Lecture 13: Interconnects in CMOS Technology

Mark McDermott

Electrical and Computer Engineering The University of Texas at Austin

Introduction

Chips are mostly made of wires called interconnect

- In stick diagram, wires set size
- Transistors are little things under the wires
- Many layers of wires

Wires are as important as transistors

- Speed
- Power
- Noise

Alternating layers run orthogonally

HVH	VHV			
M1: Horizontal	M1: Vertical			
M2: Vertical	M2: Horizontal			
M3: Horizontal	M3: Vertical			
M4: Vertical	M4: Horizontal			
:	:			

Choice of Metals

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)	
Silver (Ag)	1.6	
Copper (Cu)	1.7	
Gold (Au)	2.2	35%-40% improvement
Aluminum (Al)	2.8 —	
Tungsten (W)	5.3	
Molybdenum (Mo)	5.3	

Metal Layer Cross Section 65nM

45nm Interconnect

Loose pitch + thick metal on upper layers: High speed global wires Low resistance power grid

Tight pitch on lower layers: Maximum density for local interconnects

Source: Mark Bohr, Intel Corporation

SEM MICRO-GRAPH (ILM DIELECTRIC REMOVED)

Courtesy: IBM

Advanced Metallization

Dual damascene IC process

Prior wire Source: IBM Corp.

© Digital Integrated Circuits^{2nd}

10/18/18

VLSI-1 Class Notes

Interconnect Process Dual Damascene

•C.-K. Hu and J.M.E. Harper, Mater. Chem. Phys., 52 (1998), p. 5.

WIRE GEOMETRY

- PITCH = width + space
- Height (h) = distance to top/bottom routes
- ASPECT RATIO (AR) = thickness / width
 - Deep submicron processes have AR < 2 to maintain sheet resistances at a reasonable level
 - Coupling to neighboring routes dominates

• ρ = *resistivity* (Ω*m)

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

where ρ =resistivity

w

Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/\Box)
Diffusion (silicided)	3-10
Diffusion (no silicide)	50-200
Polysilicon (silicided)	3-10
Polysilicon (no silicide)	50-400
Metal1	0.08
Metal2	0.05
Metal3	0.05
Metal4	0.03
Metal5	0.02
Metal6	0.02

CONTRIBUTION OF WIRES (they are not free)

DELAY

- Function of R, L and C, VIA resistance, local .vs. global
- POWER
 - Charging/discharging of C is a function of CV2F
- NOISE
 - Attackers/victims impact on functionality and delay
- POWER SUPPLY IR DROPS and GROUND BOUNCE
 - Affects delay leading to timing failures
- RELIABILITY
 - Electro-migration, self heat, maximum current
- COST
 - Number of layers .vs. area/performance targets, yield

Contact/VIA Resistance

- Contacts and vias also have 2-20 Ω resistance
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Wire Capacitance

Wire has capacitance per unit length

- To neighbors
- To layers above and below
- C_{total} = C_{top} + C_{bot} + 2C_{adj}

- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $-\epsilon = k\epsilon_0$
- $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
- k = 3.9 for SiO₂
- Processes are starting to use low-k dielectrics
 - $-k \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

Typical wires have ~ 0.2 fF/μm

 Compare to 2 fF/µm for gate capacitance

Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/µm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion *runners* for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Wires are a distributed system

- Approximate with lumped element models

- 3-segment π-model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

Example

Metal2 wire in 180 nm process

- 5 mm long
- 0.32 μ m wide

Construct a 3-segment π-model

- $-R_{\Box} = 0.05 \Omega/\Box$ => R = 781 Ω
- $C_{permicron} = 0.2 \text{ fF}/\mu m => C = 1 \text{ pF}$

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - R = 2.5 k $\Omega^*\mu$ m for gates
 - Unit inverter: 0.36 μ m nMOS, 0.72 μ m pMOS

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive *coupling* or *crosstalk*.

Crosstalk effects

- Noise on non-switching wires
- Increased delay on switching wires

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adj} depends on behavior of neighbors
 - Miller Coupling Factor (MCF)

В	DV	C _{eff(A)}	MCF
Constant	V _{DD}	C _{gnd} + C _{adj}	1
Switching with A	0	C _{gnd}	0
Switching opposite A	$2V_{DD}$	C _{gnd} + 2 C _{adj}	2

- Crosstalk causes [functional/voltage] noise on nonswitching wires
- If victim is floating:
 - model as capacitive voltage divider

Driven Victims

Usually victim is driven by a gate that fights noise

- Noise depends on relative resistances
- Victim driver is in linear region, aggressor in saturation
- If sizes are same, R_{aggressor} = 2-4 x R_{victim}

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor} \qquad k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

Coupling Waveforms

Simulated coupling for C_{adj} = C_{victim}

- Do we care if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing 2.0 0.8 ٥ 1.8 ٥ – Layer 0.7 Coupling: $2C_{adj}/(2C_{adj}+C_{gnd})$ \diamond 1.6 0.6 WireSpacing - Shielding 1.4 ۵ 🔺 0.5 (nm) Delay(ns):RC/2 1.2 ♦ 320 0.4 **480** 1.0 **6**40 0.8 0.3 0.6 0.2 0.4 0.1 0.2 0 0 2000 1000 1500 500 1000 1500 2000 0 500 Ò Pitch (nm) Pitch (nm) a_1 vdd a_0 vdd vdd a_0 vdd a_2 b_0 b₁ a_2 a₁ a_2 a_3 gnd a_0 a₁ b_2 gnd gnd

Repeaters

- R and C are proportional to L
- RC delay is proportional to L²
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeated Interconnect

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w*/ & Resistance R_w*/
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W & Resistance R/W

Repeater Results

Write equation for Elmore Delay

- Differentiate with respect to W and N
- Set equal to 0, solve

$$t_{pd-seg} = \frac{R}{W} \left(\frac{C_w l}{N} + C' W \right) + \left(\frac{R_w l}{N} \right) \left(\frac{C_w l}{2N} + C' W \right)$$

The total delay is N times greater:

$$t_{pd} = NRC' + L\left(R_wC'W + \frac{RC_w}{W}\right) + L^2\frac{R_wC_w}{2N}$$

Take the partial derivatives with respect to N and W and set them to 0 to minimize delay:

$$\frac{\partial t_{pd}}{\partial N} = RC' - l^2 \frac{R_w C_w}{2N^2} = 0 \Longrightarrow N = l \sqrt{\frac{R_w C_w}{2RC'}}$$
 ~60-80 ps/mm
$$\frac{\partial t_{pd}}{\partial W} = l \left(R_w C' - \frac{RC_w}{W^2} \right) = 0 \Longrightarrow W = \sqrt{\frac{RC_w}{R_w C'}}$$
 in 180 nm process

10/18/18

Repeater Placements

Avoiding the Miller cap by opposite going signals

BACKUP

Layer Stack

- AMI 0.6 μm process has 3 metal layers
- Modern processes use 6-10+ metal layers
- Example:

Intel 180 nm process	Layer	T (nm)	W (nm)	S (nm)	AR	
M1: thin, narrow (< 3λ)	6	1720	860	860	2.0	
 High density cells 		1000				
M2-M4: thicker		1000				
 For longer wires 	5	1600	800	800	2.0	
		1000				
IVI5-IVI6: THICKEST	4	1080	540	540	2.0	
– For V _{DD} , GND, clk		700				
	3	700	320	320	2.2	
		700				
	2	700 700	320	320	2.2	88
	1	700 480	250	250	19	N N
	I	400 800	250	200	1.0	
						Substrate