
VLSI-1 Class Notes

Lecture 12:
Datapath Design

Mark McDermott
Electrical and Computer Engineering

The University of Texas at Austin

10/1/18

VLSI-1 Class Notes

Datapath Design

§ Comparators
§ Shifters
§ Adders
§ Multipliers
§ Registers

Page 210/1/18

VLSI-1 Class Notes

ARM Datapath

Page 310/1/18

VLSI-1 Class Notes

Comparators

§ 0 s detector: A = 00…000
§ 1 s detector: A = 11…111
§ Equality comparator: A = B
§ Magnitude comparator: A < B

10/1/18 Page 4

VLSI-1 Class Notes

1 s & 0 s Detectors

§ 1 s detector: N-input AND gate
§ 0 s detector: NOTs + 1 s detector (N-input NOR)

A0
A1

A2
A3

A4
A5

A6
A7

allones

A0
A1

A2
A3

allzeros

allones

A1

A2
A3

A4
A5

A6
A7

A0

10/1/18 Page 5

VLSI-1 Class Notes

Equality Comparator

§ Check if each bit is equal (XNOR, or equality gate)
§ 1 s detect on bitwise equality

A[0]
B[0]

A = B

A[1]
B[1]
A[2]
B[2]
A[3]
B[3]

10/1/18 Page 6

VLSI-1 Class Notes

Magnitude Comparator

§ Compute B-A and look at sign
§ B-A = B + ~A + 1
§ For unsigned numbers, carry out is sign bit

A0

B0

A1

B1

A2

B2

A3

B3

A = BZ

C

A B£

N A B³

10/1/18 Page 7

VLSI-1 Class Notes

Signed vs. Unsigned

§ For signed numbers, comparison is harder
– C: carry out
– Z: zero (all bits of A-B are 0)
–N: negative (MSB of result)
– V: overflow (inputs had different signs, output sign ¹¹ B)

10/1/18 Page 8

VLSI-1 Class Notes

§ Logical Shift:
– Shifts number left or right and fills with 0 s

• 1011 LSR 1 = 0101 1011 LSL1 = 0110

Shifters

Logical Shift Left (LSL)

DestinationCF 0

Destination CF

Logical Shift Right (LSR)

...0

zero shifted in

10/1/18 Page 9

zero shifted in

VLSI-1 Class Notes

Shifters

§ Arithmetic Shift:
– Shifts number left or right. Right shift sign extends

1011 ASR1 = 1101 1011 ASL1 = 0110

Destination CF

Arithmetic Shift Right

Sign bit shifted in

Arithmetic Shift Right (ASR)
Shifts right (divides by powers of
two) and preserves the sign bit,
for 2's complement operations.
e.g.

ASR #5 = divide by 32

10/1/18 Page 10

VLSI-1 Class Notes

Shifters

§ Barrel Shift (Rotate):
– Shifts number left or right and fills with lost bits

1011 ROR1 = 1101 1011 ROL1 = 0111

Destination CF

Rotate Right

10/1/18 Page 11

Destination CF

Rotate Right through Carry

Rotate Right (ROR)
Similar to an ASR but the bits
wrap around as they leave the
LSB and appear as the MSB.
e.g. ROR #5
Note the last bit rotated is also
used as the Carry Out.

Rotate Right Extended (RRX)
This operation uses the CPSR C
flag as a 33rd bit.
Rotates right by 1 bit. Encoded as
ROR #0

VLSI-1 Class Notes

ARM: Using the Barrel Shifter: The Second Operand

1210/1/18

Register, optionally with shift
operation applied.
Shift value can be either be:

5 bit unsigned integer
Specified in bottom byte of
another register.

Immediate value
8 bit number
Can be rotated right through
an even number of positions.
Assembler will calculate
rotate for you from constant.

Operand 1

Result

ALU

Barrel
Shifter

Operand 2

VLSI-1 Class Notes

Second Operand: Using a Shifted Register

§ Using a multiplication instruction to multiply by a constant means
first loading the constant into a register and then waiting a
number of internal cycles for the instruction to complete.

