 8-2 presents a top-level state diagram of the DRAM controller. Software must 
initialize the DRAM controller at power-on in order for it to achieve an initialized 
state.

FIGURE 8-2 DDR-II DRAM Controller Top-Level State Diagram
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FIGURE 8-3 displays the DIMM scheduler state diagram. The DIMM scheduler has 
three main states – wait, CAS pick, and RAS pick. Whenever a CAS or a RAS request 
exists and timing is met, the scheduler goes into a CAS pick or a RAS pick state.

FIGURE 8-3 DIMM Scheduler State Diagram
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■ Write-to-read delay

■ Read-to-write delay

■ Programmable data expect cycles

8.1.4 Errors
The DRAM controller error mechanism has the following characteristics:

■ Error injection can be done through software programming

■ Error registers are accessible by way of the IOB interface

■ Error counter registers can send an interrupt when reaching a programmed count

■ All correctable and uncorrectable errors are logged and sent to the L2-cache along 
with the data

■ DRAM scrub errors are also forwarded to L2-cache independently

■ Error location register logs the error nibble position on correctable errors

■ The scrub error address is also logged in the error address register

8.1.5 Repeatability and Visibility
■ For repeatability: 

■ The arbiter states for the RAS and the CAS picker are reset

■ The scrub address is reset

■ The refresh counter is software programmable (it does not reset)

■ Visibility is plenty for address/data

■ The address can be reconstructed from the RAS and CAS address, chip select, 
and bank bits by knowing the configuration registers

■ External visible check bits have to be XORed with the address parity in order 
to get the true ECC
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8.1.6 DDR-II Addressing
The characteristics of DDR-II addressing include:

■ Burst lengths of 4 and 8 are supported

■ Various DRAM chips are supported and their addressing is shown in TABLE 8-1

■ The address bit A10 is used as auto-precharge bit

■ The DRAM bank bits are hashed as follows:

new_dimm_bank[2:0] = dimm_bank[2:0] ^ addr[20:18] ^ addr[30:28]

■ TABLE 8-2 shows the physical address (PA) decoding to the DIMM address (bank 
address, row address, and column address).

TABLE 8-1 DDR-II Addressing 

Base Device Part Number of Banks Bank Address Row Address Column Address

256 Mbyte x4 4 BA[1:0] A[12:0] A[11],A[9:0]

512 Mbyte x4 4 BA[1:0] A[13:0] A[11],A[9:0]

1 Gbyte x4 8 BA[2:0] A[13:0] A[11],A[9:0]

2 Gbyte x4 8 BA[2:0] A[14:0] A[11],A[9:0]

4 Gbyte x4 8 BA[2:0] A[15:0] A[11],A[9:0]

TABLE 8-2 Physical Address to DIMM Address Decoding 

Total 
Memory 
Per 
Channel

DIMM 
Density / 
Type

DRAM 
Component 
Used RANK

Stacked 
DIMM

DIMM Bank 
Address 
(BA)

Row 
Address Column Address

1 Gbytes 512 Mbyte
unstacked

256 Mbit PA[9:8] PA[31:19] {PA[18:10],PA[5:4]}

2 Gbytes 
with Rank

512 Mbyte
unstacked

256 Mbit PA[32] PA[9:8] PA[31:19] {PA[18:10],PA[5:4]}

2 Gbytes 1 Gbyte
stacked

256 Mbit PA[32] PA[9:8] PA[31:19] {PA[18:10],PA[5:4]}

4 Gbytes 
with Rank

1 Gbyte
stacked

256 Mbit PA[33] PA[32] PA[9:8] PA[31:19] {PA[18:10],PA[5:4]}

4 Gbytes 2 Gbytes
unstacked

1 Gbit PA[10:8] PA[33:20] {PA[19:11],PA[5:4]}
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8.1.7 DDR-II Supported Features
The DRAM controller supports the following DDR-II features:

■ DIMMs with component sizes 256 Mbit to 2 Gbit are supported

■ Only x4 SDRAM parts are supported

■ DIMMs on one channel should have same timing parameters

■ Banks are always closed after a read or a write

■ Supports a burst length of 4

■ There is one fixed dead cycle for switching commands from one rank to another 
rank

■ A single-ended DQS is used

■ An off-chip driver (OCD) is not supported

■ SDRAM on-die termination (ODT) is not supported

■ The additive latency (AL) is always zero

TABLE 8-3 lists the subset of DDR-II SDRAM commands used by the OpenSPARC T1 
processor.

TABLE 8-3 DDR-II Commands Used by OpenSPARC T1 Processor 

Function

CKE 
Previous 
Cycle

CKE 
Current 
Cycle CS_L RAS_L CAS_L WE_L Bank Address

Mode/extended 
mode register set

H H L L L L BA Op-code

Auto refresh H H L L L H X X

Self refresh entry H L L L L H X X

Self refresh exit L H H X X X X X

L H H H

Precharge all banks H H L L H L X A10=H

Bank activate H H L L H H BA Row Address

Write with auto 
precharge

H H L H L L BA Column address, 
A10=H

Read with auto 
precharge

H H L H L H BA Column address, 
A10=H

No operation H X L H H H X X

Device deselect H X H X X X X X
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8.2 I/O Signal List
TABLE 8-4 lists the I/O signals for OpenSPARC T1 DDR-II DRAM controller.

TABLE 8-4 DRAM Controller I/O Signal List 

Signal Name I/O
Source/
Destination Description

dram_other_pt_max_banks_open_v
alid

In

dram_other_pt_max_time_valid In

dram_other_pt_ucb_data[16:0] In

dram_other_pt0_opened_bank In

dram_other_pt1_opened_bank In

io_dram0_data_in[255:0] In PADS I/O data in

io_dram0_data_valid In PADS I/O data valid

io_dram0_ecc_in[31:0] In PADS I/O ECC in

io_dram1_data_in[255:0] In PADS I/O data in

io_dram1_data_valid In PADS I/O data valid

io_dram1_ecc_in[31:0] In PADS I/O ECC in

iob_ucb_data[3:0] In IOB UCB data

iob_ucb_stall In IOB UCB stall

iob_ucb_vld In IOB UCB valid

scbuf0_dram_data_mecc_r5 In SCBUF0 

scbuf0_dram_data_vld_r5 In SCBUF0 

scbuf0_dram_wr_data_r5[63:0] In SCBUF0 To dramctl0 of dramctl.v

scbuf1_dram_data_mecc_r5 In SCBUF1 

scbuf1_dram_data_vld_r5 In SCBUF1 

scbuf1_dram_wr_data_r5[63:0] In SCBUF1 To dramctl1 of dramctl.v

sctag0_dram_addr[39:5] In SCTAG0 To dramctl0 of dramctl.v

sctag0_dram_rd_dummy_req In SCTAG0

sctag0_dram_rd_req In SCTAG0 To dramctl0 of dramctl.v

sctag0_dram_rd_req_id[2:0] In SCTAG0 To dramctl0 of dramctl.v
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sctag0_dram_wr_req In SCTAG0 To dramctl0 of dramctl.v

sctag1_dram_addr[39:5] In SCTAG1 To dramctl1 of dramctl.v

sctag1_dram_rd_dummy_req In SCTAG1

sctag1_dram_rd_req In SCTAG1 To dramctl1 of dramctl.v

sctag1_dram_rd_req_id[2:0] In SCTAG1 To dramctl1 of dramctl.v

sctag1_dram_wr_req In SCTAG1 To dramctl1 of dramctl.v

clspine_dram_rx_sync In CTU RX synchronous

clspine_dram_tx_sync In CTU TX synchronous

clspine_jbus_rx_sync In CTU RX synchronous

clspine_jbus_tx_sync In CTU TX sync

dram_gdbginit_l In CTU Debug init for repeatability @ J-Bus freq

clk_dram_jbus_cken In CTU J-Bus clock enable

clk_dram_dram_cken In CTU DDR clock enable

clk_dram_cmp_cken In CTU CMP clock enable

clspine_dram_selfrsh In CTU Signal from clock to put in self refresh @J-
Bus freq

