
EE382V: Computer Architecture: User System Interplay Lecture #4
Department of Electical and Computer Engineering

The University of Texas at Austin February 2007

Disclaimer: ”The contents of this document are scribe notes for The University of

Texas at Austin EE382V Spring 2007, Computer Architecture: User System Interplay∗.

The notes capture the class discussion and may contain erroneous and unverified infor-

mation and comments.

WaveScalar

Lecture #4: Wednesday, 31 January 2007
Lecturer: Mattan Erez
Scribe: Sabrina Smith
Reviewer: Min Kyu Jeong and Mattan Erez

1 Basic Concepts

In between discussing the WaveScalar paper, we discussed a couple of key concepts which
appeared in the paper. Those are discussed first in these notes, to make the rest of the
notes a little more cohesive.

1.1 Hyperblock

A hyperblock is a collection of basic blocks with a single entry point, multiple exits, and
no loops. It is an extension of a superblock. The difference is that a superblock does not
allow multiple control flows within the block; whereas, a hyperblock does by predicating
on the control flows (such as the If-conversion) for better utilization of VLIW.

1.2 Memory Ordering

Total memory ordering (also known as strict memory consistency) is the requirement
that all stores and loads are viewed as in the sequential ordering given be the compiled
control flow. WaveScalar uses waves and tags to implement total memory ordering. The
compiler gives every memory operation a tag which consists of three components: the ID
of the previous memory operation, the ID of the current memory operation, and the ID
of the successive memory operation (in control flow order as specified in the code). The
tag might look something like the following: <0,1,?>. The ‘?’ signifies that the ID of
the successive memory operation is not known. ?’s can be resolved by introducing one
or more additional states into the control flow diagram.

∗Copyright 2007 Sabrina Smith and Mattan Erez, all rights reserved. This work may be reproduced

and redistributed, in whole or in part, without prior written permission, provided all copies cite the

original source of the document including the names of the copyright holders and ”The University of

Texas at Austin EE382V Spring 2007, Computer Architecture: User System Interplay”.



2 EE382V: Lecture #4

2 Problems Being Solved

Modern day superscalar processors are becoming more and more difficult to scale due to
many factors. Some of these include wire problems (wires of the same logical distance
scale, but wires of increased logical distance do not), complexity of the design, complexity
of the verification process, and reliability of the technology. Because of this, the authors
of WaveScalar attempt to create an alternative architecture for low- complexity/high-
performance processors. This architecture should support von Neumann semantics and
imperative languages (languages which may have side effects) in dataflow.

3 Uniqueness of Solution

There are many aspects of the solution, some of which are unique and some of which
are not. Some of the less unique aspects include simple building blocks, a hierarchi-
cal on-chip network, computations that are done in memory (WaveScalar uses a model
of computation occurring where the data is, which is unique and different from other
compute-in-memory ideas), and non- uniform communication that is exposed to the
compiler, but not to the languages. A list of the unique aspects of the solution appears
below.

• Attempts to minimize communication cost instead of maximizing ALU processing
utilization.

• Supports total memory ordering in dataflow.

• Completely distributed dataflow, allowing multiple concurrent use of data.

• Support for dynamic dataflow instruction placement and caching?

• Concept of “waves”: A wave is an acyclic directed graph of part of the program.
It is supposedly an extension of a hyperblock, but there is some confusion about
the actual differences between a wave and a hyperblock. In the paper, a wave is
described to have a single entry point and no loops, but it may include branches or
joins.

• Concept of a “wave cache”, in which each datum is associated with a computation
(previous compute-in-memory were more of ALUs in DRAM).

• Supports binaries (post-translation) from languages that require memory ordering
but don’t give hints about how to enforce it.

4 Intended Users of System

The intended users of WaveScalar are general purpose processor (GPP) users. WaveScalar
is intended to be a GPP replacement.



EE382V: Lecture #4 3

5 Evaluation of Solution

The following bullets describe the evaluation (or lack thereof) of the WaveScalar proces-
sor.

• Showed they could successfully run applications on the simulator.

• Compared WaveScalar with a superscalar processor and a TRIPS processor.

• Used “Alpha equivalent IPC” (AIPC) to count the IPC of their own system. This
was done because Alpha is a very clean instruction set.

• Performed sensitivity study of queue sizes, wave cache size, speculation, and clus-
tering degree.

• Assumed perfect L1 caches, i.e. assumed that memory bandwidth and latency
don’t affect performance. They made this assumption for both WaveScalar and
comparison machines, but this could lead to skewed results. In fact, the clustering
sensitivity study performed for this paper hinted at what later research proved –
the assumption of perfect L1 caches benefited the WaveScalar machine for than the
comparison machines.

• Didn’t consider interrupts, exceptions, OS, etc.

• Assumed perfect speculation, so didn’t talk about how to recover from or the poten-
tial costs of missed speculation. (As a side point, important to realize that memory
speculation affects load/store order and control flow.) This assumption was made
for part of the evaluation only.

• Utilization was not evaluated – implied that peak/utilization numbers are mean-
ingless because you can build as many ALUs as you may want on modern systems.
This is a unique aspect of this paper.

• Peak performance not evaluated.

• Complexity and reliability talked about some, but not really evaluated.

6 Technology as a Factor

Technology was definitely a factor in the solution. It was the driving motivation for the
need to rethink superscalar processor architectures and come up with a radically different
architecture based on dataflow.



4 EE382V: Lecture #4

7 New Tools, Software

The designers of the WaveScalar processor also wrote a binary translator (the WaveScalar
compiler) that divides a program into waves and adds some wave management instruc-
tions. This compiler breaks the control flow graph of the program into waves, reasons
about the memory ordering within those waves, and translates the code into dataflow.

8 How Solution May Affect Other Users

WaveScalar could affect other users in a variety of ways:

• The fact that interrupts, exceptions, etc. were not evaluated could be problematic.

• The code density of the programs may cause the code not to fit within embedded
systems (the WaveScalar compiler had to grow the code to achieve the proper
dataflow).

• Thread level parallelism was not discussed.

• Real-time was ignored.

9 How Paper Relates to General Concepts of Class

The discussion of how this paper relates to the general concepts of the class was left to
the next lecture.