§ A more optimum solution can often be found by using some
combination of MOVs, ADDs, SUBs and RSBs with shifts.
– Multiplications by a constant equal to a ((power of 2) 1) can be done in

one cycle.

MOV R2, R0, LSL #2 ; Shift R0 left by 2, write to R2, (R2=R0x4)
ADD R9, R5, R5, LSL #3 ; R9 = R5 + R5 x 8 or R9 = R5 x 9
RSB R9, R5, R5, LSL #3 ; R9 = R5 x 8 - R5 or R9 = R5 x 7
SUB R10, R9, R8, LSR #4 ; R10 = R9 - R8 / 16
MOV R12, R4, ROR R3 ; R12 = R4 rotated right by value of R3

1310/1/18

VLSI-1 Class Notes

Funnel Shifter

§ A funnel shifter can do all six types of shifts
§ Selects N-bit field Y from 2N-bit input

– Shift by k bits (0 ££ k < N)

B C

offsetoffset + N-1

0N-12N-1

Y

10/1/18 Page 14

VLSI-1 Class Notes

Funnel Shifter Operation

10/1/18 Page 15

VLSI-1 Class Notes

Simplified Funnel Shifter

§ Optimize down to 2N-1 bit input

10/1/18 Page 16

VLSI-1 Class Notes

Funnel Shifter Design 1

§ N N-input multiplexers
– Use 1-of-N hot select signals for shift amount
– nMOS pass transistor design (Vt drops!)

k[1:0]

s0s1s2s3
Y3

Y2

Y1

Y0

Z0Z1Z2Z3Z4

Z5

Z6

left Inverters & Decoder

10/1/18 Page 17

VLSI-1 Class Notes

Funnel Shifter Design 2

§ Log N stages of 2-input MUXes
– No select decoding needed

Y3

Y2

Y1

Y0
Z0

Z1

Z2

Z3

Z4

Z5

Z6

k0k1
left

10/1/18 Page 18

VLSI-1 Class Notes

Logarithmic Barrel Shifter

Right shift only

Right/Left shift

Right/Left Shift & Rotate

VLSI-1 Class Notes

32-bit Logarithmic Barrel

§ Datapath never wider than 32 bits
§ First stage preshifts by 1 to handle left shifts

20

VLSI-1 Class Notes

Multi-input Adders

§ Suppose we want to add k N-bit words
– Ex: 0001 + 0111 + 1101 + 0010 = 10111

§ Straightforward solution: k-1 N-input CPAs
– Large and slow

+

+

0001 0111

+

1101 0010

10101

10111

10/1/18 Page 21

VLSI-1 Class Notes

Carry Save Addition

§ Full adder sums 3 inputs, produces 2 outputs
– Carry output has twice weight of sum output

§ N full adders in parallel: carry save adder
– Produce N sums and N carry outs

Z4Y4X4

S4C4

Z3Y3X3

S3C3

Z2Y2X2

S2C2

Z1Y1X1

S1C1

XN...1 YN...1 ZN...1

SN...1CN...1

n-bit CSA

10/1/18 Page 22

VLSI-1 Class Notes

CSA Application

§ Use k-2 stages of CSAs
– Keep result in carry-save redundant form

§ Final CPA computes actual result

4-bit CSA

5-bit CSA

0001 0111 1101 0010

+

10110101_

01010_ 00011

 0001
 0111
+1101
 1011
0101_

X
Y
Z
S
C

 0101_
 1011
 +0010
 00011
01010_

X
Y
Z
S
C

 01010_
+ 00011
 10111

A
B
S

10111

10/1/18 Page 23

VLSI-1 Class Notes

Multiplication

§ Example:

§ M x N-bit multiplication
– Produce N M-bit partial products
– Sum these to produce M+N-bit product

 1100 : 1210
 0101 : 510
 1100
 0000
 1100
 0000
00111100 : 6010

multiplier
multiplicand

partial
products

product

10/1/18 Page 24

VLSI-1 Class Notes

General Form

§ Multiplicand: Y = (yM-1, yM-2, …, y1, y0)
§ Multiplier: X = (xN-1, xN-2, …, x1, x0)

