

Lecture 6: Non-ideal (real) transistors

Mark McDermott

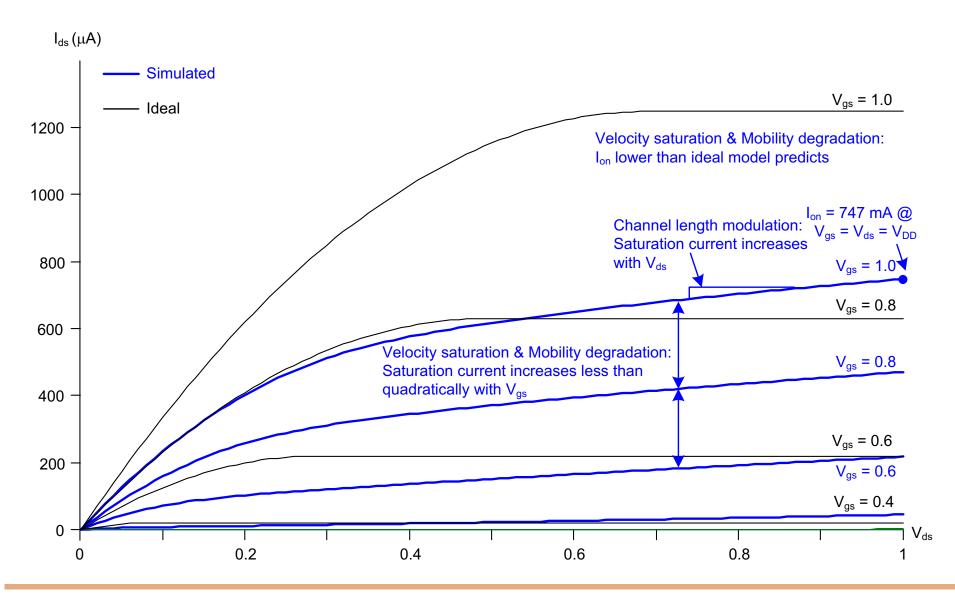
Electrical and Computer Engineering The University of Texas at Austin

9/18/18 VLSI-1 Class Notes

Agenda

- Transistor I-V Review
- Non-ideal Transistor Behavior
 - High Field Effects
 - Mobility Degradation
 - Velocity Saturation
 - Channel Length Modulation
 - Threshold Voltage Effects
 - Body Effect
 - Drain-Induced Barrier Lowering
 - Short Channel Effect
 - Leakage
 - Subthreshold Leakage
 - Gate Leakage
 - Junction Leakage
- Process and Environmental Variations

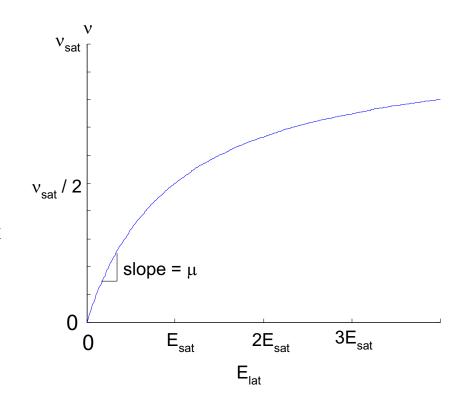
Ideal Transistor I-V


Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

65 nm IBM process, $V_{DD} = 1.0 \text{ V}$

Velocity Saturation

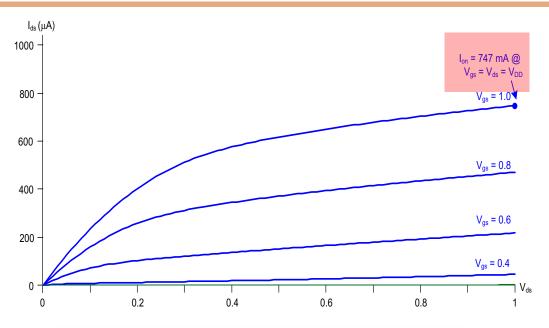


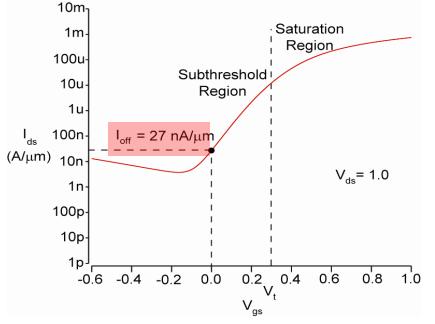
- We assumed carrier velocity / E-field
 - $v = \mu E_{lat} = \mu V_{ds}/L$
- At high fields, this ceases to be true
 - Carriers scatter off atoms
 - Velocity reaches v_{sat}
 - Electrons: 6-10 x 10⁶ cm/s
 - Holes: 4-8 x 10⁶ cm/s

