VLSI-1 Course Review

Mark McDermott Electrical and Computer Engineering The University of Texas at Austin

Final Exam

- December 15th, RLP 0.126, 9:00AM 11:59AM
- Topics may include (but are not limited to):
 - D Flip-Flop timing analysis
 - Combinational logic timing analysis
 - Combination logic transistor sizing
 - Circuit optimization and analysis
 - Fault testing
 - State machines, state diagrams, state tables, PLAs
 - Memory design
 - General knowledge questions about transistors, wires, capacitors, power, energy, etc.

Overview

- Combinational logic
- Sequential logic
- Datapath
- Memories
- Scaling

Conservative rules to get you started

Complementary CMOS

Complementary CMOS logic gates

– nMOS pull-down network

- pMOS pull-up network
- a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Example: NAND3

Horizontal N-diffusion and p-diffusion strips

- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- = 32 λ by 40 λ

I-V Characteristics

- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- $Q_{channel} = CV$ • $C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$ • V = V = V = (V = V + (2))

$$V = V_{gc} - V_t = (V_{gs} - V_{ds}/2) - V_t$$

Carrier velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ μ called mobility
- $E = V_{ds}/L$
- Time for carrier to cross channel:
 - -t = L / v

nMOS Linear I-V

Now we know

- How much charge $\mathbf{Q}_{\text{channel}}$ is in the channel
- How much time *t* each carrier takes to cross

$$\begin{split} I_{ds} &= \frac{Q_{\text{channel}}}{t} \\ &= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \\ &= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \qquad \beta = \mu C_{\text{ox}} \frac{W}{L} \end{split}$$

Example

Example: a 0.6 μm process from AMI semiconductor

- t_{ox} = 100 Å
- $\mu = 350 \text{ cm}^2/\text{V*s}$
- $V_t = 0.7 V$
- Plot I_{ds} vs. V_{ds}
 - $-V_{gs} = 0, 1, 2, 3, 4, 5$
 - Use W/L = 4/2 λ

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \bullet 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A / V^2$$

Ideal nMOS I-V Plot

- 180 nm TSMC process
- Ideal Models
 - β = 155(W/L) μA/V²
 - $-V_{t} = 0.4 V$
 - $-V_{DD} = 1.8 V$

Simulated nMOS I-V Plot

- 180 nm TSMC process
- BSIM 3v3 SPICE models
- What differs?
 - Less ON current
 - No square law
 - Current increases in saturation

250 V_{gs} = 1.8 200 $V_{gs} = 1.5$ 150 $V_{gs} = 1.2$ 100 $V_{gs} = 0.9$ 50 $V_{gs} = 0.6$ 0 0.3 0.6 1.2 0.9 1.5 0 $V_{\rm ds}$

 $I_{ds}(\mu A)$

Velocity Saturation

We assumed carrier velocity is proportional to E-field

- $v = \mu E_{lat} = \mu V_{ds}/L$
- At high fields, this ceases to be true
 - Carriers scatter off atoms
 - Velocity reaches v_{sat}
 - Electrons: 6-10 x 10⁶ cm/s
 - Holes: 4-8 x 10⁶ cm/s
 - Better model

Channel Length Modulation

Reverse-biased p-n junctions form a depletion region

- Region between n and p with no carriers
- Width of depletion L_d region grows with reverse bias
- L_{eff} = L L_d
- Shorter L_{eff} gives more current
 - I_{ds} increases with V_{ds}
 - Even in saturation

Body Effect

- V_t: gate voltage necessary to invert channel
- Increases if source voltage increases because source is connected to the channel
- Increase in V_t with V_s is called the *body effect*

OFF Transistor Behavior

- What about current in cutoff?
- Simulated results
- What differs?
 - Current doesn't go to 0 in cutoff

Leakage Sources

Subthreshold conduction

- Transistors can't abruptly turn ON or OFF
- Junction leakage
 - Reverse-biased PN junction diode current
- Gate leakage
 - Tunneling through ultra-thin gate dielectric

