
VLSI-1 Class Notes

Lecture 22:
Introduction to Design Verification

Mark McDermott
Electrical and Computer Engineering

The University of Texas at Austin

Mike Warner
Mentor Graphics

11/29/18

VLSI-1 Class Notes

What is functional verification?

§ Verification is the process of insuring the intent of the
specification is preserved in the implementation

Converge

Design Path

Verification Path

Specification

11/29/18 Page 2

VLSI-1 Class Notes

Why should I care?

Pre-Silicon Logic Bugs per Generation

800

2,240

7,855

25,000

1

10

100

1,000

10,000

100,000

Pentium Pentium
Pro

Pentium 4 Next
Generation

Source: Tom Schubert, Intel High Level Formal Verification of Next –Generation Microprocessors DAC 2003
Intel Corporate Web Site Moore s Law … http://www.intel.com/technology/silicon/mooreslaw/index.htm

1 Spin
(28%)

2 Spins
(42%)

3 Spins
(21%)

+4 Spins
(9%)

2007 Data

2004 Data

11/29/18 Page 3

VLSI-1 Class Notes

So what’s the big deal?

Cost of poor verification

Cost of Finding
Bug $1 $10 $100 $1,000 $10,000 $100,000 $1,000,000
Bug Injection
Distribution 10% 30% 60% 0% 0% 0% 0%
Bug Distribution
Best In Class 5% 10% 20% 64% 1% 0.1% 0.01% $961,050
Bug Distribution
Second Fiddle 5% 10% 20% 54% 10% 1% 0.1% $3,561,050
Bug Distribution
Breaking Even 5% 10% 20% 44% 15% 5% 1% $16,961,050
Bug Distribution
Fire Sale 5% 10% 20% 38% 20% 10% 2% $32,401,050

Total Bug
Detection Cost
(based on 1000

bug project)

Verification HW-SW Co-
Verification

Post-Si Test Customer
Return

Design Phase Architecture Specification Logic Design

11/29/18 Page 4

VLSI-1 Class Notes

Why is it so hard?

103

1 10 100 1000 10000
1

103000

10300

1030

100000 1000000
Number of Storage Elements

N
um

be
r o

f S
ta

te
s

Stars in the Universe

Protons in the Universe

~Number of Flops
in the A12 processor

11/29/18 Page 5

World population

VLSI-1 Class Notes

Verification Reality

§ Verification averages 70% of design effort (50%-80%)
§ Why?
– Verification is open loop, never ending, non-deterministic

Converge
Specification

Verification Plan

Design Path

Verification Path

11/29/18 Page 6

VLSI-1 Class Notes

What is a Verification Plan?

A document describing the
methodology, environment,

resources, requirements, priorities
and success criteria of intended

verification activities.

PlansPlans
Processes

Metrics

Implement Closure

Extraction

Prioritization

Requirements
Plans

TimeStart End

Specifications

Strategy

11/29/18 Page 7

ANSI/IEEE Standard 829-1983 for Software Test Documentation

VLSI-1 Class Notes

Context: Strategy

PlansPlans
Processes

Measure

Implement Closure

Extraction

Prioritisation

Requirements
Plans

TimeStart End

Specifications

Strategy

This is how we go about doing verification in general

These are our goals, tools, technologies and processes

11/29/18 Page 8

VLSI-1 Class Notes

Strategy: Tools

Simulators

Emulators
Accelerators

Property Checkers

Linters Manual Review

Simulation Based
Tools

Static Tools

Other Tools Matlab Simulink Excel

Custom

11/29/18 Page 9

VLSI-1 Class Notes

Distributed checkers Off-line checkers

Strategy: Methodology

RandomStimuli

Checking Golden model System models

Assertions Directed

Directed

Testbench UVM Homebrewed

11/29/18 Page 10

VLSI-1 Class Notes

Strategy: Language

SV (design) SV (verification)

SV (assertions)

VHDL Verilog

C/C++

Assembler

SystemC

Perl

11/29/18 Page 11

TCL Python

VLSI-1 Class Notes

Context: Requirements

PlansPlans
Processes

Measure

Implement Closure

Extraction

Prioritisation

Requirements
Plans

TimeStart End

Specifications

Strategy

This is what we need to verify in a particular design

These are the features we need to hit and how important they are

11/29/18 Page 12

VLSI-1 Class Notes

Requirements: Extraction

Identify your sources of information

Decompose your design into
manageable blocks

Extract requirements

11/29/18 Page 13

VLSI-1 Class Notes

Requirements: Sources of Information

§ Where should you go to get your requirements?