global_shift_enable In CTU Scan shift enable signal

dram_si In DFT Scan in

jbus_gclk In CTU J-Bus clock

dram_gclk In CTU DDR clock

cmp_gclk In CTU CMP clock

dram_adbginit_l In CTU Active low async reset of dbginit_l

dram_arst_l In CTU Active low async reset of rst_l

jbus_grst_l In CTU Active low reset signal

dram_grst_l In CTU Active low reset signal

cmp_grst_l In CTU Active low reset signal

ctu_tst_scanmode In CTU 

ctu_tst_pre_grst_l In CTU

ctu_tst_scan_disable In CTU

ctu_tst_macrotest In CTU

TABLE 8-4 DRAM Controller I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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ctu_tst_short_chain In CTU

dram_io_addr0[14:0] Out PADS DRAM address 0

dram_io_addr1[14:0] Out PADS DRAM address 1

dram_io_bank0[2:0] Out PADS DRAM bank 0

dram_io_bank1[2:0] Out PADS DRAM bank 1

dram_io_cas0_l Out PADS DRAM CAS 0

dram_io_cas1_l Out PADS DRAM CAS 1

dram_io_channel_disabled0 Out PADS DRAM channel disable 0

dram_io_channel_disabled1 Out PADS DRAM channel disable 1

dram_io_cke0 Out PADS DRAM CKE 0

dram_io_cke1 Out PADS DRAM CKE 1

dram_io_clk_enable0 Out PADS DRAM clock enable 0

dram_io_clk_enable1 Out PADS DRAM clock enable 1

dram_io_cs0_l[3:0] Out PADS DRAM CS 0

dram_io_cs1_l[3:0] Out  PADS DRAM CS 1

dram_io_data0_out[287:0] Out  PADS DRAM data 0

dram_io_data1_out[287:0] Out PADS DRAM data 1

dram_io_drive_data0 Out PADS From dramctl0 of dramctl.v

dram_io_drive_data1 Out PADS From dramctl1 of dramctl.v

dram_io_drive_enable0 Out PADS From dramctl0 of dramctl.v

dram_io_drive_enable1 Out PADS From dramctl1 of dramctl.v

dram_io_pad_clk_inv0 Out PADS 

dram_io_pad_clk_inv1 Out PADS 

dram_io_pad_enable0 Out PADS 

dram_io_pad_enable1 Out PADS 

dram_io_ptr_clk_inv0[4:0] Out PADS 

dram_io_ptr_clk_inv1[4:0] Out PADS 

dram_io_ras0_l Out PADS DRAM RAS 0

dram_io_ras1_l Out PADS DRAM RAS 1

dram_io_write_en0_l Out PADS DRAM write enable 0

TABLE 8-4 DRAM Controller I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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dram_io_write_en1_l Out PADS DRAM write enable 1

dram_sctag0_data_vld_r0 Out SCTAG0 

dram_sctag0_rd_ack Out SCTAG0 

dram_sctag0_scb_mecc_err Out SCTAG0 

dram_sctag0_scb_secc_err Out SCTAG0 

dram_sctag0_wr_ack Out SCTAG0 

dram_sctag1_data_vld_r0 Out SCTAG1 

dram_sctag1_rd_ack Out SCTAG1 

dram_sctag1_scb_mecc_err Out SCTAG1 

dram_sctag1_scb_secc_err Out SCTAG1 

dram_sctag1_wr_ack Out SCTAG1 

ucb_iob_data[3:0] Out IOB UCB data

ucb_iob_stall Out IOB UCB stall

ucb_iob_vld Out IOB UCB valid

dram_sctag0_chunk_id_r0[1:0] Out SCTAG0 

dram_sctag0_mecc_err_r2 Out SCTAG0 

dram_sctag0_rd_req_id_r0[2:0] Out SCTAG0 

dram_sctag0_secc_err_r2 Out SCTAG0 

dram_sctag1_chunk_id_r0[1:0] Out SCTAG1 

dram_sctag1_mecc_err_r2 Out SCTAG1 

dram_sctag1_rd_req_id_r0[2:0] Out SCTAG1 

dram_sctag1_secc_err_r2 Out SCTAG1 

dram_scbuf0_data_r2[127:0] Out SCBUF0 

dram_scbuf0_ecc_r2[27:0] Out SCBUF0 

dram_scbuf1_data_r2[127:0] Out SCBUF1 

dram_scbuf1_ecc_r2[27:0] Out SCBUF1 

dram_local_pt0_opened_bank Out

dram_local_pt1_opened_bank Out

dram_pt_max_banks_open_valid Out

dram_pt_max_time_valid Out

TABLE 8-4 DRAM Controller I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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dram_pt_ucb_data[16:0] Out

dram_clk_tr Out CTU Debug trigger @ J-Bus freq

dram_so Out DFT Scan out

TABLE 8-4 DRAM Controller I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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CHAPTER 9

Error Handling

This chapter describes the following topics:

■ Section 9.1, “Error Handling Overview” on page 9-1
■ Section 9.2, “SPARC Core Errors” on page 9-3
■ Section 9.3, “L2-Cache Errors” on page 9-5
■ Section 9.4, “DRAM Errors” on page 9-8

9.1 Error Handling Overview
The OpenSPARC T1 processor detects, logs, and reports a number of errors to the 
software. This chapter describes the error types, and how various blocks detect, log 
and report these errors.

There are three types of errors in the OpenSPARC T1 processor:

1. Correctable errors (CE)

The correctable errors are fixed by the hardware, and the hardware can generate 
the disrupting traps so that the software can keep track of the error frequency or 
the failed/failing parts.

2. Uncorrectable errors (UE)

These types of errors are cannot be corrected by hardware, and hardware will 
generate precise, disrupting, or deferred traps. These errors can be corrected by 
software.

3. Fatal errors (FE)

These types of errors can create potentially unbounded damage and these types 
of errors will cause a warm reset.
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9.1.1 Error Reporting and Logging
■ The SPARC core errors are logged in program order and they are logged only 

after the instruction has exited the pipe (W-stage). The rolled back and flushed 
instructions do not log errors immediately. Errors are logged in the L2-cache and 
DRAM error registers in the order the errors occur.

■ Errors are reported hierarchically in the following order – DRAM, L2-cache, and 
SPARC core. For diagnostic reasons, the L2-cache can be configured to not report 
errors to the SPARC core.

■ SPARC, L2-cache, and DRAM error registers log error details for a single error 
only.

■ Fatal and uncorrectable errors will overwrite earlier correctable error information. 

■ The error registers have bits to indicate if multiple errors occurred.

■ Refer to the UltraSPARC T1 Supplement to UltraSPARC Architecture 2005 for 
detailed information about error control and status register (CSR) definitions, 
including addresses, bit fields, and so on.

9.1.2 Error Traps
■ Error trap logic is located in the SPARC core (IFU). Errors anywhere on the chip 

have to be reported here.

■ Error traps can be disabled (typically for diagnostic reasons).

■ Correctable errors cause a disrupting corrected ECC error trap. 

■ Uncorrectable errors can cause precise, disrupting, or deferred traps.

■ L2-cache and DRAM errors are reported through CPX packets.

■ There is a special CPX packet type that reports errors that cannot be attributed to 
a specific transaction (for example, an L2 evicted line with an UE).

■ When IFU receives this packet, a data_error trap is taken.

The following sub-sections describe the errors in SPARC core, L2-cache, and DRAM. 
Errors in other blocks like IOB and JBI are described in their chapters.
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9.2 SPARC Core Errors
This section describes the error registers, error protection, and error correction of the 
SPARC core.

9.2.1 SPARC Core Error Registers
Every thread in the SPARC core has its own set of hyper-privileged error registers. 
The error registers are described as:

■  ASI_SPARC_ERROR_EN_REG:

■ NCEEN: If set, it will enable uncorrectable error traps.

■ CEEN: If set, it will enable correctable error traps.

■ POR value is 0.

■ Logging will occur even if error traps are disabled.

■ ASI_SPARC_ERROR_STATUS_REG:

■ Logs the errors that occur.

■ Indicates if multiple errors occurred.

■ Indicates if the error occurred at a privileged level.

