Lecture 14: Memory Elements

Mark McDermott

Electrical and Computer Engineering The University of Texas at Austin

Memory Elements

- Memory arrays
- SRAMs
- Serial Memories
- Dynamic memories

Pentium-4 (Willamette)

Yellow boxes are memory arrays

1D Memory Architecture

2D Memory Architecture

- 2ⁿ words of 2^m bits each
- If n >> m, fold by 2^k into fewer rows of more columns

- Good regularity easy to design
- Very high density if good cells are used

SRAM Block Diagram

SRAM Simulation Cross Section

6T SRAM Cell

Moore's Law Scaling for Memory

SRAM Memory Cell Improvements

22 nm Process

.108 um² (Used on CPU products)

14 nm Process

.0588 um² (0.54x area scaling)

12T SRAM Cell

Basic building block: SRAM Cell

- Holds one bit of information, like a latch
- Must be read and written

12-transistor (12T) SRAM cell

- Use a simple latch connected to bitline
- 46 x 75 λ unit cell

SRAM Read

- Improve performance when bit-line capacitance is high
- Precharge both bitlines high
- Then turn on wordline
- One of the two bitlines will be pulled down by the cell

- bit discharges, bit_b stays high
- But A bumps up slightly

Read stability

- A must not flip
- N1 >> N2

Read Timing

Read Requirements

- Pre-charge & equalize bit-lines from previous cycle
- Minimum "Design Margin" before next READ begins
- Delay requirement to allow sufficient bit-line voltage development

NOTE: The ∆t delay can be generated by a chain of inverter delays or by replica "dummy" row and column composed of bitcells.

SRAM Write

- Drive one bitline high, the other low
- Then turn on wordline
- Bitlines overpower cell with new value
- Ex: A = 0, A_b = 1,
 bit = 1, bit_b = 0
 Force A_b low,
 then A rises high
- Writability
 - Must overpower feedback inverter
 - N4 >> P2
 - N2 >> P1 (symmetry)

Write Timing

Write Requirements

- Pre-charge & equalize bit-lines from previous cycle
- WRITE can begin as soon as word-line is available
- Must guarantee minimum write pulse-width, data valid time and write recovery; internal "high node" reaches say 90% of VDD

NOTE: Write pulse-width margin increases with lower frequency

SRAM Sizing

- High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell

Wdn > Wpass for read stability Wpass > Wup to enable writes

6-Transistor SRAM Cell Layout

Decoders

n:2ⁿ decoder consists of 2ⁿ n-input AND gates

- One needed for each row of memory
- Build AND from NAND or NOR gates

Static CMOS

Pseudo-nMOS

Decoders must be pitch-matched to SRAM cell

For n > 4, NAND gates become slow

- Break large gates into multiple smaller gates

VLSI-1 Class Notes

Predecoding

Many of these gates are redundant

- Factor out common gates into pre-decoder
- Saves area
- Same path effort

Column Circuitry

Some circuitry is required for each column

- Bitline conditioning
- Sense amplifiers
- Column multiplexing

Bitline Conditioning

 Precharge bitlines high before reads

 Equalize bitlines to minimize voltage difference when using sense amplifiers

Sense Amplifiers

Bitlines have many cells attached

- Ex: 32-kbit SRAM has 256 rows x 128 cols
- 128 cells on each bitline
- $t_{pd} \propto (C/I) \Delta V$
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)

VLSI-1 Class Notes

Differential Pair Amp

- Differential pair requires no clock
- But always dissipates static power

Clocked Sense Amp

- Clocked sense amp saves power
- Requires timing the sense_clk signal to arrive after enough bitline swing
- Isolation transistors cut off large bitline capacitance

De-coupled Sense Amplifier

- With SAE low; Data and Data# are pre-charge high
- When SAE goes high; source-coupled pair acts as differential amplifier
- Cross coupled inverters amplify and latch any voltage difference

Twisted Bitlines

Sense amplifiers also amplify noise

- Coupling noise is severe in modern processes
- Try to couple equally onto bit and bit_b (common mode)
- Done by twisting bitlines

Column Multiplexing

- Recall that array may be folded for good aspect ratio
- Ex: 2 kword x 16 folded into 256 rows x 128 columns
 - Must select 16 output bits from the 128 columns
 - Requires 16 8:1 column multiplexers

Tree Decoder Mux

Column mux can use pass transistors

- Use nMOS only, precharge outputs
- One design is to use k series transistors for 2k:1 mux
 - No external decoder logic needed

Or eliminate series transistors with separate decoder

Ex: 2-way Muxed SRAM

Multiple Ports

- We have considered single-ported SRAM
 - One read or one write on each cycle
- Multiported SRAM are needed for register files
- Examples:
 - Multicycle MIPS must read two sources or write a result on some cycles
 - Pipelined MIPS must read two sources and write a third result each cycle
 - Superscalar MIPS must read and write many sources and results each cycle

Simple dual-ported SRAM

- Two independent single-ended reads
- Or one differential write

Do two reads and one write by time multiplexing

Read during ph1, write during ph2

- Adding more access transistors hurts read stability
- Multi-ported SRAM isolates reads from state node
- Single-ended design minimizes number of bitlines

BASIC ARRAY LAYOUT

SRAM Layout Using a Memory Compiler

		Image: Section 1 Image: Section 2 Image: Section 2			
	1918/06/06/				
enten enten 1999 (herrik bereik bereik 1999 (herrik bereik			i inel: inel: inel: I: inel: inel: inel: I: inel: inel: inel: inel:	anda anala anala anala Katiga Katiga Katiga Katiga Katiga Katiga Katiga Katiga	
		2			
		Sector			
	en com ro				

CAMs

Extension of ordinary memory (e.g. SRAM)