§ Functional specification is the obvious choice
– although be aware that the required information for one feature might

come from several places

§ In theory, it contains all you need

Functional Specification

11/29/18 Page 14

VLSI-1 Class Notes

Design specification

Compliance Specification

Requirements: Sources of Information

§ How many functional specifications though?

Base Functional Specification

Delta Functional Specification

Referenced documents

Conversations

11/29/18 Page 15

VLSI-1 Class Notes

Requirements: Sources of Information

§ What about implementation details?
– the functional specification might not mention the architecture used in a

block, but it still has to be verified to check corner case handling
• FIFO full flags
• Counter wraparound
• Local shared buffer arbiters

Page 1611/29/18

Implementation Specification

Code review

VLSI-1 Class Notes

Requirements: Block Level

Major and Minor Modes
of operation

Exception handling

Interfaces

Registers

Interrupts

The specification headers, module key features,
register fields, configuration parameters

Interrupts, status bits, illegal inputs, “what if”
questions

Pin list, module key features, timing diagrams

The register map

Implementation

The register map, pin list, the module key features,
status bits

The implementation specification, the RTL, the
designer

Possible subsections Useful places to look

11/29/18 Page 17

VLSI-1 Class Notes

Requirements: Implementation

§ Finite State Machines
– encoding (one hot or only legal

values)
– enters reset state on reset

§ Interfaces
– usage assumptions not violated
– outputs become disabled during

reset

§ FIFOs and stacks
– full and empty flags used

correctly

§ Registers
– Read-only bits can never be

written
– reset to defaults
– updated correctly from bus

§ Arithmetic under- or over-flow

§ Signals remain mutually
exclusive

§ Clock synchronization blocks

11/29/18

VLSI-1 Class Notes

Requirements: Read Between the Lines

§ The specification will not have all the details
– learn to read between the lines
– what wasn’t mentioned that should have been?
– what feasible error conditions should be dealt with?

§ “When the transfer is completed, the DMA engine will assert an
interrupt (if enabled) or go to the idle state. If the auto restart bit
(ARS) is set, it immediately restarts the operation”

§ What if interrupts are enabled and ARS is set?
– actually, the specification doesn’t mention if the interrupt needs to be

cleared to start a channel
– experience says that this might be a reasonable thing to do

11/29/18 Page 19

VLSI-1 Class Notes

Context: Plans

PlansPlans
Processes

Measure

Implement Closure

Extraction

Prioritisation

Requirements
Plans

TimeStart End

Specifications

Strategy

This is exactly how we will verify a particular design

The plan(s) contain the specific steps

11/29/18 Page 20

VLSI-1 Class Notes

Plans: Verification Requirements

Testbench/ Nest

Requirements

Behavioral
Analysis

Derive required
behavior from

the requirements

DUT
Mapping

11/29/18 Page 21

VLSI-1 Class Notes

Plans: What is a verification requirement?

§ A verification requirement is the systematic set of checks,
coverage points and stimuli corresponding to a specific design
requirement

§ It’s something about the design that you want to stimulate, check
and cover before you’d be happy saying that the design has been
verified

§ Extracted before verification planning or implementation begins

Page 2211/29/18

VLSI-1 Class Notes

Plans: Example

The serial receive block has four buffers. The block checks for
the parity and validity of the data frame on the RXD input and
then writes correct data into its buffers.

Requirement

Functional
CoverageX

Using
Data = 5 bits,
Data = 6 bits,
Data = 7 bits,
Data = 8 bits

Using
Parity = OFF,
Parity = EVEN,
Parity = ODD

Using
Stop Bits = 1,
Stop Bits = 2X

Check that RXD data is being properly written into buffers
taking into consideration the parity and validity of the data.

