#### Lecture 2: CMOS Fabrication

#### **Mark McDermott**

Electrical and Computer Engineering The University of Texas at Austin

### Agenda

#### Last module:

- Introduction to the course
- How a transistor works
- CMOS transistors

#### This module:

– CMOS Fabrication

#### **CMOS Fabrication**

- CMOS transistors are fabricated on silicon wafers
- Lithography process has been the mainstream chip manufacturing process
  - Similar to a printing press
  - See <u>Chris Mack's</u> page for a nice <u>litho tutorial</u>
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

#### **Inverter Cross-section**

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors



- Substrate must be tied to GND, n-well to VDD
- Metal to lightly-doped semiconductor forms poor connection called Schottky Diode
- Use heavily doped well and substrate contacts / taps



#### **Inverter Mask Set**

- Transistors and wires are defined by masks
- Cross-section taken along dashed line



#### Six masks to build simple inverter



### **Fabrication Steps**

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
  - Cover wafer with protective layer of SiO<sub>2</sub> (oxide)
  - Remove layer where n-well should be built
  - Implant or diffuse n dopants into exposed wafer
  - Strip off SiO<sub>2</sub>

p substrate

#### Oxidation

Grow SiO<sub>2</sub> on top of Si wafer

– 900°C - 1200°C with  $H_2O$  or  $O_2$  in an oxidation furnace

p substrate

#### **Photoresist**

#### Spin on photoresist

- Photoresist is a light-sensitive organic polymer
- Softens where exposed to light



### Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist



#### Etch oxide with hydrofluoric acid (HF)

– Seeps through skin and eats bone; nasty stuff!!!

Only attacks oxide where resist has been exposed



#### Strip off remaining photoresist

- Old days we used a mixture of nitric and sulphuric acids called piranah etch
- Now we use a plasma etch which is much safer (and greener).

#### Necessary so resist doesn't melt in the next step



#### n-Well

- n-Well formed with diffusion or ion implant
- Diffusion
  - Place wafer in furnace with Arsine (AsH<sub>3</sub>) gas
  - Heat until As atoms diffuse into exposed Si
- Ion Implantation
  - Blast wafer with beam of As ions
  - Ions blocked by SiO<sub>2</sub>, only enter exposed Si



#### **Strip Oxide**

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

|             | n well |
|-------------|--------|
| p substrate |        |

### Polysilicon

# Grow/deposit very thin layer of gate oxide – < 20 Å (6-7 atomic layers)</li>

#### Chemical Vapor Deposition (CVD) of Si layer

- Place wafer in furnace with Silane gas (SiH<sub>4</sub>)
- Forms many small crystals called polysilicon
- Heavily doped to be good conductor



#### Trend towards metal gates and rare earth (Hf, etc.) oxides in nanometer-scale processes

Use same lithography process to pattern polysilicon



#### **Self-Aligned Process**

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact



### **N-diffusion**

- Pattern oxide and form n+ regions
- Self-aligned process gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing



### N-diffusion, Cont'd

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion



### N-diffusion, Cont'd

Strip off oxide to complete patterning step



### **P-Diffusion**

Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact



#### Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed



#### **Metallization**

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

![](_page_23_Figure_3.jpeg)

### **Intel's 2-Year Technology Cadence**

![](_page_24_Picture_1.jpeg)

•Source: Mark Bohr, Intel Corporation

### **MOBILITY IMPROVEMENT**

![](_page_25_Figure_1.jpeg)

### 90 nm Generation Transistor

![](_page_26_Figure_1.jpeg)

#### •Strained silicon increases electron/hole mobility.

Intel

•Source: Mark Bohr, Intel Corporation

inte

## **65 nm Generation Transistors**

- 35 nm gate length
- 1.2 nm gate oxide
- NiSi for low resistance
- 2<sup>ND</sup> generation strained silicon for enhanced performance

![](_page_27_Figure_6.jpeg)

•Source: Mark Bohr, Intel Corporation

6

### High-K, Metal Gate 45 nm CMOS (Intel)

![](_page_28_Picture_1.jpeg)

•K. Mistry, et al., "A 45nm Logic Technology with High-k+ Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging", Tech. Digest IEDM, Dec 2007.

### High-K, Metal Gate 32 nm CMOS (Intel)

![](_page_29_Picture_1.jpeg)

•P. Packan, et al., "High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors", Tech. Digest IEDM, Dec 2009.

### **90nm INTERCONNECT**

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

7 layers of copper + new low-k CDO dielectric

Intel

### **65nm INTERCONNECT**

![](_page_31_Figure_1.jpeg)

#### **45nm Interconnect**

## Loose pitch + thick metal on upper layers:

High speed global wires Low resistance power grid

#### Tight pitch on lower layers:

Maximum density for local interconnects

![](_page_32_Figure_5.jpeg)

### **32nm Interconnect**

![](_page_33_Figure_1.jpeg)

•C.-H. Jan, et al., "A 32nm SoC Platform Technology with 2nd Generation High-k/Metal Gate Transistors Optimized for •Ultra Low Power, High Performance, and High Density Product Applications", IEDM, Dec 2009.

### **22nm Interconnect**

| <u>Layer</u> | <u>Pitch</u> |
|--------------|--------------|
| ТМ           | 14 um        |
| M8           | 360 nm       |
| M7           | 320 nm       |
| M6           | 240 nm       |
| M5           | 160 nm       |
| M4           | 112 nm       |
| M3           | 80 nm        |
| M2           | 80 nm        |
| M1           | 90 nm        |

![](_page_34_Picture_2.jpeg)

IDF 2012

#### **FIN-FET Transistor Innovation**

32 nm Planar Transistors

![](_page_35_Picture_2.jpeg)

#### 22 nm Tri-Gate Transistors

![](_page_35_Picture_4.jpeg)

Gates

Fins

Intel's 22 nm technology introduces revolutionary 3-D Tri-Gate transistors

(courtesy: Mark Bohr, Sr. Intel Fellow)

#### **Traditional Planar Transistor**

![](_page_36_Figure_1.jpeg)

Traditional 2-D planar transistors form a conducting channel on the silicon surface under the gate electrode

#### 22 nm FIN-FET Transistor

![](_page_37_Figure_1.jpeg)

3-D Tri-Gate transistors form conducting channels on three sides of a vertical silicon fin

#### 22 nm FIN-FET Transistor

![](_page_38_Figure_1.jpeg)

Tri-Gate transistors can connect together multiple fins for higher drive current and higher performance