■ Not cleared on a hardware reset, so the software will need to do so. 

■ Never cleared by the hardware.

■ ASI_SPARC_ERROR_ADDRESS_REG:

■ Captures the address, syndrome, and so on as applicable. 

■ ASI_ERROR_INJECT_REG:

■ Used for error injection.

■ One per core, and shared by all threads.

■ Can specify one error source (from among the TLBs and the register file).

■ Error injection can be a single shot or multiple shots.

■ Diagnostic writes can be used to inject errors into the L1-caches.
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9.2.2 SPARC Core Error Protection
All SRAMs, caches, TLBs, and so on in the SPARC core have error protection using 
either parity or ECC. TABLE 9-1 shows the SPARC core memories and their error 
protection types.

9.2.3 SPARC Core Error Correction
The SPARC core provides error correction for various errors as follows:

■ Instruction/Data TLB Data Parity Error

■ Precise trap during translation.

■ Precise trap for ASI accesses.

■ Instruction/Data TLB Tag Parity Error

■ Not checked during translation.

■ Precise trap for ASI accesses with periodic software scrubbing.

■ DTLB parity error on a store causes a deferred trap.

■ Instruction/Data Cache Data/Tag Parity Error

■ Two requests to the L2-cache – the first invalidates the entire set and the 
second does a refill.

■ Data cache is not accessed for stores or atomics.

TABLE 9-1 Error Protection for SPARC Memories

Memory Error Protection Type

ITLB data Parity

ITLB tag Parity

DTLB data Parity

DTLB tag Parity

Instruction cache data Parity

Instruction cache tag Parity

Data cache data Parity

Data cache tag Parity

Integer register file (IRF) ECC

Floating-point register file (FRF) ECC

Modular arithmetic (MA) memory Parity
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■ Data cache errors on loads cause a rollback of the instruction following the 
load (from D or W stages).

■ An instruction cache parity error on an instruction causes a rollback from the 
D-stage.

■ IRF/FRF Correctable Error

■ The instruction is rolled back from W-stage and the error is corrected. The 
instruction is then replayed.

■ IRF/FRF Uncorrectable Error

■ Causes a precise trap.

■ I/O Load/Instruction Fetch Uncorrectable Error

■ Causes a precise trap.

■ Modular Arithmetic Memory Error

■ SPU aborts the operation and logs the error.

■ Different synchronization modes result in different traps.

■ No address applies to this case.

9.3 L2-Cache Errors
This section lists the error registers and error protection types of the L2-cache. This 
section also describes the L2-cache correctable and uncorrectable errors.

9.3.1 L2-Cache Error Registers
Each L2-cache bank contains the following error registers:

■ L2 Control Register, whose bits in this register are:

■ ERRORSTEER – specifies which of the 32 threads receives all the L2 errors 
whose cause cannot be linked to a specific thread.

■ SCRUBINTERVAL – the interval between scrubbing of adjacent sets in the L2-
cache.

■ SCRUBENABLE – enable a hardware scrub.

■ L2 Error Enable Register

■ NCEEN – if set, uncorrectable errors are reported to the SPARC core.

■ CEEN – if set, correctable errors are reported to the SPARC core.

■ Logging occurs even if reporting to the cores is disabled.
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■ L2 Error Status Register

■  Contains the error status for that bank.

■  Not cleared after a reset.

■  Indicates multiple errors if they have occurred.

■  L2 Error Address Register

■  Logs the error address per cache bank.

■  PA for loads and stores, and other indices for scrub and directory errors.

■  L2 Error Injection Register

■ Injects errors into the directory only.

■ L2 tags, valid used allocated and dirty (VUAD) array, and data array errors can 
be injected through diagnostic accesses.

9.3.2 L2-Cache Error Protection
All SRAMs, caches, and so on in the L2-cache have error protection using either 
parity or ECC. TABLE 9-2 shows the L2-cache memories and their error protection 
types.

9.3.3 L2-Cache Correctable Errors
■ Error information is captured in the L2-cache Error Status and L2-cache Error 

Address registers. 

■ If the L2-cache correctable error enable (CEEN) bit is set and the error is on the 
requested data, the error is also logged in the SPARC error status and error 
address registers. 

TABLE 9-2 Error Protection for L2-Cache Memories 

Memory Error Protection Type

L2-cache data ECC

L2-cache tag ECC

Directory Parity

VAD bits Parity

Writeback buffer ECC
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■ Loads, ifetch and prefetch – if the SPARC CEEN bit is set, a disrupting ECC_error 
trap is taken on the requesting thread. 

■ Hardware corrects the error on the data being returned from the L2-cache, but 
it does not correct the L2-cache data itself.

■ Partial stores (less than 4 bytes), Atomics – error is corrected and written to the 
L2-cache.

■ MA loads:

■ If the CEEN bit is set, the L2-cache notifies the SPU of the error.

■ If the INT bit is set in the SPU, there is an ECC_error trap on the thread 
specified in SPU control register (in addition to the completion interrupt). Or 
the error trap is signalled to IFU when the sync load occurs.

■ Correctable errors detected on the writeback data, DMA read, or DMA partial 
writes (<4B) result in a ECC_error trap on the steering thread.

■ Errors on writeback data is fixed before writing to memory.

■ DMA partial stores correct the L2-cache data.

■ Correctable errors detected during a scrub are logged in the L2-cache registers:

■ Corrected data is written to the L2-cache.

■ ECC_error trap is taken on the steering thread.

■ Correctable errors detected on any of the 12 tags in a set during an access causes:

■ The hardware to correct all tags in the set.

■ An ECC_error trap on steering thread.

9.3.4 L2-Cache Uncorrectable Errors
■ Error information is captured in the L2-cache error status and the L2-cache error 

address registers.

■ If the L2 error enable non-correctable error enable (NCEEN) bit is set:

■ Error is also logged in the SPARC error status and the SPARC error address 
registers.

■ Erroneous data is loaded in the L1-cache with bad parity.

■ If the SPARC error enable NCEEN bit is set, a precise trap is generated on the 
requesting thread.

■ Partial Stores (less than 4 bytes):

■ Do not update the cache.

■ Generate a disrupting data_error trap on the requesting thread.

■ Mark the line dirty, and the memory keeps the bad ECC on writeback.
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■ Uncorrectable errors on writeback data, DMA reads, and scrub all cause a 
disrupting data_error trap on the steering thread.

■ MA loads with uncorrectable errors, and aborts the operation in SPU.

■ A fatal error indication is issued across the J-Bus in order to request a warm_reset 
of the entire chip when there is a:

■ Parity error on any of the 12 VAD bits in the set during any access.

■ Parity error during a directory scrub.

9.4 DRAM Errors
This section lists the error registers and the error protection of the DRAM. This 
section also describes the DRAM correctable and uncorrectable and addressing 
errors.

9.4.1 DRAM Error Registers
Each DRAM channel has its own set of error registers:

1. DRAM Error Status Register

■ Contains the status of the DRAM errors.

■ Not cleared on a reset.

2. DRAM Error Address Register

■ Contains the physical address of the DRAM scrub error. 

■ DRAM access error addresses are logged by the L2-cache.

3.  DRAM Error Location Register

■ Contains the location of the bad nibble.

4. DRAM Error Counter Register

■ 16-bit counter, decrements on every 16-byte correctable error.

■ An interrupt is sent to the IOB when the count hits 0.

5. DRAM Error Injection Register

■ An injection of a bad ECC on the data written to memory.

■ When ENB=1 is set, the DRAM writes will be XOR’d with the normally 
generated ECC.
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■ Errors can be injected as either single-shot or continuously.

■ In single-shot mode, after the first injected error is generated, the SSHOT and 
ENB are automatically reset by the hardware to 0.

9.4.2 DRAM Error Protection
Each DRAM bank has 16 bits of ECC for 128-bits of data.

9.4.3 DRAM Correctable Errors
■ Corrected data written to the L1- or L2-caches.

■ Error information is captured in the DRAM error status, L2-cache error status, 
and the L2-cache error address registers. 

■ If the L2-cache error enable CEEN and SPARC error enable CEEN bits are set, a 
disrupting ECC_error trap is generated.