Check

Data[1:8] Parity[1:3] Stop Bits[1:2] Stall[0:10] Error[0:1] Constraints

11/29/18 Page 23

VLSI-1 Class Notes

Plans: Behavioral Analysis

§ To map each requirement to a checker or an assertion
– and to understand what is required from the testbench to do so

§ To map each requirement to functional coverage
– and to understand what is required from the testbench to do so

§ To identify extra testbenches, actors or components that are
required

§ To cross link everything to provide traceability from the
functional specification to the verification code

11/29/18 Page 24

VLSI-1 Class Notes

Plans: Behavioral Analysis

Refine until the level of detail is correct

Analyze to determine testbench requirements

Decide on implementation approach

For each requirement

11/29/18 Page 25

VLSI-1 Class Notes

Plans: Refining your Requirements

§ Get the level right
– too high and you don’t really know what you’re checking
– too low and you’re checking things that the specification didn’t specify, or

maintaining too many requirements

§ Reword to make explicit
– “Check that the arbiter selects the correct channel”
– instead of “Check that the arbiter works”
– or “channel arbitration”

§ Accuracy
– avoid cycle accurate checks
– avoid verifying what you don’t have to

11/29/18 Page 26

VLSI-1 Class Notes

Plans: What level?

Check that the DMA works

Check that data is transferred correctly by the DMA

Check that data is fetched from the correct source
address

Check that data is fetched from the specified source
address (for the first transfer in a block) and then
from incremented addresses for subsequent
transfers in a block when INC_SRC is 1

Check that data is sent to the correct destination
address

Check that the sent data is equal to the fetched data

Requirement

ü

ü

ü

û

û

û

11/29/18 Page 27

VLSI-1 Class Notes

Plans: Verification Requirements to Testbench Arch.

§ To determine a general structure for a testbench that can
exercise this DUT

§ To build a list of verification components and actors that you will
need

Page 2811/29/18

TLM
DUT

Scoreboard

Stimulus

CoverageTest
Controller

SlaveRTL
DUT

Driver

Monitor

Responder

Monitor

RTL Transaction
Level

Abstraction
Conversion

VLSI-1 Class Notes

Plans: Finding Actors

§ Start with a block diagram of the DUT in a system
– the DUT could be the entire design, a cluster or a single block

§ You will need an “External” Actor to interact with each DUT
interface

§ If you plan to just do black box verification, then these are
probably all the actors you need

§ If you are doing white or grey box testing, then you will need
actors for interfaces within the DUT

Page 2911/29/18

VLSI-1 Class Notes

Plans: External Actors

Wishbone
Slave

Wishbone
Master

Wishbone
Master

Wishbone
Slave

Wishbone
Slave

Interrupt
Handler

Interrupts

Register Handler

Configuration
Interface

Wishbone
Master

11/29/18 Page 30

VLSI-1 Class Notes

Plans: Internal Actors

Interrupts

Wishbone
Slave

Wishbone
Master 1

Wishbone
Master 2

Arbiter

Wishbone
Slave

Wishbone
Master

Wishbone
Master

Interrupts

Arbiter

11/29/18 Page 31

VLSI-1 Class Notes

Plans: TLM Data Structures

§ For each actor, think about the transactions that will pass
between
– it and the DUT
– it and other actors
– its internal components

Address
Data
Burst Type
Size

Address[]
Data[]

DMA mode
Channel Number
Priority
Src Address
Dst Address
Size

Status
Channel Number
Priority
#Bytes so far
#Bytes to go
Data[]

Bus
Transaction

Register
Transaction

Configuration
Transaction

Monitor
Transaction

11/29/18 Page 32

VLSI-1 Class Notes

Plans: Mapping Deliverables

§ You should now have a good idea of the Actors you need
– and therefore the sub-components per actor
– and the transactions you need

§ …and a rough idea about the topology of the testbench

§ The detail is missing though, and for that, you need to map
results of behavioural analysis onto actors