Better model is:

9/18/18

$$v = \frac{\mu E_{\text{lat}}}{1 + \frac{E_{\text{lat}}}{E_{\text{sat}}}} \Rightarrow v_{\text{sat}} = \mu E_{\text{sat}}$$




ON and OFF Current

I_{on} = I_{ds} @ V_{gs} = V_{ds} = V_{DD}
Saturation

I_{off} = I_{ds} @ V_{gs} = 0, V_{ds} = V_{DD}
Cutoff

Electric Fields Effects

- Vertical electric field: E_{vert} = Vgs / tox
 - Attracts carriers into channel
 - **−** Long channel: $Q_{channel} \propto E_{vert}$
- Lateral electric field: E_{lat} = Vds / L
 - Accelerates carriers from drain to source
 - Long channel: $v = \mu E_{lat}$

Mobility Degradation

- High E_{vert} effectively reduces mobility
 - Collisions with oxide interface

$$\mu_{\text{eff}-n} = \frac{540 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}\right)^{1.85}}$$

$$\mu_{\text{eff}-p} = \frac{185 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \frac{\left| V_{gs} + 1.5 V_t \right|}{0.338 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}}$$

Velocity Saturation


At high E_{lat}, carrier velocity rolls off

- Carriers scatter off atoms in silicon lattice
- Velocity reaches v_{sat}
 - Electrons: 10⁷ cm/s
 - Holes: 8 x 10⁶ cm/s
- Better model

$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{E} & E < E_c \\ 1 + \frac{E}{E_c} & E \ge E_c \end{cases}$$

where, by continuity, the critical electric field is

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

Velocity Saturation I-V Effects

Ideal transistor ON current increases with V_{DD}²

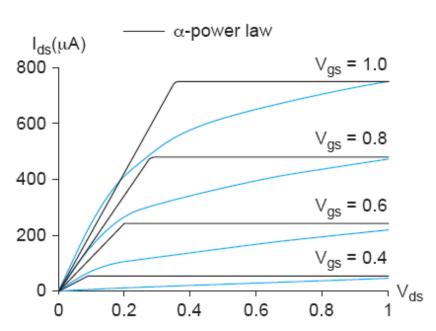
$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_{t})^{2}}{2} = \frac{\beta}{2} (V_{gs} - V_{t})^{2}$$

Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{ox}W(V_{gs} - V_t)v_{max}$$

- Real transistors are partially velocity saturated
 - Approximate with α -power law model
 - I_{ds} \propto V_{DD} $^{\alpha}$
 - $-1 < \alpha < 2$ determined empirically

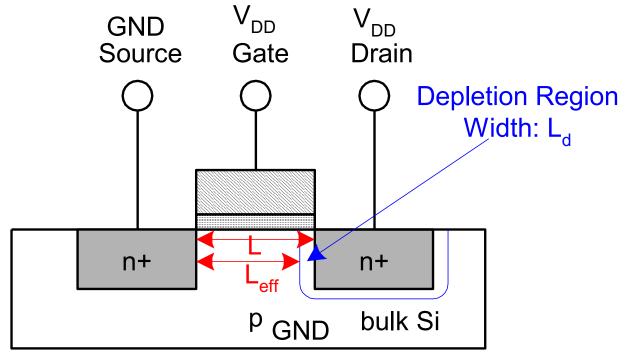
α-Power Model


$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$I_{dsat} = P_c \frac{\beta}{2} \left(V_{gs} - V_t \right)^{\alpha}$$