■ Load, ifetch, atomic, prefetch – an error on the critical chunk will be reported to 
the thread that requested the data, otherwise it will be reported to the steering 
thread.

■ Stores, streaming stores, DMA reads, DMA writes – errors reported to the steering 
thread.

■ Streaming loads – errors are reported to the streaming unit, which reports it to the 
thread programmed in the MA control register to receive the completion 
interrupt.

■ A correctable error during a scrub is captured in the DRAM error status and 
DRAM error address registers, and the DSC bit is set in the L2-cache error status 
register.

9.4.4 DRAM Uncorrectable and Addressing Errors
■ Error information is captured in the DRAM error status, L2-cache error status, 

and the L2-cache error address registers. 

■ If the L2-cache NCEEN bit is set, the error information is also captured in the 
SPARC error status and SPARC error address registers (as an L2-cache error). 

■ An out-of-bounds error is signalled as a cache line and marked with an 
uncorrectable error.

■ For each 32-bit chunk with an error, the data is loaded into the L2-cache with 
poisoned ECC. 

■ An error on the critical chunk results in a precise trap on the requesting thread.
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■ An error on non-critical chunks results in a disrupting data_error trap to the 
steering thread.

■ If an error is on the 16-byte chunk to be written, the stores will not update the L2-
cache. The line is marked as dirty, so on eviction the line is written to the memory 
with a bad ECC.

■ An uncorrectable error during a scrub is captured in the DRAM error status and 
DRAM error address registers, and if the DSU bit is set in the L2-cache error 
status register, a disrupting data_error trap is generated on the steering thread.
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CHAPTER 10

Clocks and Resets

This chapter describes the following topics:

■ Section 10.1, “Functional Description” on page 10-1
■ Section 10.2, “I/O Signal list” on page 10-15

10.1 Functional Description
The OpenSPARC T1 processor clock and test unit (CTU) contains three main 
components – clock generation and control, reset generation, and test. Because the 
test functions are physical design dependent, they are not described in this 
document. This chapter describes the OpenSPARC T1 processor’s clocks and resets.

10.1.1 OpenSPARC T1 Processor Clocks
There are three clock domains in the OpenSPARC T1 processor – chip-level 
multiprocessor (CMP) in the CPU clusters, J-Bus, and DRAM. Throughout this 
chapter, these three clock domains are referred in this document as C for CMP, J for 
J-Bus, and D for DRAM.

■ Only one phased-locked loop (PLL) in the chip, which has a differential 
J_CLK[1:0], is used as a reference clock for the PLL. This clock runs at 150 MHz at 
power-up, and then it is increased to 200 MHz (or any other target frequency 
between 150 MHz to 200 MHz).

■ Each domain (C, D, and J) has its own balanced clock distribution tree.

■ Signals from the CTU are delivered to the cluster’s clock headers. The C clock 
domain uses flop repeaters for clock distribution.
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■ The CTU has the following sub-blocks – PLL (clock PLL), random number 
generator (RNG), design For testability (DFT), clock spine (CLSP), the 
temperature sensor (TSR). 

■ The CTU generates the following signals for each cluster – clock, clock enable, 
reset (synchronous and asynchronous), init (debug init), sync pulses for clock 
domain crossing, and built-in self test (BIST) signals for blocks with memory 
BIST. 

■ For debugging purposes, the CTU receives a trigger signal from the cluster.

■ The CTU and PADS themselves are clock and reset recipients.

FIGURE 10-1 displays a high-level block diagram of the CTU clock and reset signals 
and CTU sub-blocks.

FIGURE 10-1 Clock and Reset Functional Block Diagram
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10.1.1.1 Phase-Locked Loop

The phase-locked loop (PLL) has two modes of operation – PLL bypass and PLL 
locked mode. 

■ Bypass mode – in this mode, the clk_out (clock output) follows J_CLK, VCO and 
divider are set to don’t care.

■ PLL locked mode – clk_out is OFF when ARST_L is asserted, the voltage control 
oscillator (VCO) ramps up at an ARST_L deassertion, the divider is free running, 
and the feedback is matched to the clock tree output.

FIGURE 10-2 shows the PLL block diagram including the VCO and the feedback path.

FIGURE 10-2 PLL Functional Block Diagram
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10.1.1.2 Clock Dividers

A clock divider divides the output of the PLL, and supports a divide range of 2 to 
24. The clock dividers are Johnson counter variants and have deterministic starts for 
repeatability.

Each clock domain (C, D, and J) are generated by the dividing PLL clock, and each 
domain uses its own divide ratio and positive/negative pairs. For the PLL bypass 
mode, the divide ratios are fixed – the C clock is divided by 1, and D and J clocks are 
divided by 4. Refer to the UltraSPARC T1 Supplement to the UltraSPARC 2005 
Architecture Specification for the complete definitions of these clock divider ratios.

Clock divider block diagram and waveforms are shown in FIGURE 10-3.

FIGURE 10-3 Clock Divider Block Diagram
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TABLE 10-1 defines the various dividers for the clock domains.

10.1.1.3 Clock Domain Crossings

Clock domain crossing has the following characteristics:

■ Clock domains are ratioed synchronous, which means that after every few clock 
cycles (depending on the ratio), the clock edge will align.

■ Only C<>D and C<>J clock domain crossings are supported.

■ Domain crossing is governed by the Rx/Tx sync pulses, which are named with 
respect to the domain (for example, dram_rx_sync means the C domain is 
receiving from the D domain).

■ Sync pulses are generated in the C domain, and are used as clock enables for the 
C domain flops.

■ Domain crossing paths are time delayed as a single cycle path in C domain.

■ The prescribed usage allows electrical correctness, and the logical correctness is 
still up to surrounding logic.

FIGURE 10-4 shows a waveform for cross domain crossing Rx and Tx pulses.

TABLE 10-1 Clock Domain Dividers

C-Divider D-Divider J-Divider Description

1 4 4 Power On default - PLL Bypass mode

4 16 16 Power On default - PLL Locked mode

2 14 12 Expected nominal ratios
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FIGURE 10-4 Sync Pulses Waveforms
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10.1.1.4 Clock Gating

Clock gating has the following characteristics:

■ The CTU will occasionally gate an entire domain off/on.

■ Each cluster can be gated off/on separately.

■ Reset sequences do a sequenced turn-off/on.

■ After a reset, the software can turn each cluster off.

■ CREG_CKEN has one bit per cluster (except CTU), and bits are reset to all ones 
by a reset sequence.

■ CREG_CKEN is NOT shadowed, and the effect is immediate.

■ Turning off some clusters could be fatal, but it can be recovered with a test access 
port (TAP) reset.

■ Turning off the IOB is catastrophic, and will require a reset sequence to recover.

10.1.1.5 Clock Stop

Clock stop event have the following characteristics:

■ Clock stop events can be chosen from a wide palette.

■ When a clock stop event occurs, a trigger is sent to the CTU.

■ The CTU does a sequenced clock enable (CKEN) turn-off:

■ Can be staggered or instant, which is controlled by the 
CREG_CLK_CTL.OSSDIS.

■ The first cluster to turn off is defined by the TAP, and the progression is in the 
CREG_CLK_CTL bit order with wraparound.

■ The time the first cluster is turned off is controlled by 
CREG_CLK_DLL.DBG_DLY.

■ The gap between clusters is controlled by CREG_CLK_CTL.STP_DLY.

■ After a clock stop, you can use JTAG to do a scan dump and a macro dump.

■ After a clock stop and JTAG dump, you need to perform a cold reset to continue.
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10.1.1.6 Clock Stretch

Clocks can be stretched by making dividers skip one PLL beat. The C, D, and J clock 
domains are stretched simultaneously (however, dup is never stretched).

The CREG_CLK_DLL.STR_CONT bit defines if the clock stretch is in continuous or 
in precise mode. In either mode, the CLK_STRETCH pin is the stretch trigger.

■ In continuous mode, as long as the CLK_STRETCH pin is high, every third PLL 
beat is skipped.

■ In precise mode, a pulse on the CLK_STRETCH pin causes a single PLL beat to be 
skipped.