11/29/18 Page 33

VLSI-1 Class Notes

Plans: Implementation

For each requirement, ranked by
importance

Implement functional coverage
for it

…and any required
monitors, etc

Write the check and stimuli for it

For each requirement, ranked by
importance

Once all checks in your
“important list” are

implemented

11/29/18 Page 34

VLSI-1 Class Notes

Context: Implementation

PlansPlans
Processes

Measure

Closure

Extraction

Prioritisation

Requirements
Plans

TimeStart End

Specifications

Strategy

This is the testbench implementation we will use to verify the design

The implementation provides the means by which we will stimulate,
check and cover the design

Implement

11/29/18 Page 35

VLSI-1 Class Notes

Implement: Testbench Architecture

11/29/18 Page 36

TLM DUT

Scoreboard

Stimulus

CoverageTest Controller

SlaveRTL
DUT

Driver

Monitor

Responder

Monitor

RTL Transaction
Level

Abstraction
Conversion

VLSI-1 Class Notes

Implement: HVL Base Classes

UVM Layering

DUT

Driver
Transactors:

Timed
Transactions

Stimulus
Generators

AXI r0p0+
Slave

AXI r0p0+
Master

Environment:
Untimed

Or
Partially Timed

Analysis:
Untimed

Transactions

Control:
Untimed

Transactions

Constraints/
Scenarios

ResponderMonitor

Coverage
Groups

Performance
Analyzers

Assertions

Configuration

Scoreboards Reference
Models

UCDBUCDB

C
hannel
C
hannel

C
hannel
C
hannel

Binding
Binding

11/29/18 Page 37

ü Base class for messaging
ü Base class for basic transactions
ü Base class for channels
ü Base class for burst transactions
ü Base class for Transactors
ü Base class for drivers
ü Base class for monitors
ü Base class for memory management
ü Base class for scenario generation

UVM Base Classes

VLSI-1 Class Notes

Implement: Random Generation Engine

Config

CFG1 CFG2 CFG3

TRAFFIC

Normal Long Short ERR

Diagnostic

FLOW

MODEL:

Captures
the flow
of the
chip

Generation

Engine

Const/Code

class rand_word {
...
constraint interesting_values;
constraint address_0_is_directed;

function new() {
address_0_is_directed.constraint_mode(OFF);

endfunction
endclass

class generator;
rand_word data;

...
endclass

Data
Model

11/29/18 Page 38

VLSI-1 Class Notes

Implement: Random Generation Engine

module GenEng ();
initial
forever begin : loop
randsequence (main)
main : cfg, traffic, diagnostic;
cfg : {
randcase
cfg1: …;
cfg2: …;
cfg3: …;
…

endcase
}; // cfg
traffic : {
fork
…

join none
}; // traffic
diagnostic : {…};

endsequence
end // forever

end /init
endmodule

Generation

Engine

Const/CodeC
on

tr
ol

 M
od

el

class rand_word {
...
constraint interesting_values;
constraint address_0_is_directed;

function new() {
address_0_is_directed.constraint_mode(OFF);

endfunction
endclass

class generator;
rand_word data;

...
endclass

Data
Model

11/29/18 Page 39

VLSI-1 Class Notes

Implement: Scoreboard

§ Transfer Function
– Available or Build?
– Language (C, Hvl)?
– Who Maintains?
– Cycle Accurate?
– Typical?
– Interesting?

• Ordering

Scoreboard

LOG

BFMGenerator Monitor

Transfer
Function

Data
Structure Compare

DUT

11/29/18 Page 40

VLSI-1 Class Notes

Implement: Scoreboard Architecture

§ One big scoreboard that is a model of the entire chip
§ Divide up into smaller, easier scoreboards daisy-chained together

SB
TF DS CMP

SB
TF DS CMP

SB
TF DS CMP

BFMGenerator MonitorDUT BLK BLK BLK

11/29/18 Page 41

VLSI-1 Class Notes

42

Implement: Coverage

Channel
Priorities

Channel 0

Channel 30

Priority
Arbiter

DMA
Engine

Bus
Interface 0

Bus
Interface 1

M
U
X

interrupt

handshake

42

Testbench Monitors

Covering Stimulus & Response

11/29/18 Page 42

VLSI-1 Class Notes

43

Implement: Coverage

Channel
Priorities

Channel 0

Channel 30

Priority
Arbiter

DMA
Engine

Bus
Interface 0

Bus
Interface 1

M
U
X

interrupt

handshake

43

Testbench Monitors

Covering Stimulus & Response

���������� ���������������
�������������������� ������������ �� ������������������
������������������ ������������ �� ����������������
������������������� ������������ �� �����������������
������������� ������������ �� �����������
�������������� ������������ �� ������������
��������������� ������������ �� �������������
��������������� ������������ �� �������������
������������������ ������������ �� ����������������

