

Lecture 12: Datapath Design

Mark McDermott

Electrical and Computer Engineering The University of Texas at Austin

10/1/18

- **Comparators**
- **Shifters**
- **Adders**
- **Multipliers**
- Registers

ARM Datapath

10/1/18

VLSI-1 Class Notes

Comparators

- 0's detector: A = 00...000
- I's detector:
 A = 11...111
- Equality comparator: A = B
- Magnitude comparator: A < B</p>

1's & 0's Detectors

- 1's detector: N-input AND gate
- O's detector: NOTs + 1's detector (N-input NOR)

Equality Comparator

- Check if each bit is equal (XNOR, or "equality gate")
- 1's detect on bitwise equality

Magnitude Comparator

- Compute B-A and look at sign
- B-A = B + ~A + 1
- For unsigned numbers, carry out is sign bit

Signed vs. Unsigned

For signed numbers, comparison is harder

- C: carry out
- Z: zero (all bits of A-B are 0)
- N: negative (MSB of result)
- -V: overflow (inputs had different signs, output sign \neq B)

Table 10	0.4 Magnitude com	Magnitude comparison						
Relation	Unsigned Comparison	Signed Comparison						
A = B	Ζ	Ζ						
$A \neq B$	\overline{Z}	\overline{Z}						
A < B	$\overline{C+Z}$	$\overline{(N \oplus V)} + \overline{Z}$						
A > B	\overline{C}	$(N \oplus V)$						
$A \leq B$	C	$(\overline{N \oplus V})$						
$A \ge B$	\overline{C} + Z	$(N \oplus V) + Z$						

Shifters

Shifters

Arithmetic Shift Right (ASR) Shifts right (divides by powers of two) and preserves the sign bit, for 2's complement operations. e.g.

ASR #5 = divide by 32

Sign bit shifted in

Shifters

Barrel Shift (Rotate):

Shifts number left or right and fills with lost bits 1011 ROR1 = 1101 1011 ROL1 = 0111

Rotate Right (ROR)

Similar to an ASR but the bits wrap around as they leave the LSB and appear as the MSB.

e.g. ROR #5

Note the last bit rotated is also used as the Carry Out.

Rotate Right Extended (RRX)

This operation uses the CPSR C flag as a 33rd bit.

Rotates right by 1 bit. Encoded as ROR #0

- Using a multiplication instruction to multiply by a constant means first loading the constant into a register and then waiting a number of internal cycles for the instruction to complete.
- A more optimum solution can often be found by using some combination of MOVs, ADDs, SUBs and RSBs with shifts.
 - Multiplications by a constant equal to a ((power of 2) \pm 1) can be done in one cycle.

MOV R2, R0, LSL #2 ; Shift R0 left by 2, write to R2, (R2=R0x4)
ADD R9, R5, R5, LSL #3 ; R9 = R5 + R5 x 8 or R9 = R5 x 9
RSB R9, R5, R5, LSL #3 ; R9 = R5 x 8 - R5 or R9 = R5 x 7
SUB R10, R9, R8, LSR #4 ; R10 = R9 - R8 / 16
MOV R12, R4, ROR R3 ; R12 = R4 rotated right by value of R3

Funnel Shifter

- A funnel shifter can do all six types of shifts
- Selects N-bit field Y from 2N-bit input
 - Shift by k bits ($0 \le k < N$)

T		5	1	D	CE
U	1		Ē	\mathbf{E}	\mathbf{LE}
ELEC:	TRIC	1. 4.00	MPUTE	8.654	SINEERIN

Table 10.10 Fu	nnel shifter operati	on	
Shift Type	В	С	Offset
Logical Right	00	$A_{N\!-\!1}\!\ldots\!A_0$	k
Logical Left	$A_{N-1}A_0$	00	N-k
Arithmetic Right	$A_{N-1}A_{N-1}$ (sign extension)	$A_{N-1}A_0$	k
Arithmetic Left	$A_{N-1}A_0$	0	N-k
Rotate Right	$A_{N-1}A_0$	$A_{N-1}A_0$	k
Rotate Left	$A_{N-1}A_0$	$A_{N-1}A_0$	N-k

Optimize down to 2N-1 bit input

Table 10.11 Simpl	ified funnel shifter	
Shift Type	Ζ	Offset
Logical Right	$00, A_{N-1}A_0$	k
Logical Left	$A_{N-1}A_0, 00$	k
Arithmetic Right	$A_{N-1}\ldots A_{N-1}, A_{N-1}\ldots A_0$	k
Arithmetic Left	$A_{N-1}A_0, 00$	k
Rotate Right	$A_{N-2}\ldots A_0, A_{N-1}\ldots A_0$	k
Rotate Left	$A_{N-1}A_0, A_{N-1}A_1$	k

Funnel Shifter Design 1

N N-input multiplexers

- Use 1-of-N hot select signals for shift amount
- nMOS pass transistor design (Vt drops!)