■ The exact PLL cycle depends on Tx (for example, J-div)

■ The CREG_CLK_DLL.STR_DLY bit allows sweeping of the stretch cycle.

10.1.1.7 Clock n-Step

You can issue a specific number of clocks at speed. which can be used for an 
automatic test pattern generation (ATPG) or a macro test capture cycle. Specifying 
the number of clocks:

■ Can lock the PLL with a cold reset sequence

■ Program n-step by way of the TAP

■ Scan in a pattern (at TCK speed)

■ Trigger the CTU to issue n-capture clocks (at full speed)

■ Scan out result (at TCK speed)

10.1.1.8 Clock Signal Distribution

Clock signals distribution have the following characteristics:

■ Clocks are generated in the PLL domain and are distributed as gclk.

■ The C domain control signals are distributed through the flop repeaters.

■ The repeaters on the gclk have an asynchronous reset.

■ The D and J domain control signals are distributed point-to-point.

■ A Cluster has one header per domain.

■ The Cluster header does the clock gating, gclk -> rclk.

■ sync and GRST_L have race-through synchronizer for gclk -> rclk.

FIGURE 10-5 displays the clock signal distribution.
10-8  OpenSPARC T1 Microarchitecture Specification • August 2006



FIGURE 10-5 Clock Signal Distribution
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10.1.2 OpenSPARC T1 Processor Resets
The resets of the OpenSPARC T1 processor have the following characteristics:

■ There are three input reset signals:

■ Power-on reset (PWRON_RST_L)

■ JTAG test access port (TAP) reset (TRST_L)

■ J-Bus reset (J_RST_L) 

■ At power-on, the TRST_L and PWRON_RST_L resets must be asserted before 
applying power, then deasserted after power is stable.

■ Deasserting the TRST_L reset completes TAP reset sequence.

■ Generally, a TAP reset and a function reset are independent, but some things may 
need to be set up before the function reset is done.

■ Deasserting the PWRON_RST_L reset proceeds with a cold sequence. 

■ The initial state of the J_RST_L reset is don’t care, though the reset needs to assert 
and deassert to complete the sequence.

■ In system, the initial state of the J_RST_L reset is asserted.

■ In tester, the initial state of the J_RST_L reset is unasserted.

■ The PWRON_RST_L reset is not always used asynchronously.

■ The design guarantees that some clocks will propagate to PADs while the 
PWRON_RST_L reset is asserted.

10.1.2.1 Power-On Reset (PWRON_RST_L)
■ Assertion of PWRON_RST_L reset causes:

■ All internal cluster resets to be asserted.

■ CREGs in the CTU to be set to their defaults.

■ All CKENs to be turned-off, except J domain PADs.

■ The C and D domain trees to be turned off, and the J and dup trees to be 
turned on.

■ The ARST_L to PLL is unasserted, allowing the PLL to toggle.

■ The J domain tree is fed from dup divider.

■ Deassertion of PWRON_RST_L reset causes:

■ The asynchronous resets to be deasserted (the synchronous ones will remain 
asserted).

■ The initiation of PLL lock sequence.
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10.1.2.2 J-Bus Reset (J_RST_L)

A J_RST_L reset assertion causes all cluster clocks to be turned on at the target 
frequencies.

■ For a cold reset, the PLL is already locked.

■ In system, the J_RST_L reset should remain asserted until the PLL is locked.

■ In tester, the J_RST_L reset should assert after the PLL is locked.

■ For a warm reset, a (real or fake) PLL re-lock sequence is done.

■ CKEN to all clusters are turned on.

■ The J_RST_L reset deassertion causes all synchronous resets to be deasserted, 
and the reset sequences to complete.

10.1.2.3 Reset Sequence

There are two types of reset sequences - a cold reset and a warm reset. While there 
are 10 generic steps in the reset sequence, and all 10 are done during a cold reset, 
steps 8 and 9 are not done in the warm reset. 

These 10 generic reset sequence steps are described as:

1. Assert resets

a. Asynchronous resets – ARST_L and ADBGINIT_L

b. Synchronous resets – GRST_L and GDBGINIT_L

c. For cold resets, assertion of the PWRON_RST_L reset asserts all resets. 
Deassertion of the PWRON_RST_L reset deasserts only asynchronous ones, 
while the synchronous ones remain asserted.

d. For warm resets, only synchronous resets are asserted.

i. C and J domain resets are asserted about the same time

ii. For fchg and warm resets, CREG_CLK_CTL.SRARM defines whether the rfsh 
attribute is on or off

iii. If the rfsh is not on, the D domain reset is asserted at the same time

iv. If rfsh is on, the self_refresh signal to DRAM is asserted, and the D reset is 
asserted about 1600 ref cycles after C and J resets 

2.  Turn off clock enables

a. For cold resets, this sequence is instantaneous. Assertion of the PWRON_RST_L 
reset turns on clock enables for the PADs misc, jbusl, jbusr, dbg, and turns off 
all others
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b. For warm resets, the clock turn off is staggered

i. Starting cluster is 0 (for sparc0)

ii. Progression is in the CREG_CLK_CTL bit order

iii. The gap between clusters is defined by CREG_CLK_CTL.STP_DLY

iv. The default gap is 128 chip-level multiprocessor (CMP) clocks

v. The gap for the D and J domain clock enables is subject to Tx_sync.

3.  Turn off clock trees

a. The C and D domain trees are stopped at the divider

b. The J and dup trees are never turned off

i. The J-div may be turned off, but then the J-tree is fed from j-dup

4.  Establish PLL output

a. The PLL locking is sequenced by a simple SM on raw clocks

b. For a cold reset, the sequence is shown as:

i. PLL bypass mode – reset count = 128, lock count = 16

ii. PLL lock mode – reset count = 128, reset + lock = 32000 (for a cold reset)

c. For a frequency change reset, a similar sequence is used

d. For other warm resets, a fake sequence is used, where the PLL reset is not 
asserted and counters are shorter

5.  Turn on clock trees

a. The C, D, and J domain dividers start in sync with J-dup, and the result is a 
common rising (AKA coincident) edge. (For cycle deterministic operation, 
tester/diagnostics tests must keep track of coincident edges.)

b. If the JBUS_GCLK was running from J-dup, it switches to J-div (in PLL bypass 
mode, JBUS_GCLK is not the same frequency as J_CLK)

6.  Turn on clock enables

a. The cluster clock enables are turned-on in a staggered way

b. The starting cluster is 0 (for sparc0), and the enables progress in a CREG bit 
order

c. There is a gap of 129 CMP clocks between clusters

d. The D and J domain clock enables are subject to Tx_sync
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7.  Deassert resets

a. For cold resets, the ARST_L signals are already deasserted at the deassertion of 
the PWRON_RST_L reset

b. The GRST_L signals are deasserted at the same time in all domains

c. The DLL reset is deasserted a few cycles before the GRST_L deassertion

8. Transfer the e-Fuse cluster (EFC) data

Note – This step is only performed during a cold reset.

a. The CTU kicks the EFC to start the data transfer

b. The EFC transfers device specific information such as SRAM repair 
information to the target clusters

c. Core-available information is programmed into the IOB, but it is still visible to 
the CTU

d. There is no handshake to indicate the end of the operation, and the CTU just 
waits a fixed number of cycles

9. Do BIST

Note – This step is only performed during a cold reset.

a. At the J_RST_L reset deassert time, DO_BIST pin is sampled for eight cycles to 
determine the msg, which determines:

i. The DO_BIST pin tied low on system

ii. Do or do not perform a BIST action

iii. BIST vs. bi-directional schematic interface (BISI)

iv. Serial vs. parallel

b. If a BIST action is required, it occurs after the EFC is done

c. The CTU starts the BIST engines (enabled by EFC), and then the CTU waits for 
a response from the engines

d. The status from each BIST engine is recorded, but does not affect reset 
sequence

10.  Send an interrupt to a thread in a core

a. The CTU activates a wake-thread signal to the IOB
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b. The IOB generates an interrupt packet to thread 0 of the lowest numbered 
SPARC core marked enabled

c. The SPARC core starts fetching instructions from SSI interface

Cold Reset Sequence

A cold reset sequence has four steps:

1. Assertion of the PWRON_RST_L reset, which performs steps 1, 2, and 3 of the 
preceding generic reset sequence described in Section 10.1.2.3, “Reset Sequence” 
on page 10-11.