$$V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$$

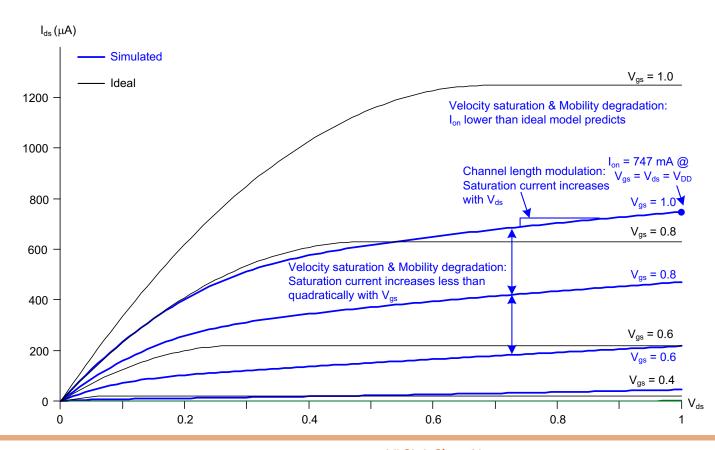
where α , βP_c , and P_v are empirically derived


—— Simulated

UTEECE

Channel Length Modulation

- Reverse-biased p-n junctions form a depletion region
 - Region between n and p with no carriers
 - Width of depletion L_d region grows with reverse bias
 - $-L_{eff} = L L_{d}$
- Shorter L_{eff} = more current
 - I_{ds} increases with V_{ds}
 - Even in saturation



Channel Length Modulation I-V Curve

- λ = channel length modulation coefficient
 - Empirically fit to I-V characteristics

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

UTEECE

Threshold Voltage Effects

- Vt is Vgs for which the channel starts to invert
- Ideal models assumed Vt is constant
- Really depends (weakly) on almost everything else:
 - Body voltage: Body Effect
 - Drain voltage: Drain-Induced Barrier Lowering
 - Channel length: Short Channel Effect

Body Effect

- Body is a fourth transistor terminal
- V_{sb} affects the charge required to invert the channel
 - Increasing V_s or decreasing V_b increases V_t

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)$$

• ϕ_s = surface potential at threshold

$$\phi_s = 2v_T \ln \frac{N_A}{n_i}$$

- Depends on doping level N_A
- And intrinsic carrier concentration n_i
- γ = body effect coefficient

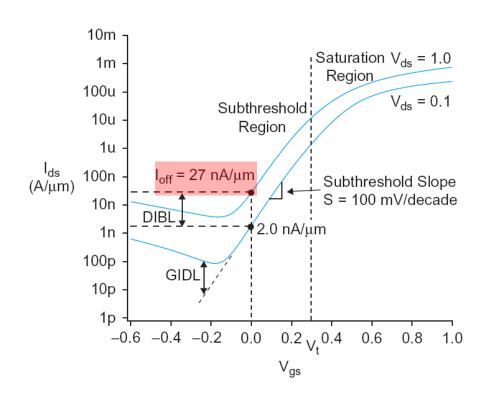
$$\gamma = \frac{t_{\text{ox}}}{\varepsilon_{\text{ox}}} \sqrt{2q\varepsilon_{\text{si}}N_A} = \frac{\sqrt{2q\varepsilon_{\text{si}}N_A}}{C_{\text{ox}}}$$

Body Effect (Cont)

For small source-to-body voltage, treat as linear

$$V_t = V_{t0} + k_{\gamma} V_{sb}$$

$$k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{q\varepsilon_{si}N_A}{v_T \ln \frac{N_A}{n_i}}}}{2C_{ox}}$$


Electric field from drain affects channel

More pronounced in small transistors where the drain is closer to

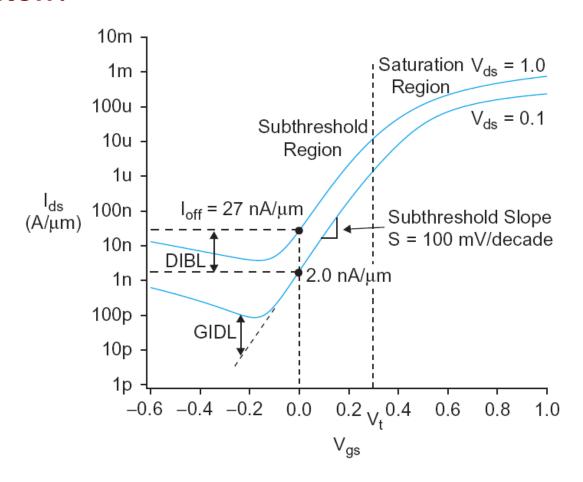
the channel

- Drain-Induced Barrier Lowering
 - Drain voltage also affect Vt

$$V_t' = V_t - \eta V_{ds}$$

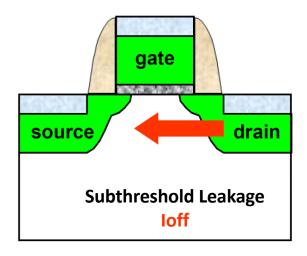
High drain voltage causes current to increase.