Subthreshold leakage is the biggest source in modern transistors

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

Gate Capacitance

Approximate channel as connected to source
 C_{gs} = ε_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W
 C_{permicron} is typically about 2 fF/μm

Diffusion Capacitance

- C_{sb}, C_{db}
- Undesirable, called *parasitic* capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g
 for contacted diff
 - ½ C_g for uncontacted
 - Varies with process

RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

Interconnects

- Chips are mostly made of wires called interconnect
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

Wire Capacitance

Wire has capacitance per unit length

- To neighbors
- To layers above and below
- C_{total} = C_{top} + C_{bot} + 2C_{adj}

Wires are a distributed system

Approximate with lumped element models

3-segment π-model is accurate to 3% in simulation
 L-model needs 100 segments for same accuracy!
 Use single segment π-model for Elmore delay

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive *coupling* or *crosstalk*.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Coupling Waveforms

Simulated coupling for C_{adj} = C_{victim}

Use pass transistors like switches to do logic
Inputs drive diffusion terminals as well as gates

CMOS + Transmission Gates:

- 2-input multiplexer
- Gates should be restoring

Sequencing

Combinational logic

output depends on current inputs

Sequential logic

- output depends on current and previous inputs
- Requires separating previous, current, future
- Called state or tokens
- Ex: FSM, pipeline

Sequencing Overhead

- Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- Inevitably adds some delay to the slow tokens
- Makes circuit slower than just the logic delay
 - Called sequencing overhead
- Some people call this clocking overhead
 - But it applies to asynchronous circuits too
 - Inevitable side effect of maintaining sequence

Sequencing Elements

- Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

Latch Design

Buffered output

+ No backdriving

- Widely used in standard cells
 - + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

Set / Reset

- Set forces output high when enabled
- Flip-flop with asynchronous set and reset

Sequencing Methods

Q

thold

Master-Slave Flip-Flop

What is the SETUP time?

(15ps + 15ps + 15ps + 15ps) - (15ps + 15ps) = 30 ps Input path from D to NMOS Clock Inverters to Slave stage

NOTE: The two inverter delay between the clocks to Master and Slave stages requires that the data is set up to the slave stage (node Y) earlier than to node X in the master stage so that there is not a Clock->Q push-out.

What is the CLOCK – Q Delay

15ps + 15ps + 15ps + 15ps = 60 ps inv inv pass inv

If you use 0ps for the setup time, the Clock-Q delay will be 90ps.

What is the HOLD time?

(15ps + 15ps + 15ps + 15ps + 15ps) - (15ps) = 60 ps Clock inverters on D input
Max-Delay: Flip-Flops

Max Delay: 2-Phase Latches

Max Delay: Pulsed Latches

Min-Delay: Flip-Flops

Sequencing Methods

- Flip-flops
- 2-Phase Latches
- Pulsed Latches

Flip-Flop Summary

- Flip-Flops:
 - Very easy to use, supported by all tools
- 2-Phase Transparent Latches:
 - Lots of skew tolerance and time borrowing
- Pulsed Latches:
 - Fast, some skew tol & borrow, hold time risk

	Sequencing overhead $(T_c - t_{pd})$	Minimum logic delay	Time borrowing
Flip-Flops	$t_{pcq} + t_{setup} + t_{skew}$	$t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$	0
Two-Phase Transparent Latches	2t _{pdq}	$t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$ in each half-cycle	$\frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$
Pulsed Latches	$\max\left(t_{pdq}, t_{pcq} + t_{setup} - t_{pw} + t_{skew}\right)$	$t_{\rm hold} - t_{ccq} + t_{pw} + t_{\rm skew}$	$t_{pw} - (t_{setup} + t_{skew})$

ABC

A – MAJ C – J

Brute force implementation from eqns

$$S = A \oplus B \oplus C$$
$$C_{out} = MAJ(A, B, C)$$

S

Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

Tree Adder

If lookahead is good, lookahead across lookahead!