2. Deassertion of the PWRON_RST_L reset, which performs step 4 of the generic 
reset sequence.

3. Assertion of the J_RST_L reset, which performs steps 5 and 6 of the generic reset 
sequence.

4. Deassertion of the J_RST_L reset, which performs the steps 7, 8, 9, and 10 of the 
generic reset sequence.

There are two types of the cold resets - normal and deterministic. The timing of 
the J_RST_L reset assertion determines the reset type. On the tester, the 
deterministic type is used.

Warm Reset Sequence

Warm reset sequence has only 2 steps, and during warm reset PWRON_RST_L 
remains unasserted throughout. The 2 steps are:

1. Assertion of the J_RST_L reset, which performs steps 1 through 6 of the preceding 
generic reset sequence described in Section 10.1.2.3, “Reset Sequence” on 
page 10-11.

2. Deassertion of the J_RST_L reset, which performs steps 7 and 10 of the generic 
reset sequence (skipping steps 8 and 9).

The SPARC core initiates a warm reset by writing to the I/O bridge (IOB) chip in 
order to toggle the J_RST_L reset signal. A warm reset can be used for:

■ Recovering from hangs

■ Creating a deterministic diagnostics start

■ Changing frequency
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10.1.2.4 Debug Initialization

A debug unitization is a lightweight reset intended to create determinism with 
respect to a coincident edge.

■ Software is required to achieve a quiescent state, and:

■ Stop all threads

■ Clear out arrays

■ A read to the CREG_DBG_INIT causes the GDBGINIT_L signals to be asserted, 
and then deasserted

■ Read data return occurs with a fixed relationship to a coincident edge

10.2 I/O Signal list
TABLE 10-2 describes the I/O signals for the OpenSPARC T1 processor clock and test 
unit (CTU).

TABLE 10-2 CTU I/O Signal List 

Signal Name I/O
Source/
Destination Description

afi_pll_trst_l In PLL Test Reset

afi_tsr_mode In  

io_j_clk[1:0] In PADS J clock input from PADS

afi_bist_mode In To ctu_dft of ctu_dft.v

afi_bypass_mode In To ctu_dft of ctu_dft.v

afi_pll_char_mode In To ctu_dft of ctu_dft.v

afi_pll_clamp_fltr In To ctu_dft of ctu_dft.v

afi_pll_div2[5:0] In To ctu_dft of ctu_dft.v

afi_rng_ctl[2:0] In To ctu_dft of ctu_dft.v

afi_rt_addr_data In To ctu_dft of ctu_dft.v

afi_rt_data_in[31:0] In To ctu_dft of ctu_dft.v

afi_rt_high_low In To ctu_dft of ctu_dft.v

afi_rt_read_write In To ctu_dft of ctu_dft.v

afi_rt_valid In To ctu_dft of ctu_dft.v
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afi_tsr_div[9:1] In To ctu_dft of ctu_dft.v

afi_tsr_tsel[7:0] In To ctu_dft of ctu_dft.v

cmp_gclk In To u_cmp_header of bw_clk_cl_ctu_cmp.v

cmp_gclk_cts In To u_cmp_gclk_dr of bw_u1_ckbuf_40x.v

ddr0_ctu_dll_lock In PADS To ctu_clsp of ctu_clsp.v

ddr0_ctu_dll_overflow In PADS To ctu_clsp of ctu_clsp.v

ddr1_ctu_dll_lock In PADS To ctu_clsp of ctu_clsp.v

ddr1_ctu_dll_overflow In PADS To ctu_clsp of ctu_clsp.v

ddr2_ctu_dll_lock In PADS To ctu_clsp of ctu_clsp.v

ddr2_ctu_dll_overflow In PADS To ctu_clsp of ctu_clsp.v

ddr3_ctu_dll_lock In PADS To ctu_clsp of ctu_clsp.v

ddr3_ctu_dll_overflow In PADS To ctu_clsp of ctu_clsp.v

dll0_ctu_ctrl[4:0] In PADS To ctu_clsp of ctu_clsp.v

dll1_ctu_ctrl[4:0] In PADS To ctu_clsp of ctu_clsp.v

dll2_ctu_ctrl[4:0] In PADS To ctu_clsp of ctu_clsp.v

dll3_ctu_ctrl[4:0] In PADS To ctu_clsp of ctu_clsp.v

dram02_ctu_tr In DRAM DRAM debug trigger

dram13_ctu_tr In DRAM DRAM debug trigger

dram_gclk_cts In DRAM To u_dram_gclk_dr of bw_u1_ckbuf_30x.v

efc_ctu_data_out In EFC To ctu_dft of ctu_dft.v

io_clk_stretch In PADS To ctu_clsp of ctu_clsp.v

io_do_bist In PADS To ctu_clsp of ctu_clsp.v

io_j_rst_l In PADS To ctu_clsp of ctu_clsp.v

io_pll_char_in In PADS To ctu_clsp of ctu_clsp.v, and so on

io_pwron_rst_l In PADS To ctu_clsp of ctu_clsp.v, and so on

io_tck In PADS To u_tck_dr of bw_u1_ckbuf_30x.v, and so on

io_tck2 In PADS To ctu_clsp of ctu_clsp.v

io_tdi In PADS To ctu_dft of ctu_dft.v

io_test_mode In PADS To ctu_dft of ctu_dft.v

io_tms In PADS To ctu_dft of ctu_dft.v

TABLE 10-2 CTU I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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io_trst_l In PADS To ctu_dft of ctu_dft.v

io_vdda_pll In PADS To u_pll of bw_pll.v

io_vdda_rng In PADS To u_rng of bw_rng.v

io_vdda_tsr In PADS To u_tsr of bw_tsr.v

io_vreg_selbg_l In PADS To u_rng of bw_rng.v

iob_clsp_data[3:0] In IOB To ctu_clsp of ctu_clsp.v

iob_clsp_stall In IOB To ctu_clsp of ctu_clsp.v

iob_clsp_vld In IOB To ctu_clsp of ctu_clsp.v

iob_ctu_coreavail[7:0] In IOB To ctu_dft of ctu_dft.v

iob_ctu_l2_tr In IOB To ctu_clsp of ctu_clsp.v

iob_ctu_tr In IOB To ctu_clsp of ctu_clsp.v

iob_tap_data[7:0] In IOB To ctu_dft of ctu_dft.v

iob_tap_stall In IOB To ctu_dft of ctu_dft.v

iob_tap_vld In IOB To ctu_dft of ctu_dft.v

jbi_ctu_tr In JBI To ctu_clsp of ctu_clsp.v

jbus_gclk In JBI To u_jbus_header of bw_clk_cl_ctu_jbus.v

jbus_gclk_cts In JBI To u_jbus_gclk_dr of bw_u1_ckbuf_30x.v

jbus_gclk_dup In JBI To u_pll of bw_pll.v

jbus_grst_l In JBI To u_jbus_header of bw_clk_cl_ctu_jbus.v

pads_ctu_bsi In PADS To ctu_dft of ctu_dft.v

pads_ctu_si In PADS To ctu_dft of ctu_dft.v

sctag0_ctu_mbistdone In SCTAG0 MBIST done

sctag0_ctu_mbisterr In SCTAG0 MBIST error

sctag0_ctu_tr In SCTAG0 SCTAG debug trigger

sctag1_ctu_mbistdone In SCTAG1 MBIST done

sctag1_ctu_mbisterr In SCTAG1 MBIST error

sctag1_ctu_tr In SCTAG1 SCTAG debug trigger

sctag2_ctu_mbistdone In SCTAG2 MBIST done

sctag2_ctu_mbisterr In SCTAG2 MBIST error

sctag2_ctu_serial_scan_in In SCTAG2 Scan In

TABLE 10-2 CTU I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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sctag2_ctu_tr In SCTAG2 SCTAG debug trigger