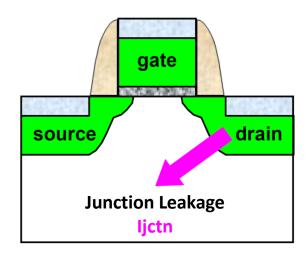
Short Channel Effect

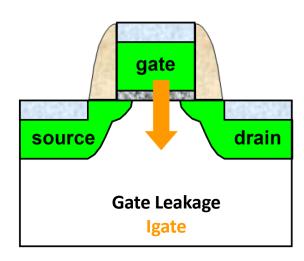


- In small transistors, source/drain depletion regions extend into the channel
 - Impacts the amount of charge required to invert the channel
 - And thus makes Vt a function of channel length
- Short channel effect: Vt increases with L
 - Some processes exhibit a reverse short channel effect in which Vt decreases with L

Leakage


- What about current in cutoff?
- Simulated results
- What differs?Current doesn't go to 0 in cutoff

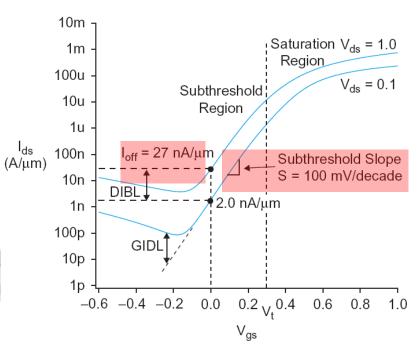



Leakage Sources

- Subthreshold conduction
 - Transistors don't turn completely OFF
- Junction leakage
 - Reverse-biased PN junction diode current
- Gate leakage
 - Tunneling through ultra-thin gate dielectric

Subthreshold leakage is the biggest source in modern transistors

Subthreshold Leakage



Subthreshold leakage exponential with V_{gs}

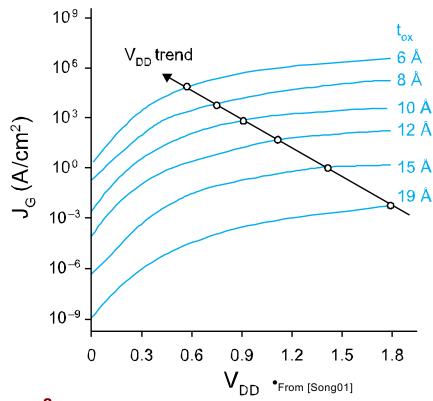
$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_{\gamma} V_{sb}}{n v_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right)$$

- n is process dependent
 - typically 1.3-1.7
- Rewrite relative to I_{off} on log scale

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta \left(V_{ds} - V_{dd}\right) - k\gamma V_{sb}}{S}} \left(1 - e^{\frac{-V_{ds}}{v_t}}\right)$$

S ≈ 100 mV/decade @ room temperature

$$S = \left[\frac{d\left(\log_{10} I_{ds}\right)}{dV_{gs}}\right]^{-1} = nv_T \ln 10$$

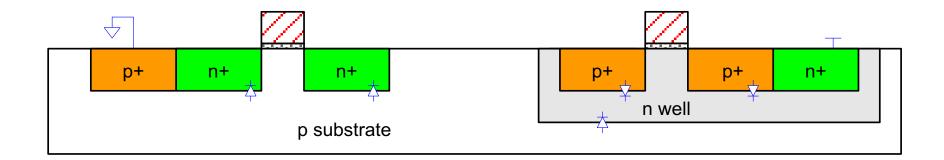

Gate Leakage

- Carriers tunnel thorough very thin gate oxides
- Exponentially sensitive to tox and VDD

$$I_{\text{gate}} = W\!A \! \left(\frac{V_{D\!D}}{t_{\text{ox}}} \right)^{\! 2} \mathrm{e}^{-B \frac{t_{\text{ox}}}{V_{D\!D}}}$$