��������������������������� ��

�����������������������������������
 ������

�������� ����������������

11/29/18 Page 43

VLSI-1 Class Notes

44

Implement: Coverage Model

Channel
Priorities

Channel 0

Channel 30

Priority
Arbiter

DMA
Engine

Bus
Interface 0

Bus
Interface 1

M
U
X

interrupt

handshake

44

Testbench Monitors

Covering Stimulus & Response

SVA
SVA

SVA

CG

SVA

SVA

CG

11/29/18 Page 44

VLSI-1 Class Notes

Context: Closure

PlansPlans
Processes

Measure

Implement Closure

Extraction

Prioritisation

Requirements
Plans

TimeStart End

Specifications

Strategy

This is the mechanics of how we will verify the design

The closure process ensures we move toward tape-out in a methodical way
taking into consideration various metrics.

11/29/18 Page 45

VLSI-1 Class Notes

Closure: Verification Planning Metrics

§ Requirements: DRs & VRs
– Status: Written, Refined, Reviewed, Signed off, Implemented, Covered
– Updated: Changed, Re-Prioritized
– Stuck: Outstanding issues
– Testcases: Total # Directed & Random (# Seeds) Written/Passing/Failing
– Assertion Density

11/29/18 Page 46

VLSI-1 Class Notes

Closure: Testbench Development Metrics

§ Lines of Code
– Estimated/Actual SLOC (S-Curve) vs. Time/Phases/Release
– % Change SLOC (HDL vs. HVL) vs. Time/Phases/Release
– HVL Bugs vs. SLOC vs Time
– HVL Mean Time Between Failure (MTBF)
– Total Cycles per Regression vs. Time
– Cycles per Second (CPS) vs. Release
– Ratio of SLOC to Comment Lines of Code (CLOC)
– Kind of code: Base or Extended, VI or testcase

11/29/18 Page 47

VLSI-1 Class Notes

Closure: Bug Discovery Metrics

§ Table
– Total Test Cases/Seeds
– % testcases Pass/Fail

§ Graph
– HDL Bugs vs. Time

• Total
• By Unit, Subsystem and Chip

– Bug Pipeline vs. Time
– Average Bug Resolution Time (Open to Close)
– HDL Mean Time Between Failure (MTBF)

§ Bug Schema (Historical)
– Type (e.g. Spec, HVL, HDL, Firmware, Software, tool, library, etc.)
– Source (e.g. block, sub-system, chip, prototype, samples, etc.)
– Discovery Method (e.g. visual inspection, assertions, reference model, etc.)
– Stimulation Method (e.g. directed test case, constraint random, irritator, etc.)
– Severity

11/29/18 Page 48

VLSI-1 Class Notes

Closure: Coverage Population Metrics

§ Functional Coverage
– Total Coverage Bins vs. Implemented vs. Populated
– Coverage Groups/Bins vs. Time/Release
– Coverage Properties vs. Time/Release
– Merged By Unit, Subsystem, Chip

§ Structural Coverage
– Code/Line Coverage (Statement, Branch, Condition, Path, Toggle)
– FSM Coverage

11/29/18 Page 49

VLSI-1 Class Notes

Tying it all together

§ Design Specification
– 32-bit general purpose scalar processor
– 5 stage pipeline – can experience stalls in any stage
– 16 x 32-bit general purpose registers
– Register forwarding
– Op-codes

• Register based addition: add src1, src2, dst
• Register based addition with saturation: sadd src1, src2, dst
• nop

– What would be a reasonable data model?
– What would be a reasonable control model?
– What would be a reasonable correctness model?
– What would be a reasonable coverage model?

Page 5011/29/18