sctag3_ctu_mbistdone In SCTAG3 MBIST done

sctag3_ctu_mbisterr In SCTAG3 MBIST error

sctag3_ctu_tr In SCTAG3 SCTAG debug trigger

spc0_ctu_mbistdone In SPARC0 MBIST done

spc0_ctu_mbisterr In SPARC0 MBIST error

spc0_ctu_sscan_out In SPARC0 Scan out from SPARC

spc1_ctu_mbistdone In SPARC1 MBIST done

spc1_ctu_mbisterr In SPARC1 MBIST error

spc1_ctu_sscan_out In SPARC1 Scan out from SPARC

spc2_ctu_mbistdone In SPARC2 MBIST done

spc2_ctu_mbisterr In SPARC2 MBIST error

spc2_ctu_sscan_out In SPARC2 Scan Out from SPARC

spc3_ctu_mbistdone In SPARC3 MBIST done

spc3_ctu_mbisterr In SPARC3 MBIST error

spc3_ctu_sscan_out In SPARC3 Scan Out from SPARC

spc4_ctu_mbistdone In SPARC4 MBIST done

spc4_ctu_mbisterr In SPARC4 MBIST error

spc4_ctu_sscan_out In SPARC4 Scan Out from SPARC

spc5_ctu_mbistdone In  SPARC5 MBIST done

spc5_ctu_mbisterr In SPARC5 MBIST error

spc5_ctu_sscan_out In SPARC5 Scan Out from SPARC

spc6_ctu_mbistdone In  SPARC6 MBIST done

spc6_ctu_mbisterr In SPARC6 MBIST error

spc6_ctu_sscan_out In  SPARC6 Scan Out from SPARC

spc7_ctu_mbistdone In SPARC7 MBIST done

spc7_ctu_mbisterr In SPARC7 MBIST error

spc7_ctu_sscan_out In SPARC7 Scan Out from SPARC

data In

lclk In

TABLE 10-2 CTU I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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rclk In

enable_chk In

ctu_tst_pre_grst_l Out

global_shift_enable Out From ctu_dft of ctu_dft.v

ctu_tst_scanmode Out From ctu_dft of ctu_dft.v

ctu_tst_macrotest Out From ctu_dft of ctu_dft.v

ctu_tst_short_chain Out From ctu_dft of ctu_dft.v

ctu_efc_read_start Out EFC

ctu_jbi_ssiclk Out JBI

ctu_dram_rx_sync_out Out DRAM From ctu_clsp of ctu_clsp.v

ctu_dram_tx_sync_out Out DRAM From ctu_clsp of ctu_clsp.v

ctu_jbus_rx_sync_out Out JBI From ctu_clsp of ctu_clsp.v

ctu_jbus_tx_sync_out Out JBI From ctu_clsp of ctu_clsp.v

cmp_grst_out_l Out From ctu_clsp of ctu_clsp.v

afo_rng_clk Out From u_rng of bw_rng.v

afo_rng_data Out From u_rng of bw_rng.v

afo_rt_ack Out From ctu_dft of ctu_dft.v

afo_rt_data_out[31:0] Out From ctu_dft of ctu_dft.v

afo_tsr_dout[7:0] Out From u_tsr of bw_tsr.v

clsp_iob_data[3:0] Out From ctu_clsp of ctu_clsp.v

clsp_iob_stall Out IOB From ctu_clsp of ctu_clsp.v

clsp_iob_vld Out IOB From ctu_clsp of ctu_clsp.v

cmp_adbginit_l Out From ctu_clsp of ctu_clsp.v

cmp_arst_l Out From ctu_clsp of ctu_clsp.v

cmp_gclk_out Out From ctu_clsp of ctu_clsp.v

cmp_gdbginit_out_l Out From ctu_clsp of ctu_clsp.v

ctu_ccx_cmp_cken Out From ctu_clsp of ctu_clsp.v

ctu_dbg_jbus_cken Out From ctu_clsp of ctu_clsp.v

ctu_ddr0_clock_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr0_dll_delayctr[2:0] Out PADS From ctu_clsp of ctu_clsp.v

TABLE 10-2 CTU I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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ctu_ddr0_dram_cken Out PADS From ctu_clsp of ctu_clsp.v

ctu_ddr0_hiz_l Out PADS From ctu_dft of ctu_dft.v

ctu_ddr0_iodll_rst_l Out PADS From u_ctu_ddr0_iodll_rst_l_or2_ecobug of ctu_or2.v

ctu_ddr0_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_ddr0_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr0_update_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr1_clock_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr1_dll_delayctr[2:0] Out PADS From ctu_clsp of ctu_clsp.v

ctu_ddr1_dram_cken Out PADS From ctu_clsp of ctu_clsp.v

ctu_ddr1_hiz_l Out PADS From ctu_dft of ctu_dft.v

ctu_ddr1_iodll_rst_l Out PADS From u_ctu_ddr1_iodll_rst_l_or2_ecobug of ctu_or2.v

ctu_ddr1_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_ddr1_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr1_update_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr2_clock_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr2_dll_delayctr[2:0] Out PADS From ctu_clsp of ctu_clsp.v

ctu_ddr2_dram_cken Out PADS From ctu_clsp of ctu_clsp.v

ctu_ddr2_hiz_l Out PADS From ctu_dft of ctu_dft.v

ctu_ddr2_iodll_rst_l Out PADS From u_ctu_ddr2_iodll_rst_l_or2_ecobug of ctu_or2.v

ctu_ddr2_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_ddr2_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr2_update_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr3_clock_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr3_dll_delayctr[2:0] Out PADS From ctu_clsp of ctu_clsp.v

ctu_ddr3_dram_cken Out PADS From ctu_clsp of ctu_clsp.v

ctu_ddr3_hiz_l Out PADS From ctu_dft of ctu_dft.v

ctu_ddr3_iodll_rst_l Out PADS From u_ctu_ddr3_iodll_rst_l_or2_ecobug of ctu_or2.v

ctu_ddr3_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_ddr3_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_ddr3_update_dr Out PADS From ctu_dft of ctu_dft.v

TABLE 10-2 CTU I/O Signal List (Continued)

Signal Name I/O
Source/
Destination Description
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ctu_ddr_testmode_l Out  PADS From ctu_dft of ctu_dft.v

ctu_debug_clock_dr Out  PADS From ctu_dft of ctu_dft.v

ctu_debug_hiz_l Out  PADS From ctu_dft of ctu_dft.v

ctu_debug_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_debug_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_debug_update_dr Out PADS From ctu_dft of ctu_dft.v

ctu_dll0_byp_l Out From ctu_clsp of ctu_clsp.v

ctu_dll0_byp_val[4:0] Out From ctu_clsp of ctu_clsp.v

ctu_dll1_byp_l Out From ctu_clsp of ctu_clsp.v

ctu_dll1_byp_val[4:0] Out From ctu_clsp of ctu_clsp.v

ctu_dll2_byp_l Out From ctu_clsp of ctu_clsp.v

ctu_dll2_byp_val[4:0] Out From ctu_clsp of ctu_clsp.v

ctu_dll3_byp_l Out From ctu_clsp of ctu_clsp.v

ctu_dll3_byp_val[4:0] Out From ctu_clsp of ctu_clsp.v

ctu_dram02_cmp_cken Out DRAM From ctu_clsp of ctu_clsp.v

ctu_dram02_dram_cken Out DRAM From ctu_clsp of ctu_clsp.v

ctu_dram02_jbus_cken Out  DRAM From ctu_clsp of ctu_clsp.v

ctu_dram13_cmp_cken Out DRAM From ctu_clsp of ctu_clsp.v

ctu_dram13_dram_cken Out DRAM From ctu_clsp of ctu_clsp.v

ctu_dram13_jbus_cken Out DRAM From ctu_clsp of ctu_clsp.v

ctu_dram_selfrsh Out DRAM From ctu_clsp of ctu_clsp.v

ctu_efc_capturedr Out EFC From ctu_dft of ctu_dft.v

ctu_efc_coladdr[4:0] Out EFC From ctu_dft of ctu_dft.v

ctu_efc_data_in Out EFC From ctu_dft of ctu_dft.v

ctu_efc_dest_sample Out EFC From ctu_dft of ctu_dft.v

ctu_efc_fuse_bypass Out EFC From ctu_dft of ctu_dft.v

ctu_efc_jbus_cken Out EFC From ctu_clsp of ctu_clsp.v

ctu_efc_read_en Out EFC From ctu_dft of ctu_dft.v

ctu_efc_read_mode[2:0] Out EFC From ctu_dft of ctu_dft.v

ctu_efc_rowaddr[6:0] Out EFC From ctu_dft of ctu_dft.v

TABLE 10-2 CTU I/O Signal List (Continued)