Funnel Shifter Design 2

Log N stages of 2-input MUXes
 No select decoding needed

Logarithmic Barrel Shifter

Right shift only

Right/Left shift

Right/Left Shift & Rotate

- Datapath never wider than 32 bits
- First stage preshifts by 1 to handle left shifts

Suppose we want to add k N-bit words

- Ex: 0001 + 0111 + 1101 + 0010 = 10111

Straightforward solution: k-1 N-input CPAs

Large and slow

- Full adder sums 3 inputs, produces 2 outputs
 Carry output has twice *weight* of sum output
- N full adders in parallel: *carry save adder*
 - Produce N sums and N carry outs

Use k-2 stages of CSAs

Keep result in carry-save redundant form

Final CPA computes actual result

Example:

M x N-bit multiplication

- Produce N M-bit partial products
- Sum these to produce M+N-bit product

14.1

General Form

- **Multiplier:**
- Multiplicand: $Y = (y_{M-1}, y_{M-2}, ..., y_1, y_0)$ $X = (x_{N-1}, x_{N-2}, ..., x_1, x_0)$

$$P = \left(\sum_{j=0}^{M-1} y_j 2^j\right) \left(\sum_{i=0}^{N-1} x_i 2^i\right) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

						У ₅	У ₄	У ₃	У ₂	У ₁	У ₀	multiplicand
						x ₅	x ₄	x ₃	x ₂	x ₁	x ₀	 multiplier
						x_0y_5	x ₀ y ₄	$x_0 y_3$	x ₀ y ₂	$x_0^{}y_1^{}$	$x_0 y_0$	
					x ₁ y ₅	x ₁ y ₄	x_1y_3	x_1y_2	x ₁ y ₁	$\mathbf{x}_1 \mathbf{y}_0$		
				x ₂ y ₅	x ₂ y ₄	x ₂ y ₃	x ₂ y ₂	x_2y_1	x ₂ y ₀			partial
			x ₃ y ₅	x ₃ y ₄	x ₃ y ₃	x ₃ y ₂	x_3y_1	x_3y_0				products
		x ₄ y ₅	x ₄ y ₄	x_4y_3	$x_4 y_2$	$x_4^{}y_1^{}$	$x_4^{}y_0^{}$					
	x_5y_5	x ₅ y ₄	x ₅ y ₃	x ₅ y ₂	x ₅ y ₁	x_5y_0						
р ₁₁	р ₁₀	p ₉	p ₈	p ₇	p_6	р ₅	p ₄	p ₃	p ₂	p ₁	p ₀	product

• Each dot represents a bit

Array Multiplier

Rectangular Array

Squash array to fit rectangular floorplan

- Array multiplier requires N partial products
- If we looked at groups of r bits, we could form N/r partial products.
 - Faster and smaller?
 - Called radix-2^r encoding
- Ex: r = 2: look at pairs of bits
 - Form partial products of 0, Y, 2Y, 3Y
 - First three are easy, but 3Y requires adder 😕

Booth Encoding

- Instead of 3Y, try –Y, then increment next partial product to add 4Y
- Similarly, for 2Y, try –2Y + 4Y in next partial product

Table 10.12Radix-4 modified Booth encoding values									
	Inputs		Partial Product	Booth Selects					
x_{2i+1}	x_{2i}	x_{2i-1}	PP_i	X_i	$2X_i$	M_i			
0	0	0	0	0	0	0			
0	0	1	Y	1	0	0			
0	1	0	Y	1	0	0			
0	1	1	2Y	0	1	0			
1	0	0	-2Y	0	1	1			
1	0	1	-Y	1	0	1			
1	1	0	-Y	1	0	1			
1	1	1	-0 (= 0)	0	0	1			

Booth encoder generates control lines for each PP

Booth selectors choose PP bits

Booth hardware

Sign Extension

Partial products can be negative

- Require sign extension, which is cumbersome
- High fanout on most significant bit

Simplified Sign Extension

• Sign bits are either all 0's or all 1's

- Note that all 0's is all 1's + 1 in proper column
- Use this to reduce loading on MSB

Even Simpler Sign Extension

No need to add all the 1's in hardware

Advanced Multiplication

- Signed vs. unsigned inputs
- Higher radix Booth encoding
- Array vs. tree CSA networks