§ Product: 1 1 1 1

0 0 0 0
2 2 2

M N N M
j i i j

j i i j
j i i j

P y x x y
- - - -

+

= = = =

æ öæ ö= =ç ÷ç ÷
è øè ø

å å åå

x0y5 x0y4 x0y3 x0y2 x0y1 x0y0

y5 y4 y3 y2 y1 y0
x5 x4 x3 x2 x1 x0

x1y5 x1y4 x1y3 x1y2 x1y1 x1y0
x2y5 x2y4 x2y3 x2y2 x2y1 x2y0

x3y5 x3y4 x3y3 x3y2 x3y1 x3y0
x4y5 x4y4 x4y3 x4y2 x4y1 x4y0

x5y5 x5y4 x5y3 x5y2 x5y1 x5y0
p0p1p2p3p4p5p6p7p8p9p10p11

multiplier
multiplicand

partial
products

product

10/1/18 Page 25

VLSI-1 Class Notes

Dot Diagram

§ Each dot represents a bit

partial products

m
ultiplier x

x0

x15

10/1/18 Page 26

VLSI-1 Class Notes

Array Multiplier
y0y1y2y3

x0

x1

x2

x3

p0p1p2p3p4p5p6p7

B

ASin Cin

SoutCout

BA

CinCout

Sout

Sin
=

CSA
Array

CPA

critical path BA

Sout

Cout CinCout

Sout

=Cin

BA

10/1/18 Page 27

VLSI-1 Class Notes

Rectangular Array

§ Squash array to fit rectangular floorplan

y0y1y2y3

x0

x1

x2

x3

p0

p1

p2

p3

p4p5p6p7

10/1/18 Page 28

VLSI-1 Class Notes

Fewer Partial Products

§ Array multiplier requires N partial products
§ If we looked at groups of r bits, we could form N/r partial

products.
– Faster and smaller?
– Called radix-2r encoding

§ Ex: r = 2: look at pairs of bits
– Form partial products of 0, Y, 2Y, 3Y
– First three are easy, but 3Y requires adder LL

10/1/18 Page 29

VLSI-1 Class Notes

Booth Encoding

§ Instead of 3Y, try –Y, then increment next partial product to
add 4Y

§ Similarly, for 2Y, try –2Y + 4Y in next partial product

10/1/18 Page 30

VLSI-1 Class Notes

Booth Hardware

§ Booth encoder generates control lines for each PP
– Booth selectors choose PP bits

Mi

yj

Xi

yj-1

2Xi

PPij

Booth
Selector

Booth
Encoder

x2i+1

x2i
x2i-1

10/1/18 Page 31

VLSI-1 Class Notes

Booth hardware

Page 3210/1/18

VLSI-1 Class Notes

Sign Extension

§ Partial products can be negative
– Require sign extension, which is cumbersome
– High fanout on most significant bit

m
ultiplier x

x0

x15

0

0
0

x-1

x16
x17

s
sssssssssssssss

s
sssssssssssss

s
sssssssssss

s
sssssssss

s
sssssss

s
sssss

s
sss

s
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

10/1/18 Page 33

VLSI-1 Class Notes

Simplified Sign Extension

§ Sign bits are either all 0 s or all 1’s
– Note that all 0 s is all 1’s + 1 in proper column
– Use this to reduce loading on MSB

s
111111111111111
s

s
1111111111111
s

s
11111111111
s

s
111111111
s

s
1111111
s

s
11111
s

s
111
s

s
1
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

10/1/18 Page 34

VLSI-1 Class Notes

Even Simpler Sign Extension

§ No need to add all the 1 s in hardware
– Precompute the answer!

s
sss

s
s1

s
s1

s
s1

s
s1

s
s1

s
s1

s
s

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PP8

10/1/18 Page 35

VLSI-1 Class Notes

Advanced Multiplication

§ Signed vs. unsigned inputs
§ Higher radix Booth encoding
§ Array vs. tree CSA networks

10/1/18 Page 36