- Read and write memory as usual
- Also *match* to see which words contain a *key*

10T CAM Cell

• Add four match transistors to 6T SRAM - 56 x 43 λ unit cell

CAM Cell Operation

- Read and write like ordinary SRAM
- For matching:
 - Leave wordline low
 - Precharge matchlines
 - Place key on bitlines
 - Matchlines evaluate
- Miss line
 - Pseudo-nMOS NOR of match lines
 - Goes high if no words match

4x4 DRAM Memory

10/23/18

3-Transistor DRAM Cell

No constraints on device sizes (ratioless)

Reads are non-destructive

Value stored at node X when writing a "1" is V_{WWL} - V_{tn}

1-Transistor DRAM Cell

Write: C_s is charged (or discharged) by asserting WL and BL Read: Charge redistribution occurs between C_{BL} and C_s

Read is destructive, so must refresh after read

1-T DRAM Cell

(b) Layout

Used Polysilicon-Diffusion Capacitance

Expensive in Area

VLSI-1 Class Notes

Dense 1T DRAM Cell

Trench Cell

DRAM Cell Observations

- DRAM memory cells are single ended (complicates the design of the sense amp)
- 1T cell requires a sense amp for each bit line due to charge redistribution read
- IT cell read is destructive; refresh must follow to restore data
- 1T cell requires an extra capacitor that must be explicitly included in the design
- A threshold voltage is lost when writing a 1 (can be circumvented by bootstrapping the word lines to a higher value than Vdd)

Serial Access Memories

Serial access memories do not use an address

- Shift Registers
- Tapped Delay Lines
- Serial In Parallel Out (SIPO)
- Parallel In Serial Out (PISO)

Shift Register

- Shift registers store and delay data
- Simple design: cascade of registers
 - Watch your hold times!

Denser Shift Registers

- Flip-flops aren't very area-efficient
- For large shift registers, keep data in SRAM instead
- Move R/W pointers to RAM rather than data
 - Initialize read address to first entry, write to last
 - Increment address on each cycle

Tapped Delay Line

- A tapped delay line is a shift register with a programmable number of stages
- Set number of stages with delay controls to mux
 - Ex: 0 63 stages of delay

- 1-bit shift register reads in serial data
 - After N steps, presents N-bit parallel output

Load all N bits in parallel when shift = 0

- Then shift one bit out per cycle

SOFT ERROR RATE (SER)

BACKGROUND

- There are 2 categories of system failure:
 - hard failure (permanent failures that require replacement)
 - soft failure (non-permanent random system failures)
- Cause of failures could be noise, power glitches, design margins, etc
- In large memory systems, soft errors are mostly due to radiation
- In 1978, May & Woods[5] (Intel) found radioactive materials in memory packages emitting alpha particles which can generate sufficient charge to switch the state of stored charge in DRAMs
- Minute traces of radioactive elements can be found in aluminabased ceramics, zirconia & silica fillers used in packaging
- Another potential source of alpha particles is from cosmic radiation
 - High energy particles from cosmic rays can have energies greater than 1GeV
 - Alpha particle energies typically range from 0.1 to 10 MeV

ALPHA PARTICLES

- An alpha-particle is a doubly charged helium nucleus (2 protons, 2 neutrons) that is generated during radioactive decay of high-Z atoms
- More than 300 known alpha-emitting nuclides:
 - Uranium(238), Thorium(232) can be found in package materials for semiconductors
 - Radioactive decay of U238 → Th234 + He4 until it decays to a stable Pb206 (8 alphas are generated)
 - Thorium generates 6 alphas as it decays from Th232 to stable Pb208
- Alpha particles interact with silicon to generate an ionization trail of electron-hole pairs
- The amount of electron-hole pairs generated depends on the particle's initial energy (~3.6eV per e-h pair)

Electron-Hole Pair Generation versus alpha energy for Silicon

Alpha particles generated from Th²³² and U²³⁸ will have energies ranging from 3.95MeV to 8.78MeV

FUNNEL EFFECT

Depletion region distortion results in enhanced charge collection by the hit node

> **Drift current causes the** storage node to discharge

If the total charge exceeds Qcrit, then state of bitcell or

Qcrit = number of electrons which differentiates between a "1" and "0" (May & Woods) ^[1]

6-transistor SRAM cell

a-particle "hit" can be modeled as a subnanosecond current pulse as described by Chenming Hu

Memory Array Redundancy

BASIC ARRAY LAYOUT

ARRAY REDUNDANT ELEMENTS

- Bitlines are precharged to VCC → this is the critical situation because the nmos access device "shunts" the pmos load device; thereby reducing the gain of the inverters
- Static noise voltage sources are inserted into cross-couple path between inverters

- SNM is defined by the maximum value of Vn that can be tolerated before changing state; sweep noise voltage from 0V to the point where differential collapses to zero
- Include temperature, voltage and process variation using a Monte Carlo simulator

Retention Curve

Large diagonal due to access devices being "OFF" Standby or "Data Retention" state when wordline is not selected → Cell is stable

 n1	sweep	
 n2	sweep	

The "maximum square" is approximately VCC/2

VLSI-1 Class Notes

Backup

4-Transistor Dynamic RAM Cell

Data stored as charge on gate capacitors (complementary nodes) Data must be refreshed regularly Dynamic cells must be designed very carefully

3-Transistor Dynamic RAM Cell

Data stored on the gate of a transistor Need two additional transistors, one for write and the other for read control

1-Transistor Dynamic RAM Cell

Cannot get any smaller than this: data stored on a (trench) capacitor C, need a transistor to control data Bit line normally precharged to ½ V_{DD} (need a sense amplifier)

SRAM Layout

- Cell size is critical: 26 x 45 λ (even smaller in industry)
- Tile cells sharing V_{DD}, GND, bitline contacts