- Recursive lookahead gives O(log N) delay
- Many variations on tree adders

- 2ⁿ words of 2^m bits each
- If n >> m, fold by 2^k into fewer rows of more columns

Good regularity – easy to design
Very high density if good cells are used

6T SRAM Cell

Cell size accounts for most of array size

Reduce cell size at expense of complexity

6T SRAM Cell

- Used in most commercial chips
- Data stored in cross-coupled inverters
- Read:
 - Precharge bit, bit_b
 - Raise wordline
- Write:
 - Drive data onto bit, bit_b
 - Raise wordline

- High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell

Decoders

n:2ⁿ decoder consists of 2ⁿ n-input AND gates

- One needed for each row of memory
- Build AND from NAND or NOR gates
- Static CMOS

Pseudo-nMOS

Decoders must be pitch-matched to SRAM cell

Sense Amplifiers

Bitlines have many cells attached

- Ex: 32-kbit SRAM has 256 rows x 128 cols
- 128 cells on each bitline

• $t_{pd} \propto$ (C/I) ΔV

- Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
- Discharged slowly through small transistors (small I)

• Sense amplifiers are triggered on small voltage swing (reduce ΔV)

CAMs

Extension of ordinary memory (e.g. SRAM)

- Read and write memory as usual
- Also *match* to see which words contain a *key*

10T CAM Cell

Add four match transistors to 6T SRAM

- 56 x 43 λ unit cell

CAM Cell Operation

- Read and write like ordinary SRAM
- For matching:
 - Leave wordline low
 - Precharge matchlines
 - Place key on bitlines
 - Matchlines evaluate
- Miss line
 - Pseudo-nMOS NOR of match lines
 - Goes high if no words match

ROM Example

4-word x 6-bit ROM

- Represented with dot diagram
- Dots indicate 1's in ROM

- Word 0: 010101
- Word 1: 011001
- Word 2: 100101
- Word 3: 101010

Looks like 6 4-input pseudo-nMOS NORs

PLAs

- A Programmable Logic Array performs any function in sum-of-products form.
- *Literals*: inputs & complements
- **Products / Minterms: AND of literals**
- **Outputs: OR of Minterms**

PLA Schematic & Layout

Low Power Design

Reduce dynamic power

- $-\alpha$: clock gating, sleep mode
- C: small transistors (esp. on clock), short wires
- V_{DD}: lowest suitable voltage
- f: lowest suitable frequency
- Reduce static power
 - Selectively use ratioed circuits
 - Selectively use low V_t devices
 - Leakage reduction:

stacked devices, body bias, low temperature

Chip-to-Package Bonding

Traditionally, chip is surrounded by pad frame

- Metal pads on 100 200 μm pitch
- Gold bond wires attach pads to package
- Lead frame distributes signals in package
- Metal heat spreader helps with cooling

Bidirectional Pads

- Combine input and output pad
- Need tristate driver on output
 - Use enable signal to set direction
 - Optimized tristate avoids huge series transistors

Device Scaling

Table 4.15 Influence of scaling on MOS device characteristics					
Parameter	Sensitivity	Constant Field	Lateral		
Scaling Parameters					
Length: L		1/S	1/S		
Width: W		1/S	1		
Gate oxide thickness: t_{ox}		1/S	1		
Supply voltage: V_{DD}		1/S	1		
Threshold voltage: V_{tn} , V_{tp}		1/S	1		
Substrate doping: N_A		S	1		
Device C	haracteristics				
β	W 1	S	S		
	$L t_{\rm ox}$				
Current: I _{ds}	$\beta \left(V_{DD} - V_t \right)^2$	1/S	S		
Resistance: <i>R</i>	$rac{V_{DD}}{I_{ds}}$	1	1/8		
Gate capacitance: C	$\frac{WL}{t_{\rm ox}}$	1/S	1/S		
Gate delay: τ	RC	1/S	$1/S^{2}$		
Clock frequency: <i>f</i>	1/τ	S	S^2		
Dynamic power dissipation (per gate): P	CV^2f	$1/S^{2}$	S		
Chip area: A		$1/S^{2}$	1		
Power density	P/A	1	S		
Current density	I_{ds}/A	S	S		