Signal Name I/O
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Destination Description
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ctu_efc_shiftdr Out EFC From ctu_dft of ctu_dft.v

ctu_efc_tck Out EFC From ctu_dft of ctu_dft.v

ctu_efc_updatedr Out EFC From ctu_dft of ctu_dft.v

ctu_fpu_cmp_cken Out FPU From ctu_clsp of ctu_clsp.v

ctu_fpu_so Out FPU From ctu_dft of ctu_dft.v

ctu_global_snap Out From ctu_dft of ctu_dft.v

ctu_io_clkobs[1:0] Out PADS From u_pll of bw_pll.v

ctu_io_j_err Out PADS From ctu_clsp of ctu_clsp.v

ctu_io_tdo Out PADS From u_test_stub of ctu_test_stub_scan.v

ctu_io_tdo_en Out PADS From ctu_dft of ctu_dft.v

ctu_io_tsr_testio[1:0] Out PADS From u_tsr of bw_tsr.v

ctu_iob_cmp_cken Out IOB From ctu_clsp of ctu_clsp.v

ctu_iob_jbus_cken Out IOB From ctu_clsp of ctu_clsp.v

ctu_iob_resetstat[2:0] Out IOB From ctu_clsp of ctu_clsp.v

ctu_iob_resetstat_wr Out IOB From ctu_clsp of ctu_clsp.v

ctu_iob_wake_thr Out IOB From ctu_clsp of ctu_clsp.v

ctu_jbi_cmp_cken Out JBI From ctu_clsp of ctu_clsp.v

ctu_jbi_jbus_cken Out JBI From ctu_clsp of ctu_clsp.v

ctu_jbusl_clock_dr Out PADS From ctu_dft of ctu_dft.v

ctu_jbusl_hiz_l Out PADS From ctu_dft of ctu_dft.v

ctu_jbusl_jbus_cken Out PADS From ctu_clsp of ctu_clsp.v

ctu_jbusl_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_jbusl_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_jbusl_update_dr Out PADS From ctu_dft of ctu_dft.v

ctu_jbusr_clock_dr Out PADS From ctu_dft of ctu_dft.v

ctu_jbusr_hiz_l Out PADS From ctu_dft of ctu_dft.v

ctu_jbusr_jbus_cken Out PADS From ctu_clsp of ctu_clsp.v

ctu_jbusr_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_jbusr_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_jbusr_update_dr Out PADS From ctu_dft of ctu_dft.v

TABLE 10-2 CTU I/O Signal List (Continued)
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ctu_misc_clock_dr Out PADS From ctu_dft of ctu_dft.v

ctu_misc_hiz_l Out PADS From ctu_dft of ctu_dft.v

ctu_misc_jbus_cken Out PADS From ctu_clsp of ctu_clsp.v

ctu_misc_mode_ctl Out PADS From ctu_dft of ctu_dft.v

ctu_misc_shift_dr Out PADS From ctu_dft of ctu_dft.v

ctu_misc_update_dr Out PADS From ctu_dft of ctu_dft.v

ctu_pads_bso Out PADS From ctu_dft of ctu_dft.v

ctu_pads_so Out PADS From ctu_dft of ctu_dft.v

ctu_pads_sscan_update Out PADS From ctu_dft of ctu_dft.v

ctu_scdata0_cmp_cken Out SCDATA0 Clock enable

ctu_scdata1_cmp_cken Out SCDATA1 Clock enable

ctu_scdata2_cmp_cken Out SCDATA2 Clock enable

ctu_scdata3_cmp_cken Out SCDATA3 Clock enable

ctu_sctag0_cmp_cken Out SCTAG0 Clock enable

ctu_sctag0_mbisten Out SCTAG0 MBIST enable

ctu_sctag1_cmp_cken Out SCTAG1 Clock enable

ctu_sctag1_mbisten Out SCTAG1 MBIST enable

ctu_sctag2_cmp_cken Out SCTAG2 Clock enable

ctu_sctag2_mbisten Out SCTAG2 MBIST enable

ctu_sctag3_cmp_cken Out SCTAG3 Clock enable

ctu_sctag3_mbisten Out SCTAG3 MBIST enable

ctu_spc0_cmp_cken Out SPARC0 Clock enable

ctu_spc0_mbisten Out SPARC0 MBIST enable

ctu_spc0_sscan_se Out SPARC0 Shadow scan enable

ctu_spc0_tck Out SPARC0 Test clock

ctu_spc1_cmp_cken Out SPARC1 Clock enable

ctu_spc1_mbisten Out SPARC1 MBIST enable

ctu_spc1_sscan_se Out SPARC1 Shadow scan enable

ctu_spc1_tck Out SPARC1 Test clock

ctu_spc2_cmp_cken Out SPARC2 Clock enable

TABLE 10-2 CTU I/O Signal List (Continued)
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ctu_spc2_mbisten Out SPARC2 MBIST enable

ctu_spc2_sscan_se Out SPARC2 Shadow scan enable

ctu_spc2_tck Out SPARC2 Test clock

ctu_spc3_cmp_cken Out SPARC3 Clock enable

ctu_spc3_mbisten Out SPARC3 MBIST enable

ctu_spc3_sscan_se Out SPARC3 Shadow scan enable

ctu_spc3_tck Out SPARC3 Test clock

ctu_spc4_cmp_cken Out SPARC4 Clock enable

ctu_spc4_mbisten Out SPARC4 MBIST enable

ctu_spc4_sscan_se Out SPARC4 Shadow scan enable

ctu_spc4_tck Out SPARC4 Test clock

ctu_spc5_cmp_cken Out SPARC5 Clock enable

ctu_spc5_mbisten Out SPARC5 MBIST enable

ctu_spc5_sscan_se Out SPARC5 Shadow scan enable

ctu_spc5_tck Out SPARC5 Test clock

ctu_spc6_cmp_cken Out SPARC6 Clock enable

ctu_spc6_mbisten Out SPARC6 MBIST enable

ctu_spc6_sscan_se Out SPARC6 Shadow scan enable

ctu_spc6_tck Out SPARC6 Test clock

ctu_spc7_cmp_cken Out SPARC7 Clock enable

ctu_spc7_mbisten Out SPARC7 MBIST enable

ctu_spc7_sscan_se Out SPARC7 Shadow scan enable

ctu_spc7_tck Out SPARC7 Test clock

ctu_spc_const_maskid[7:0] Out SPARC Mask ID

ctu_spc_sscan_tid[3:0] Out SPARC 

ctu_tst_scan_disable Out

dram_adbginit_l Out DRAM Asynchronous Reset

dram_arst_l Out DRAM Asynchronous Reset

dram_gclk_out Out DRAM Clock

dram_gdbginit_out_l Out DRAM Synchronous Reset

TABLE 10-2 CTU I/O Signal List (Continued)
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dram_grst_out_l Out DRAM Synchronous Reset

global_scan_bypass_en Out

jbus_adbginit_l Out JBI Asynchronous Reset

jbus_arst_l Out JBI Asynchronous Reset

jbus_gclk_dup_out Out JBI Clock

jbus_gclk_out Out JBI Clock

jbus_gdbginit_out_l Out JBI Synchronous Reset

jbus_grst_out_l Out JBI Synchronous Reset

pscan_select Out

tap_iob_data[7:0] Out IOB

tap_iob_stall Out IOB

tap_iob_vld Out IOB

TABLE 10-2 CTU I/O Signal List (Continued)
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