- A and B are tech constants
- Greater for electrons
 - nMOS gates leak more

- Negligible for older processes (tox > 20 Å)
- Critically important at 65 nm and below (tox ≈ 10.5 Å)

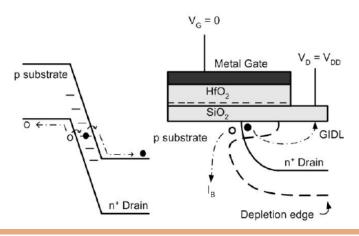

Junction Leakage

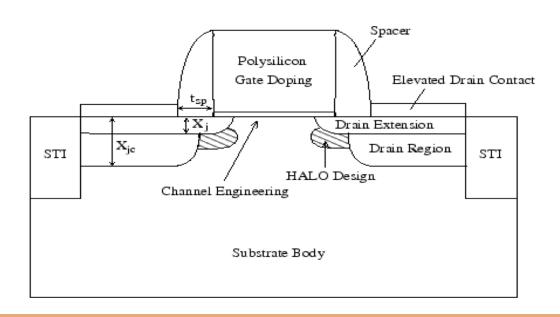
- Reverse-biased p-n junctions have some leakage
 - Ordinary diode leakage
 - Band-to-band tunneling (BTBT)
 - Gate-induced drain leakage (GIDL)

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

- At any significant negative diode voltage, I_D = -I_s
- I_s depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically < 1 fA/mm2 for > 60nm technologies

Band-to-Band Tunneling



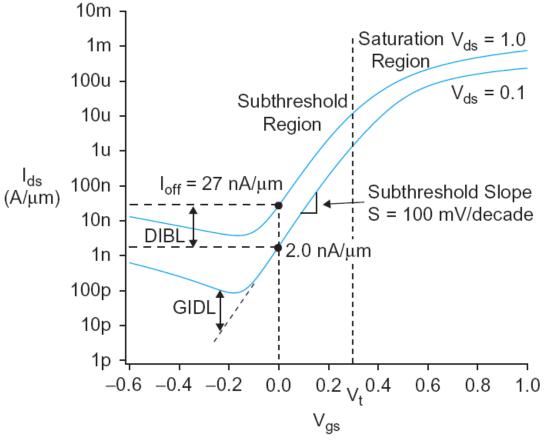

- Tunneling across heavily doped p-n junctions
 - Especially sidewall between drain & channel when halo doping is used to increase V_t
- Increases junction leakage to significant levels

$$I_{BTBT} = WX_j A \frac{E_j}{E_g^{0.5}} V_{dd} e^{-B \frac{E_g^{1.5}}{E_j}}$$

$$I_{BTBT} = WX_j A \frac{E_j}{E_g^{0.5}} V_{dd} \, \mathrm{e}^{-B \frac{E_g^{1.5}}{E_j}} \qquad \qquad E_j = \sqrt{\frac{2 \mathrm{q} N_{halo} N_{sd}}{\varepsilon \left(N_{halo} + N_{sd}\right)}} \bigg(V_{DD} + v_T \ln \frac{N_{halo} N_{sd}}{n_i^2} \bigg)$$

- X_i: sidewall junction depth
- E_g: bandgap voltage
- A, B: tech constants

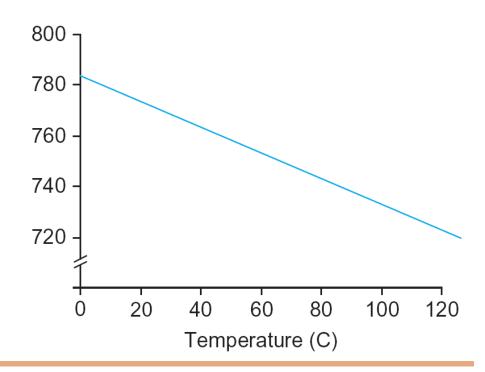




- Occurs at overlap between gate and drain
 - Most pronounced when drain is at V_{DD} , gate is at a negative voltage