Interconnect Delay

Table 4.16 Influence of scaling on interconnect characteristics						
Parameter	Sensitivity	Reduced Thickness	Constant Thickness			
Scaling Parameters						
Width: w		1/	/S			
Spacing: s		1/	/S			
Thickness: t		1/S	1			
Interlayer oxide height: <i>h</i>		1/S				
Local/Scaled Interconnect Characteristics						
Length: /		1/S				
Unrepeated wire RC delay	$l^2 t_{wu}$	1	between 1/ <i>S</i> , 1			
Repeated wire delay	lt _{wr}	$\sqrt{1/S}$	between 1/ <i>S</i> , √1 / <i>S</i>			
Global Interconnect Characteristics						
Length: /		1	D,			
Unrepeated wire RC delay	$l^2 t_{wu}$	$S^2D_c^2$	between SD ² , S ² D ²			
Repeated wire delay	lt _{wr}	$D_c \sqrt{S}$	between D_c , $D_c \sqrt{S}$			

Energy and Power

- Energy is drawn from a voltage source
- Instantaneous Power: $P(t) = i_{DD}(t)V_{DD}$

• Energy:
$$E = \int_{0}^{T} P(t) dt = \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

• Average Power:
$$P_{avg} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

Dynamic Power

- Dynamic power required to charge and discharge load capacitances when transistors switch
- One cycle involves a rising and falling output
- On rising output, charge Q = CV_{DD} is required
- On falling output, charge is dumped to GND
- This repeats T*f_{sw} times
 over an interval of T

Dynamic Power (Cont.)

$$P_{\text{dynamic}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} [Tf_{\text{sw}} CV_{DD}]$$

$$= CV_{DD}^{2} f_{\text{sw}}$$

Activity Factor

- Suppose the system clock frequency = f
- Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
 - Dynamic gates:
 - Switch either 0 or 2 times per cycle, $\alpha = 1$
 - Static gates:
 - Depends on the type of gate and logic network, but typically α = 0.1 0.2

Dynamic power:
$$P_{dyn} = \alpha^* C * V_{dd} * \Delta V * freq$$

- Let P_i = Prob(node i = 1)
 - $-\overline{P}_i = 1-P_i$
- $\alpha_i = \overline{P}_i * P_i$
- Completely random data has P = 0.5 and α = 0.25
- Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically $\alpha \approx 0.1$

Gate	Py
AND2	$P_A P_B$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_A \overline{P}_B$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\mathcal{A}}\overline{P}_B$
XOR2	$P_{\mathcal{A}}\overline{P}_{\mathcal{B}}+\overline{P}_{\mathcal{A}}P_{\mathcal{B}}$

Switching Probability Example

- A 4-input AND is built out of two levels of gates
- Estimate the activity factor at each node if the inputs have P = 0.5

How does a chip fail?

- Need "fault model"
- Usually failures are shorts between two conductors or opens in a conductor
- This can cause very complicated behavior

A simpler model: *Stuck-At*

- Assume all failures cause nodes to be "stuck-at" 0 or 1, i.e. shorted to GND or V_{DD}
- Not quite true, but works well in practice

⁷² **Examples**

Observability & Controllability

- Observability: ease of observing a node by watching external output pins of the chip
- Controllability: ease of forcing a node to 0 or 1 by driving input pins of the chip
- Combinational logic is usually easy to observe and control
- Finite state machines can be very difficult, requiring many cycles to enter desired state
 - Especially if state transition diagram is not known to the test engineer

- Manufacturing test ideally would check every node in the circuit to prove it is not stuck.
- Apply the smallest sequence of test vectors necessary to prove each node is not stuck.
- Good observability and controllability reduces number of test vectors required for manufacturing test.
 - Reduces the cost of testing
 - Motivates design-for-test

Test Example

	SA1	SA0	
A 3	{0110}	{1110}	
A 2	{1010}	{1110}	A_3 n1 A_2 n2
A 1	{0100}	{0110}	∧
A 0	{0110}	{0111}	A_1 A_0
■ n1	{1110}	{0110}	
■ n2	{0110}	{0100}	
■ n3	{0101}	{0110}	
- Y	{0110}	{1110}	

Minimum set: {0100, 0101, 0110, 0111, 1010, 1110}