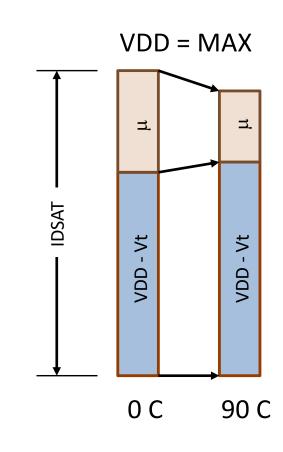
Negates efforts to reduce subthreshold leakage using a negative gate voltage

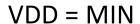


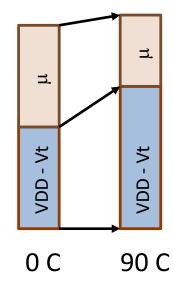


Temperature Sensitivity

- Increasing temperature
 - Reduces mobility
 - Reduces Vt
- ION decreases with temperature
- IOFF increases with temperature






Reverse Temperature Effect

 $IDSAT = \mu * W * (VDD - Vt)^{\alpha}$

OBSERVATIONS:

Mobility (μ) and **Vt** both drop at high temperature.

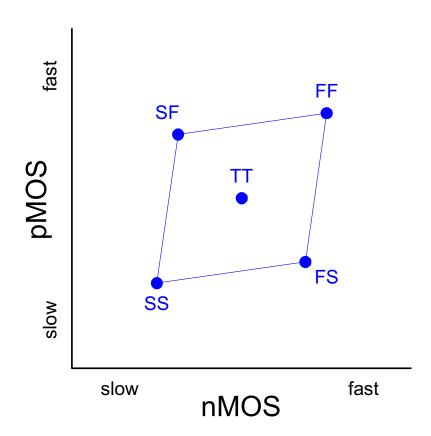
The (VDD-Vt) quantity increases at high temperature, but it is not enough to compensate for the μ drop; as a result, IDSAT drops for high VDD values.

The (VDD-Vt) quantity increases at a faster rate for low VDD; it is enough to compensate the μ drop. As a result, IDSAT increases for low VDD and high temperatures; this is called the REVERSE TEMPERATURE EFFECT.

So What?

- So what if transistors are not ideal?
 - They still behave like switches.
- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation

Process Corners



- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corners with 3 letters (T, F, S) typical, fast, slow
 - Transistor speed (NMOS, PMOS)
 - Voltage
 - Temperature

Parameter Variation

- Transistors have uncertainty in parameters
 - Process: Leff, Vt, tox of nMOS and pMOS
 - Vary around typical (T) values
- Fast (F)
 - Leff: short
 - Vt: low
 - tox: thin
- Slow (S): opposite
- Not all parameters are independent for nMOS and pMOS

VDD and Temp also vary in time and space

Fast corner:

– VDD: high

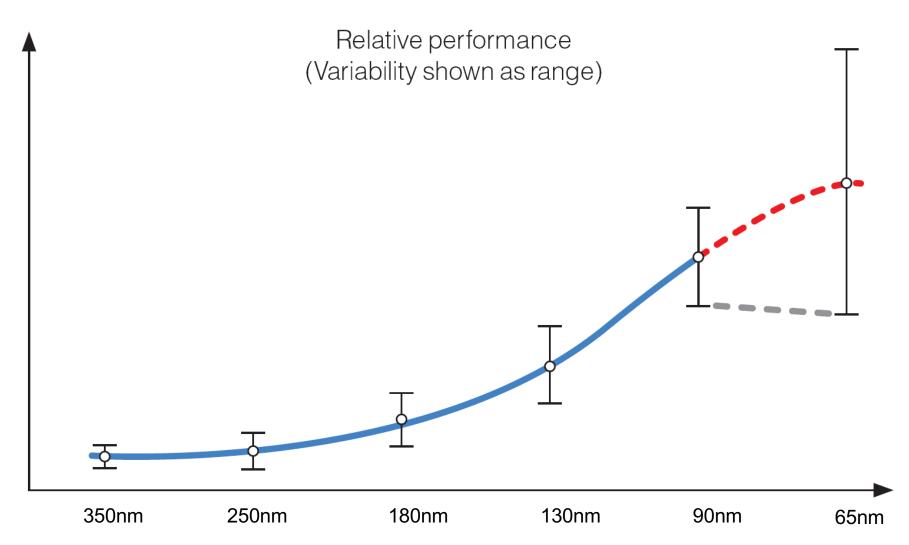
– Temp: low

Corner	Voltage	Temperature	
F	1.98	0 C	
Т	1.8	70 C	
S	1.62	125 C	

Important Corners

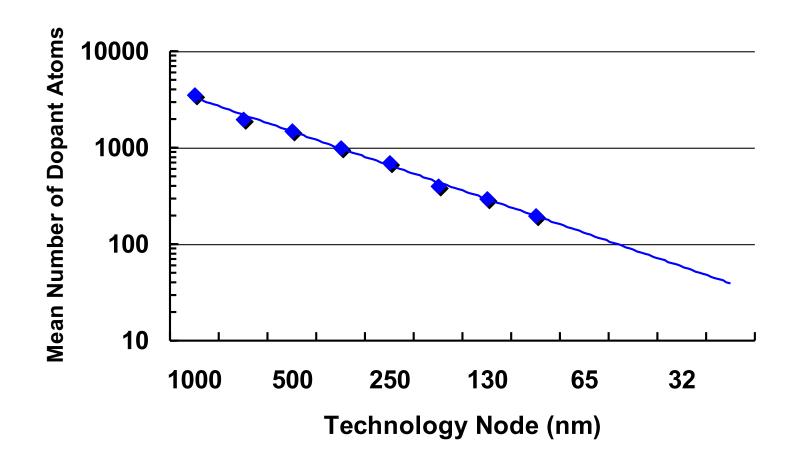
Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthreshold leakage	F	F	F	S

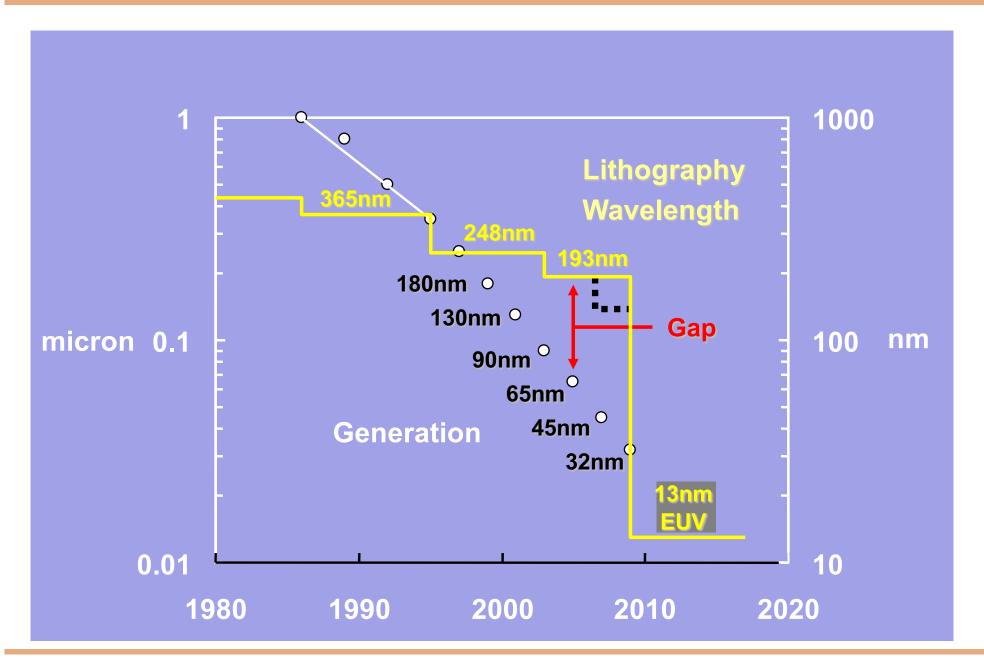


Backup

9/18/18 VLSI-1 Class Notes



Chandu Visweswariah, IBM Thomas J. Watson Research Center



Sub-wavelength Lithography Adds Variations

Sources of variation

Process variations

 Ion implantation, photolithography, gate etch, thermal processing, tolerance in the size of the mask image, mask alignment, angle of the etched polysilicon, temperature, polishing, planarization

Subtle layout dependencies

- Transistor orientation
- Post OPC effects

Tool errors

Gate delay model, waveform model, etc.

Human errors

Designer overwriting the tool results

F. Dartu: Variation Impact on High Performance Circuits